
Using Echo State Networks to Approximate Value Functions for
Control

Allen G. Harta, Kevin R. Oldinga, Alexander M.G. Coxa, Olga Isupovab, Jonathan H.P.
Dawesa

aDepartment of Mathematical Sciences, University of Bath, Bath, BA2 7AY, UK
bDepartment of Computer Science, University of Bath, Bath, BA2 7AY, UK

Abstract

An Echo State Network (ESN) is a type of single-layer recurrent neural network with randomly-
chosen internal weights and a trainable output layer. We prove under mild conditions that
a sufficiently large Echo State Network can approximate the value function of a broad
class of stochastic and deterministic control problems. Such control problems are generally
non-Markovian.

We describe how the ESN can form the basis for novel and computationally efficient
reinforcement learning algorithms in a non-Markovian framework. We demonstrate this
theory with two examples. In the first, we use an ESN to solve a deterministic, partially
observed, control problem which is a simple game we call ‘Bee World’. In the second
example, we consider a stochastic control problem inspired by a market making problem in
mathematical finance. In both cases we can compare the dynamics of the algorithms with
analytic solutions to show that even after only a single reinforcement policy iteration the
algorithms arrive at a good policy.

Keywords: Liquid State Machines, Reservoir Computing, Stochastic Optimal Control,
Mathematical Finance, Reinforcement Learning
PACS: 0000, 1111
2000 MSC: 0000, 1111

Preprint submitted to Neural Networks June 29, 2021

1. Introduction

An Echo State Network (ESN) is a special type of single-layer recurrent neural network
introduced at the turn of the millennium by [1] and [2] to study time series. Training is fast
because the training step involves only the selection of weights in the output layer rather than
updating the internal weights in the recurrent layer. Furthermore, the simple formulation
of ESNs renders them amenable to mathematical analysis. Given a time series zk (where k
is the discrete time index) of d-dimensional data points, an ESN is set up as follows. We
randomly generate a n × n reservoir matrix A, a n × d input matrix C and a n × 1 bias
vector ζ. Then we iteratively generate a sequence of n-dimensional reservoir state vectors xk
according to

xk+1 = σ(Axk +Czk + ζ)

where σ(x)i = max(0, xi) is the rectified linear unit (ReLU) activation function applied
component-wise to the n-dimensional vector x. Observe that the kth reservoir state xk
depends on all past data-points . . . , zk−2, zk−1 and therefore captures non-Markovian temporal
correlations in the data. If the 2-norm of the reservoir matrix satisfies ‖A‖2< 1 then as n
tends to infinity, the influence on the reservoir state xk+n of the data points . . . , zk−2, zk−1 in
the distant past becomes arbitrarily small. This is called the fading memory property and is
closely related to the echo state property (ESP) introduced in the context of ESNs by [1].
The ESP is the statement that the sequence of reservoir states (xk)k∈Z is, for a given input
data sequence (zk)k∈Z, uniquely determined. We can interpret the reservoir state vectors as
the latent vectors which encode the infinite past observations in lower dimensional form.

When an ESN has the ESP, it can be applied to a class of supervised learning problems
where we have a time series of d dimensional data points rk, called targets, that depend on
all previous input time series data . . . , zk−3, zk−2, zk−1 and we seek to learn the relationship
between the sequence of past states and the target for each k. We can train an ESN to solve
this problem by finding the m× d matrix W that minimises

`−1∑
k=0

‖W>xk − rk‖2 + λ‖W‖2,

where ` is the number of labelled data points, and λ > 0 is the Tikhonov regularisation
(a.k.a. ridge regression) parameter. Throughout this paper, ‖·‖ denotes the matrix 2-norm,
vector 2-norm or absolute value, depending on whether the input is a matrix, vector, or
scalar, respectively.

This minimisation problem can be solved using regularised linear least squares regression,
and hence we can both obtain W quickly, and guarantee that W is the global optimum.
This compares extremely favourably with training a (deep) neural network with stochastic
gradient descent and backpropagation which takes considerably longer, and may not converge
to the global optimum [3].

Despite the training procedure being entirely linear, ESNs are universal approximators,
and can therefore model arbitrarily complex relationships between the sequence of past data

2

points and the targets. This is made formal in a recent result by [4] that we review here
and then build on. We emphasise that not only are ESNs theoretically very promising, they
have performed remarkably well in practice on problems ranging from seizure detection,
to robot control, handwriting recognition, and financial forecasting, where ESNs have won
competitions [5], [6], [7], [8]. Impressively, ESNs outperformed RNNs and LSTMs at a chaotic
time series prediction task by a factor of over 2400 [9]. ESNs have also proved themselves
competitive in various tasks in reinforcement learning [10] and control [11].

Even in cases where practitioners prefer to use other recurrent neural networks (RNNs),
such as Long Short Term Memory networks (LSTMs), the rigorous theory of ESNs should
prove useful in architecture design. In [12], it is shown that different deep neural network
architectures can be ranked by randomly initialising the internal weights and training only
the outer weights by linear regression. Once the best performing architecture (with random
internal weights) has been identified, the authors then train the internal weights of the highest
ranking architecture. This is much faster than training the internal weights (a nonlinear
problem) for every architecture. The ranking of architectures with random internal weights
closely approximates the ranking of architectures with optimised internal weights. From
our point of view, the authors are essentially approximating fully trained networks with
(non-recurrent) ESNs.

In a sequence of papers, [13], [14], and [4] recently analysed ESNs in the context
of nonlinear filters and functionals. Roughly speaking, a filter U is a map from a bi-
infinite sequence . . . , z−2, z−1, z0, z1, z2, . . . of real vectors to another bi-infinite sequence
of real vectors . . . , x−2, x−1, x0, x1, x2, . . ., and a functional H maps a bi-infinite sequence
. . . , z−2, z−1, z0, z1, z2, . . . of real vectors to a single real vector or number. We can view an
ESN as a filter that maps an input sequence . . . , z−2, z1, z0, z1, z2, . . . to a reservoir sequence
. . . , x−2, x−1, x0, x1, x2, . . ., or a funtional that maps . . . , z−2, z1, z0, z1, z2, . . . to the lone reser-
voir state x0. The theory of filters and functionals is therefore a natural theoretical setting
for ESNs. Within this theory, this paper presents three novel results.

Our first result assumes that we have a time series of data zk and a set of targets rk that
depend on all previous data points . . . , zk−2, zk−1 via a functional R which sends infinite
sequences of data points to targets. We then have a supervised learning problem of finding
the relationship between the data and targets. In the special case that zk = rk, this problem
is time series forecasting. Our first novel result states that if we have sufficiently many data
points zk, drawn from a stationary, ergodic, and bounded process Z, which need not be
Markovian, and we obtain W using regularised linear least squares, then a sufficiently large
ESN will approximate, as closely as required, the functional R sending inputs . . . , zk−2, zk−1
to the targets rk.

This result has applications in the statistical inference of dynamical systems, which was
recently reviewed by [15]. This area of research is especially focused on statistical inference (i.e
learning) of stationary ergodic processes. Furthermore, we can use this result in the context
of reinforcement learning (RL) and optimal control. We envisage an agent operating under a
given policy in the parlance of reinforcement learning or control in the parlance of control
theory that generates a sequence of (reward, action, observation) triples zk = (rk, ak, ωk).
Then the functional V that maps previous (reward, action, observation) triples . . . , zk−2, zk−1

3

to rewards zk models the reward functional arbitrarily well. The set up does not assume the
RL problem is Markovian, and allows for a continuous state space.

Our second novel result generalises the first, and encompasses the case where the functional
V is the value functional of a stochastic control process, or Partially Observed Markov Decision
Process (POMDP). By training an ESN to approximate the value functional, we establish a
stepping stone toward developing an offline reinforcement learning algorithm supported by
an ESN that can solve a large class of control problems. Moreover, since ESNs are recurrent,
they can be used for non-Markovian problems, where a reinforcement learning agent must
exploit its memory of past observations, actions and rewards. Our third result is presented in
the context of building an online reinforcement algorithm that can, under certain conditions,
determine the optimal value function for a given policy.

These results are part of a general push to take machine learning ideas typically applied
to (partially observed) Markov processes and generalising them to hold on stationary ergodic
processes. We can see for example [16] consider to clustering problems typically defined
Markov processes applied to stationary ergodic processes.

We demonstrate some of these theoretical results numerically on two examples. The
first is a deterministic game which we call ‘Bee World’. The goal of the game for the bee
is to navigate a time varying distribution of nectar in order to maximise the total future
discounted value of the nectar acquired over all future time. The optimal trajectory can be
found explicitly via the calculus of variations but the constraint that the bee has a maximum
speed of flight leads to unexpectedly complicated solution paths; it therefore provides a
straightforward but not entirely trivial control problem. Since the bee does not have access
to the entire state space, and only observes the nectar it collects at each moment in time, the
problem is therefore a partially observed Markov Decision Process which requires memory
of the past to solve. We demonstrate how a simple and easily-configurable reinforcement
learning algorithm supported by an ESN can learn to play Bee World with respectable skill.

The second numerical example is inspired by a market making problem in mathematical
finance. The mathematical formulation of this problem reduces to a seeking to control a
one dimensional Brownian motion so that it stays near the origin. The cost of straying
from the origin is quadratic in the distance from the origin, and the cost of applying a push
toward the origin is quadratic in the strength of the push. The market maker must therefore
balance the cost of applying the control against the cost of allowing the motion to drift
too far from the origin. We briefly discuss the financial motivation for this problem, then
solve it analytically in continuous and discrete time. The set up most commonly seen in the
literature is continuous time, but only in discrete time is the problem suitable for an ESN.
We then compare the optimal discrete time solution to a solution learned by a reinforcement
learning agent supported by an ESN.

Finally, we note that our approach to the Market making problem is loosely related to
the recent paper by [11] who introduce QuaSiModO: Quantization-Simulation-Modeling-
Optimization. These authors analyse the interplay between the following four aspects:

1. Quantising the action space A.
2. Simulating a system under a given control/policy.

4

3. Modelling the full system given a partial/full observation of the state space.
4. Optimising the control/policy.

The structure of the remainder of the paper closely follows the summary of results
presented above. In section 2 we set up the mathematical formalism for ESNs that we wish
then to approximate. Section 3 introduces our novel theoretical results, while sections 4 and 5
respectively present applications to the deterministic (‘Bee World’), and then the stochastic
(‘market maker’) optimal control problems. We conclude in section 6.

2. Background

In this section, we introduce the theory and notation of nonlinear filters (in relation
to ESNs) developed by [13], [14], and [4]. First, we denote by (Rd)Z the set of maps with
domain Z and codomain Rd. This is the set of bi-infinite Rd–valued real sequences.

A filter is a map U : (Rd)Z → (Rn)Z. A filter U is called causal if inputs from the past
and present . . . , z−2, z−1, z0 contribute to U(z) but states in the future z1, z2 . . . do not. More
formally U is casual if ∀ z, y ∈ (Rd)Z that satisfy zk = yk ∀ k ≤ 0 it follows that U(z) = U(y).
We define the time shift filter T : (Rd)Z → (Rn)Z by T (z)k = T (z)k+1 which we interpret
as the map that steps forward one unit of time. A filter U is called time invariant if U
commutes with the time shift operator T . If U is causal and time invariant filter then we
call U a causal time invariant (CTI) filter.

A functional is a map H : (Rd)Z → Rn. In [14] it is shown that there is a bijection
between the space of CTI filters and the space of functionals. To see this, take a functional
H and define the kth term of the associated filter U via U(z)k = HT k(z). Conversely, given
a filter U , the associated functional H is given by H(z) = U(z)0

We can view an ESN as a CTI filter from the space of input sequences . . . , z−1, z0, z1, . . .
to the space of reservoir sequences . . . , x−1, x0, x1, To make this connection between
ESNs and filters formal, we will first present a generalisation of an Echo State Network called
a reservoir system.

Definition 2.1. (Reservoir system) Let F : Rn × Rd → Rn and h : Rn → Rs. Then we call
the following system of equations

xk+1 = F (xk, zk) (1)
rk = h(xk)

a reservoir system.

Remark 2.2. We can see that if

F (x, z) = σ(Ax+Cz + ζ)

h(x) = W>x

then we retrieve an ESN with n× n reservoir matrix A, n× d input matrix C, bias vector
ζ ∈ Rn, linear output layer W ∈ Rn, and activation function σ = ReLU, defined in the
introduction.

5

We require that the reservoir system induces a unique filter from the input sequence to
the reservoir sequence. This property is the Echo State Property that we briefly mentioned
in the introduction.

Definition 2.3. (Echo State Property [1]) A reservoir system has the Echo State Property
(ESP) if for any (zk)k∈Z ∈ (Rd)Z there exists a unique (xk)k∈Z ∈ (Rn)Z that satisfy the
equations of the reservoir system (1).

To any reservoir system with the Echo State property we can associate a unique CTI
reservoir filter U : (Rd)Z → (Rn)Z defined by U(z) = x. To this reservoir filter, we may
assign a CTI reservoir functional H : (Rm)Z → Rd defined by H(z) = x0. In a supervised
learning context, we have a time series of data points . . . , z−2, z−1, z0 and a time series of
targets . . . , r−1, r0 that each depend on all previous data points. The output functional
h ◦ H : (Rd)Z → R is the map we use to approximate the relationship between the data
and the targets, so h ◦H(. . . , z−2, z−1, z0, z1, z2, . . .) ≈ rk. Note that h ◦H is causal, so does
not peer into the future and use data z1, z2, . . . that have not yet been revealed. When the
reservoir system is an ESN, the map h is the linear map W> obtained by least squares ridge
regression, so that W>H(. . . , z−2, z−1, z0, z1, . . .) ≈ rk. We assume there exists a true map
from the data to the targets that we label R : RZ → R so that R(. . . , z−2, z−1, z0, z1, . . .) = rk.
Our goal is to find W such that W>H ≈ R.

Definition 2.4. (ESN filter and functional) If an ESN has the ESP then we will write
HA,C,ζ to denote the reservoir functional associated to an ESN with parameters A,C and
ζ. We will also write HA,C,ζ

W to denote the output functional W>HA,C,ζ (defined by left
multiplication of HA,C,ζ by the linear readout layer)

Next, we will present a procedure, introduced by [4], for randomly generating the ESN’s
internal weights A,C and biases ζ, which ensures the ESN has ESP and allows for the
universal approximation of target functionals R. The procedure differs from the procedure
commonly seen in the literature, where A,C, ζ are populated with i.i.d Gaussians, or i.i.d
uniform deviates, and then A is rescaled so that its 2-norm (or spectral radius) is less than 1.
Furthermore, the procedure introduced by [4] depends on some details of the input process,
which must satisfy mild conditions stated below.

Definition 2.5. (Admissible input process) A (Rd)Z valued random variable Z is called an
admissible process if for any T ∈ N there exists MT > 0 such that for all k ∈ Z

‖Zk−T ,Zk−T+1, . . . ,Zk‖ ≤MT (2)

Lebesgue-almost surely.

6

We will now present a procedure by which the matrices A,C, ζ are randomly generated.
Procedure: Initialising the random weights of an ESN.
Let N ∈ N, R > 0 be the input parameters for the procedure. Suppose that Z is an
admissible input process. Consequently, for any T0 ∈ N there exists MT0 such that
(for k = 0 in (2))

‖Z−T0 ,Z−T0+1, . . . ,Z0‖ ≤MT

Lebesgue-almost surely. Then, for a given T0, we initialise the ESN reservoir matrix
A, input matrix C, and biases ζ according to the following procedure.
1. Draw N i.i.d. samples A1, . . . ,AN from the uniform distribution on BR ⊂ Rd(T)+1)

where BR is the ball of radius R and centre 0, and draw N i.i.d. samples ζ1, . . . ζN
from the uniform distribution on [−max(MT0R, 1),max(MT0R, 1)].

2. Let S and c be shift matrices defined

S =

[
0d,dT0 0d,d
IdT0 0dT0,d

]
c =

[
Id

0dT0,d

]
and set

a =

A>1
A>2
...
A>N

 Ā =

[
S 0d(T0+1),N

aS 0N,N

]

C̄ =

[
c
ac

]
ζ̄ =

0d(T0+1)

ζ1
...
ζN

so that

A =

[
Ā −Ā
−Ā Ā

]
C =

[
C̄
−C̄

]
ζ =

[
ζ̄
−ζ̄

]
.

We are now ready to present the key result by [4], (which generalises a result by [17])
and which holds in the following supervised learning context. Given time series data zk
(from an admissible process Z) and a time series of targets rk depending on all previous data
. . . , zk−2, zk−1 we wish to approximate the functional that sends . . . , zk−2, zk−1 to rk. We will
denote this functional R. The problem of approximating R given the data and targets is a
supervised learning problem. The result can be summarised as follows. Suppose we have an
ESN with weights A,C and biases ζ randomly generated by procedure 1. Then, the ESN
admits a linear readout matrix W for which the ESN equipped with the matrix W (denoted
HA,C,ζ
W) approximates the relationship R between data points . . . , zk−2, zk−1 and targets rk

7

as closely as is required.

Theorem 2.6 ([4]). Suppose that Z is an admissible input process. Let R : (Dn)Z → R
(where Dn is a compact subset of Rn) be CTI and measurable with respect to some measure
µ such that Eµ[|R(Z)|2] <∞.

Then for any ε > 0 and δ ∈ (0, 1) there exists N, T0 ∈ N, R > 0 such that, with probability
(1− δ), the ESN with parameters A,C, ζ generated by the procedure in definition 1 (with
inputs N, T0, R) has the ESP and admits a readout layer W ∈ R2(d(T0+1)+N) such that(

Eµ
[∥∥∥HA,C,ζ

W (Z)−R(Z)
∥∥∥2 ∣∣∣∣ A,C, ζ])1/2

:=

(∫
(Rd)Z

∥∥∥HA,C,ζ
W (z)−R(z)

∥∥∥2 dµ(z)

)1/2

< ε.

3. Novel results for ESNs

Theorem 2.6 is an existence result stating that there exists a linear readout layer W
yielding an arbitrarily good approximation. Our first novel contribution is to strengthen
the result under additional assumptions. The new result states that, given a sufficiently
large ESN and sufficiently many training data zk drawn from a stationary, ergodic and
bounded process Z, if we train an ESN using regularised least squares then the arbitrarily
good readout layer W will be attained (with probability as close to 1 as desired). This
result is analogous to the main result by [18] who prove a similar theorem for ESNs trained
on deterministic inputs. Before we introduce the result we will present the definition of a
stationary process, an ergodic process, and the ergodic theorem.

Definition 3.1. (Stationary Process [15]) A stochastic process (Zk)k∈Z ≡ Z is stationary
if for any ` ∈ N and finite subset I ⊂ Z the joint distribution (Zi)i∈I is equal to the joint
distribution (Zi+`)i∈I .

Definition 3.2. (Stationary Ergodic Process [15]) A stationary stochastic process (Zk)k∈Z ≡
Z is called ergodic if for every ` ∈ N and every pair of Borel sets A,B

lim
`→∞

1

`

`−1∑
k=0

P
(

(Z1, . . . ,Z`) ∈ A, (Zk, . . . ,Zk+`) ∈ B
)

=P
(

(Z1, . . . ,Z`) ∈ A
)
P
(

(Z1, . . . ,Z`) ∈ B
)
.

Every stationary ergodic processes Z satisfies the celebrated Ergodic Theorem.

Theorem 3.3. (Ergodic Theorem) If (Zk)k∈Z ≡ Z is a stationary ergodic process then for
any i ∈ Z

Eµ[Zi] = lim
`→∞

1

`

`−1∑
k=0

Zi+k

almost surely.
8

Our result holds in the following supervised learning context. Given time series data zk
(from an admissible, stationary, ergodic, bounded process Z) and a time series of targets
rk depending on all previous data . . . , zk−2, zk−1 we wish to approximate the mapping from
. . . , zk−2, zk−1 to rk. This mapping is denoted R. Our result states that an ESN with weights
A,C and biases ζ randomly generated by the procedure in definition 1, which is fed the
training data zk, and then trained by regularised least squares, will yield a matrix W . This
ESN equipped with the matrix W (denoted HA,C,ζ

W) will approximate the relationship R
between data points . . . , zk−2, zk−1 and targets rk as closely as required.

Theorem 3.4. Suppose that Z is an admissible input process, that is also stationary and
ergodic, with invariant measure µ. Let R : (Dn)Z → R (where Dn is a compact subset of Rn)
be CTI, µ-measurable, and satisfy Eµ[|R(Z)|2] <∞. Let z be an arbitrary realisation of Z

Then for any ε > 0 and δ ∈ (0, 1) there exist N, T0 ∈ N, R > 0, λ∗ > 0 and ` ∈ N
such that the ESN with parameters A,C, ζ generated by the procedure in Definition 1 (with
inputs N, T0, R), and W ∗

` ∈ R2(d(T0+1)+N) which minimises (over W ∈ R2(d(T0+1)+N)) the least
squares problem

1

`

`−1∑
k=0

∥∥∥HA,C,ζ
W T−k(z)−RT−k(z)

∥∥∥2 + λ ‖W‖2 ,

(where λ ∈ (0, λ∗)) satisfies with probability (1− δ) the inequality

Eµ
[∥∥∥HA,C,ζ

W ∗
`

(Z)−R(Z)
∥∥∥2∣∣∣∣A,C, ζ] < ε.

Proof. Later in this paper, we state and prove a more general result (Theorem 3.6) which
reduces to this result in the special case γ = 0.

In summary, we have stated that for any ε > 0 and δ ∈ (0, 1) there exists an ESN of
dimension n = 2(d(T0 + 1) +N) with output layer W trained by the Tikhonov-regularised
least squares procedure against ` training points, whose output functional approximates
the target arbitrarily closely with arbitrarily high probability. The theorem is (sadly) non
constructive in the sense that the number of neurons n, number of training points ` and
regularisation parameter λ∗ are not computed for a given ε and δ. Ideally, we would establish
uniform bounds on the number of number of neurons n and data points ` required for an
approximation with tolerance ε to hold with probability δ. Though less ideal, one could
establish an asymptotic order of convergence using the central limit theorem (CLT). The
CLT (roughly) states that the error between the time average and the space average of a
stationary ergodic process converges in law to a normal distribution with standard deviation
of the order 1/

√
` as the number of data points ` grows to infinity. The CLT is stated below.

Theorem 3.5. (Central Limit Theorem [15]) If (Zk)k∈Z is a stationary ergodic process then
there exists a covariance matrix Σ such that for any i ∈ Z and Borel set A

lim
`→∞

P
(

1√
`

`−1∑
k=0

(Zi+k − Eµ[Zi])

)
= P

(
N (0,Σ) ∈ A

)
.

9

In other words, the random variables

1√
`

`−1∑
k=0

(Zi+k − Eµ[Zi])

converge in distribution to the multivariate normal N (0,Σ) as `→∞.

This suggests that the approximation of the target functional R also converges with order
1/
√
` as the number of data points increases. Furthermore, related results by [4] use the

CLT to establish uniform bounds on the number of neurons n = 2(d(T + 1) +N) required
for a given approximation. This strongly suggests that the approximation in Theorem 3.4
converges with order 1/

√
N .

We will now pivot towards our second novel result, which generalises the first. Suppose
that we have a contraction mapping Φ on the space of functionals, and we seek a W ∗ such
that the ESN functional HA,C,ζ

W ∗ approximates the unique fixed point of Φ. The existence of
the unique fixed point is guaranteed by Banach’s fixed point theorem. Finding the fixed point
of a contraction mapping has applications in reinforcement learning because the optimal
value function (and optimal quality function) of a Markov Decision Process (MDP) is a
fixed point of a Bellman operator. The theory we are presenting here can be viewed as a
generalisation of an MDP because the input processes we are considering may have long time
correlations (violating the Markov property) which can only be recognised by filters with
sufficiently long and robust memories; like Echo State Networks.

We can observe first of all if Φ is the constant map Φ(H) = R, then Φ is clearly a
contraction mapping with fixed point R. In this case, the problem is exactly the same as
that solved by Theorem 3.4. We are especially interested in the case of Φ taking the form
of the Bellman Value operator. To make this formal, we will consider a stationary ergodic
process Z with invariant measure µ. Then we define the map TZ as a CTI filter on the
bi-infinite sequences (DN)Z, which returns the random variable:

TZ(z)k =

{
TZ(z)k+1 if k < 0

Zk+1 | Zj = zj ∀j ≤ 0 if k ≥ 0.

Next, we introduce R : (DN)Z → R as the CTI reward functional, giving a reward (or
expectation over a distribution of rewards) to an agent that has observed a given sequence of
(reward, action, observation) triples. We let γ ∈ [0, 1) denote the discount factor, and define
the operator

Φ(H)(z) := R(z) + γEµ[HTZ(z)]. (3)

In this case, Φ is a contraction mapping with Lipschitz constant γ. With this, we will
define the CTI value functional V : (DN)Z → R (with respect to the process Z) as

V (z) := Eµ
[∞∑
k=0

γkRT k(Z)

∣∣∣∣ Zj = zj ∀j ≤ 0

]
.

10

The value functional V takes a sequence of (reward, action, observation) triples and returns
the expected discounted sum of future rewards. Furthermore, the value function V is the
unique fixed point of the Bellman operator Φ. Re-arranging the definition of V (z) above, we
have that:

V (z) = Eµ
[∞∑
k=0

γkRT k(Z)

∣∣∣∣ Zj = zj ∀j ≤ 0

]
= Eµ

[∞∑
k=1

γkRT k(Z)

∣∣∣∣ Zj = zj ∀j ≤ 0

]
+R(z)

= γEµ
[∞∑
k=0

γkRT k+1(Z)

∣∣∣∣ Zj = zj ∀j ≤ 0

]
+R(z)

= γEµ
[∞∑
k=0

γkRT k(Z)

∣∣∣∣ Zj = zj ∀j < 0

]
+R(z)

where we have carried out straightforward relabellings of the indexing of terms in the sum
by k. Then by the law of total expectation we may write this last expression as

V (z) = γEµ
[
Eµ
[∞∑
k=0

γkRT k(Z)

∣∣∣∣ Zj = TZ(z)j ∀j ≤ 0

]]
+R(z)

= γEµ[V TZ(z)] +R(z) = Φ(V)(z),

which shows that V is indeed a fixed point of Φ, and so is the unique such, since Φ is a
contraction.

Our goal is now to seek a W ∗ such that the ESN functional HA,C,ζ
W ∗ closely approximates

the unique fixed point V of Φ. One approach is to collect a dataset from a single training
trajectory, and then perform least squares regression to find W ∗. This is an example of
offline learning (in the reinforcement learning parlance) because the training occurs after the
data has been collected. This is in contrast to online learning where training takes place
dynamically as new data becomes available. We will make this offline approach formal in the
following theorem.

Theorem 3.6. Suppose that Z is an admissible input process, that is also stationary
and ergodic with invariant measure µ. Let R : (DN)Z → R be µ-measurable and sat-
isfy E[|R(Z)|2] <∞ and define Φ using (3) on the µ-measurable functionals H that satisfy
Eµ[|H(Z)|2] <∞. Let γ ∈ [0, 1). Let z be an arbitrary realisation of Z

Then for any ε > 0, δ ∈ (0, 1) there exists N, T0 ∈ N, R, λ∗ > 0 and ` ∈ N such
that the ESN with parameters A,C, ζ generated by procedure 1 (with inputs N, T0, R), and
W ∗
` ∈ R2(d(T0+1)+N) minimising (over W ∈ R2(d(T0+1)+N)) the least squares problem

1

`

`−1∑
k=0

∥∥W>(HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−R(z)
∥∥2 + λ‖W‖2

11

where λ ∈ (0, λ∗), then with probability (1− δ)

Eµ
[∥∥∥HA,C,ζ

W ∗
`

(Z)− ΦHA,C,ζ
W ∗
`

(Z)
∥∥∥2∣∣∣∣A,C, ζ] < ε.

Proof. First let V be the unique fixed point of the contraction mapping Φ whose existence
and uniqueness is guaranteed by Banach’s fixed point theorem. Denote the Lipschitz constant
of Φ with the symbol τ . Then we fix ε > 0 and δ ∈ (0, 1), then by Theorem 2.6 there exists
with probability (1− δ) a linear readout W ∈ R2(d(T0+1)+N) such that

Eµ
[∥∥∥HA,C,ζ

W (Z)− V (Z)
∥∥∥2 ∣∣∣∣A,C, ζ] < ε

5(1 + τ)
. (4)

Then it follows that

Eµ
[∥∥∥HA,C,ζ

W − ΦHA,C,ζ
W

∥∥∥2 |A,C, ζ]
= Eµ

[∥∥∥HA,C,ζ
W (Z)− ΦHA,C,ζ

W (Z) + V (Z)− V (Z)
∥∥∥2 |A,C, ζ]

≤ Eµ[‖HA,C,ζ
W (Z)− V (Z)‖2|A,C, ζ] + Eµ[‖V (Z)− ΦHA,C,ζ

W (Z)‖2|A,C, ζ]

= Eµ[‖HA,C,ζ
W (Z)− V (Z)‖2|A,C, ζ] + Eµ[‖ΦV (Z)− ΦHA,C,ζ

W (Z)‖2|A,C, ζ]

≤ Eµ[‖HA,C,ζ
W (Z)− V (Z)‖2|A,C, ζ] + τEµ[‖V (Z)−HA,C,ζ

W (Z)‖2|A,C, ζ]

= (1 + τ)Eµ[‖V (Z)−HA,C,ζ
W (Z)‖2|A,C, ζ]

< (1 + τ)
ε

5(1 + τ)
by (4)

<
ε

5

which yields the estimate

Eµ[‖HA,C,ζ
W − ΦHA,C,ζ

W ‖2|A,C, ζ] <
ε

5
. (5)

Now, we can choose λ∗ such that for any λ ∈ (0, λ∗)

λ‖W‖2 < ε

5
. (6)

Next we define a sequence of vectors (W ∗
j)j∈N by

W ∗
j = arg min

U∈R2(d(T0+1)+N)

(
1

j

j−1∑
k=0

‖HA,C,ζ
U T−k(z)− γHA,C,ζ

U T 1−k(z)−RT−k(z)‖2 + λ‖U‖2
)
.

We may view arg min as continuous map on the space of strictly convex C1 functions that
returns their unique minimiser. The regularised linear least squares problem is a strictly

12

convex C1 problem, so we may define W ∗
∞ ∈ R2d(T0+1)+N by

W ∗
∞ := arg min

U

(
Eµ[‖HA,C,ζ

U (Z)− γHA,C,ζ
U T (Z)−R(Z)‖2|A,C, ζ] + λ‖U‖2

)
= arg min

U
lim
j→∞

(
1

j

j−1∑
k=0

‖HA,C,ζ
U T−k(z)− γHA,C,ζ

U T 1−k −RT−k(z)‖2 + λ‖U‖2
)

= lim
j→∞

arg min
U

(
1

j

j−1∑
k=0

‖HA,C,ζ
U T−k(z)− γHA,C,ζ

U T 1−k −RT−k(z)‖2 + λ‖U‖2
)

= lim
j→∞

W ∗
j

where the second and third equalities hold by the Ergodic Theorem and continuity of arg min
respectively. Now, we may choose ` ∈ N sufficiently large that∣∣Eµ[‖W ∗>

` (HA,C,ζ(Z)− γHA,C,ζT (Z))−R(Z)‖2|A,C, ζ]

− Eµ[‖W ∗>
∞ (HA,C,ζ(Z)− γHA,C,ζT (Z))−R(Z)‖2|A,C, ζ]

∣∣ < ε

5
, (7)

and∣∣∣∣∣ limj→∞

(
1

j

j−1∑
k=0

‖W ∗>
j (HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−RT−k(z)‖2 + λ‖W ∗

j ‖2
)

− 1

`

`−1∑
k=0

‖W ∗>
` (HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−RT−k(z)‖2 + λ‖W ∗

` ‖2
∣∣∣∣∣ < ε

5
, (8)

and by the Ergodic Theorem∣∣∣∣∣1`
`−1∑
k=0

‖W>(HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−R(z)‖2

− lim
j→∞

1

j

j−1∑
k=0

‖W>(HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−R(z)‖2
∣∣∣∣∣ < ε

5
. (9)

Now the proof proceeds directly

Eµ[‖HA,C,ζ
W ∗
`

(Z)− ΦHA,C,ζ
W ∗
`

(Z)‖2|A,C, ζ]

= Eµ[‖HA,C,ζ
W ∗
`

(Z)− γHA,C,ζ
W ∗
`

T (Z)−R(Z)‖2|A,C, ζ]

= Eµ[‖W ∗>
` (HA,C,ζ(Z)− γHA,C,ζT (Z))−R(Z)‖2|A,C, ζ].

Then we apply (7) which yields

Eµ[‖HA,C,ζ
W ∗
`

(Z)− ΦHA,C,ζ
W ∗
`

(Z)‖2|A,C, ζ]

< Eµ[‖W ∗>
∞ (HA,C,ζ(Z)− γHA,C,ζT (Z))−R(Z)‖2|A,C, ζ] +

ε

5
.

13

Then we apply the Ergodic Theorem

Eµ[‖W ∗>
∞ (HA,C,ζ(Z)− γHA,C,ζT (Z))−R(Z)‖2|A,C, ζ] +

ε

5

= lim
j→∞

(
1

j

j−1∑
k=0

‖W ∗>
∞ (HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−RT−k(z)‖2

)
+
ε

5

≤ lim
j→∞

(
1

j

j−1∑
k=0

‖W ∗>
∞ (HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−RT−k(z)‖2

)
+ λ‖W ∗

∞‖2 +
ε

5

= lim
j→∞

(
1

j

j−1∑
k=0

‖W ∗>
j (HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−RT−k(z)‖2 + λ‖W ∗

j ‖2
)

+
ε

5

then apply (8)

<
1

`

`−1∑
k=0

‖W ∗>
` (HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−RT−k(z)‖2 + λ‖W ∗

` ‖2 +
2ε

5

≤ 1

`

`−1∑
k=0

‖W>(HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−RT−k(z)‖2 + λ‖W‖2 +
2ε

5

then apply (9)

< lim
j→∞

(
1

j

j−1∑
k=0

‖W>(HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−RT−k(z)‖2
)

+ λ‖W‖2 +
3ε

5

then apply (6)

< lim
j→∞

(
1

j

j−1∑
k=0

‖W>(HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−RT−k(z)‖2
)

+
4ε

5

Then apply the Ergodic Theorem again

= Eµ[‖W>(HA,C,ζ(Z)− γHA,C,ζT (Z)−R(Z))‖2|A,C, ζ] +
4ε

5

= Eµ[‖HA,C,ζ
W − ΦHA,C,ζ

W ‖2|A,C, ζ] +
4ε

5
then apply (5)
< ε

3.1. Connection to Partially Observed Markov Decision Processes
Theorem 3.6 applies to a reinforcement learning scenario where the observations are a

stationary and ergodic process. This includes the case where observations emerge from a
partially observed, stationary and ergodic Markov decision process. These are themselves a
special case of a partially observed Markov decision process (POMDP) which are a common
scenario studied in the reinforcement learning community. In particular, the results in this

14

paper apply to POMDPs in the special case that the underlying Markov process is stationary
and ergodic. However, there exist stationary ergodic processes, which satisfy the conditions
of Theorem 3.6, which are not the output of any partially observed decision Markov process.

The approach that we set out in this paper has a lot in common with POMDPs, but
there are some subtle differences which we will clarify here. First of all, the value function
in this paper is defined in terms of the complete sequence of (reward, action, observation)
triples, rather than the current belief state. One advantage of our approach is that a belief
state does not need to be computed explicitly, nor do any assumptions need to made about
the relationship between the hidden state of the environment and the observations. In the
setting of this paper, the reservoir states xk (which are explicitly computed by evaluating
HA,C,ζT k(z) can be interpreted as latent states, very much like the latent states for POMDPs.
We also stress that the value function V and reservoir functionals HA,C,ζ and HA,C,ζ

W ∗
`

are
causal and time invariant (CTI) so we are never using future information that is unavailable
in the present, despite the input sequences being bi-infinite. Indeed, one of the strengths of
our approach is that the learning procedure will be able to learn the impact of any unobserved
or hidden states via the latent states xk and linear regression.

3.2. Training ESNs with online learning
In some reinforcement learning applications, it is useful - or even essential - for the

optimisation of W to occur dynamically as new data comes in; such algorithms are called
online learning algorithms. In this section, we will present and discuss some preliminary
novel results surrounding online learning algorithms that use ESNs. We will first introduce a
lemma, stating that, under reasonable conditions, the ODE

d

dt
W = −h(W) := −Eµ

[
HA,C,ζ(Z)

(
HA,C,ζ
W (Z)− ΦHA,C,ζ

W (Z)
)]

(10)

converges exponentially quickly to a globally asymptotic fixed point W ∗, for which the
associated ESN functional HA,C,ζ

W ∗ is close to the unique fixed point of Φ. By close we
mean that the orthogonal projection of ΦHA,C,ζ

W ∗ onto the finite dimensional vector space of
functionals {HA,C,ζ

W | W ∈ Rd} is HA,C,ζ
W ∗ . Unlike the previous result (Theorem 3.6) we do

not need to assume that the contraction mapping satisfies Φ(H) = R + γE[HTZ]. We could
choose for example Φ(H) = R+ γ supπ E[HTZ(π)] where Z(π) is a process under a control π.
The fixed point of this operator is the optimal value function V ∗.

Lemma 3.7. Let Z be an admissible input process. Let A,C, ζ be a n×n, n× d, and n× 1
dimensional random reservoir matrix, input matrix and bias vector. Let HA,C,ζ and HA,C,ζ

W

denote the associated ESN functionals. Let Φ be a contraction mapping, with Lipschitz
constant 0 ≤ τ < 1, on the space of CTI filters H : (DN)Z → R that are µ-measurable and
satisfy E[H(Z)2] <∞. Suppose further that 0 ≤ τ < κ−1 where κ is the condition number of
the autocorrelation matrix

Σ = Eµ
[
HA,C,ζ(Z)HA,C,ζ>(Z)

∣∣ A,C, ζ] .
15

Then there exists a δ > 0 such that the ODE

d

dt
W = −h(W) := −Eµ

[
HA,C,ζ(Z)

(
HA,C,ζ
W (Z)− ΦHA,C,ζ

W (Z)
) ∣∣∣∣ A,C, ζ]

satisfies

d

dt
‖W −W ∗‖ ≤ −δ‖W −W ∗‖ (11)

where W ∗ is a globally asymptotic fixed point. W ∗ enjoys the further property that

HA,C,ζ
W ∗ = PΦHA,C,ζ

W ∗

where P denotes the L2(µ) orthogonal projection operator on the µ-measurable filters H
satisfying E[H(Z)2] <∞ and is defined

PH(z) := HA,C,ζ>(z)Σ−1Eµ
[
HA,C,ζ(Z)H(Z)

∣∣ A,C, ζ] .
Proof. To show that W ∗ is a globally asymptotic fixed point it suffices to show that there
exists a δ > 0 such that

(W −W ∗) · (h(W ∗)− h(W)) ≤ −δ‖(W −W ∗)‖2

as this implies

d

dt
‖W −W ∗‖ ≤ −δ‖W −W ∗‖.

To construct this δ, we first note that

h(W) = ΣW − Eµ
[
HA,C,ζ(Z)ΦHA,C,ζ

W (Z)
) ∣∣∣∣ A,C, ζ]

16

so, by a direct computation we have

(W −W ∗) · (h(W ∗)− h(W))

= (W −W ∗) ·
(
Eµ
[
HA,C,ζ(Z)ΦHA,C,ζ

W (Z)
) ∣∣∣∣ A,C, ζ]− Eµ

[
HA,C,ζ(Z)ΦHA,C,ζ

W ∗ (Z)
) ∣∣∣∣ A,C, ζ])

− (W −W ∗) ·
(

ΣW − ΣW ∗
)

= (W −W ∗) ·
(
Eµ
[
HA,C,ζ(Z)ΦHA,C,ζ

W (Z)
) ∣∣∣∣ A,C, ζ]− Eµ

[
HA,C,ζ(Z)ΦHA,C,ζ

W ∗ (Z)
) ∣∣∣∣ A,C, ζ])

− (W −W ∗)>Σ
(
W −W ∗)

≤ (W −W ∗) ·
(
Eµ
[
HA,C,ζ(Z)ΦHA,C,ζ

W (Z)
) ∣∣∣∣ A,C, ζ]− Eµ

[
HA,C,ζ(Z)ΦHA,C,ζ

W ∗ (Z)
) ∣∣∣∣ A,C, ζ])

− σ‖W −W ∗‖2 where σ is the smallest eigenvalue of Σ

= (W −W ∗) ·
(
Eµ
[
HA,C,ζ(Z)ΦHA,C,ζ

W (Z)
)
−HA,C,ζ(Z)ΦHA,C,ζ

W ∗ (Z)
) ∣∣∣∣ A,C, ζ])

− σ‖W −W ∗‖2

≤ (W −W ∗) ·
(
Eµ
[
HA,C,ζ(Z)HA,C,ζ

W (Z)
)
−HA,C,ζ(Z)HA,C,ζ

W ∗ (Z)
) ∣∣∣∣ A,C, ζ])τ

− σ‖W −W ∗‖2 because τ is the Lipschitz constant for Φ

= τ(W −W ∗)>Σ(W −W ∗)− σ‖W −W ∗‖2

≤ τρ‖W −W ∗‖2 − σ‖W −W ∗‖2 where ρ is the largest eigenvalue of Σ

= −(σ − τρ)‖W −W ∗‖2,

so we can set δ := σ − τρ and notice δ > 0 because 0 ≤ τ < κ−1 = σ/ρ. Next, to show that

HA,C,ζ
W ∗ = PΦHA,C,ζ

W ∗

we observe that since W ∗ is an equilibrium point of the ODE

Ẇ = −h(W)

17

it follows that h(W ∗) = 0 and therefore

0 = Eµ
[
HA,C,ζ(Z)

(
HA,C,ζ
W ∗ (Z)− ΦHA,C,ζ

W ∗ (Z)
) ∣∣∣∣ A,C, ζ]

=⇒ 0 = Eµ
[
HA,C,ζ(Z)HA,C,ζ>(Z)

∣∣∣∣ A,C, ζ]W ∗ − Eµ
[
HA,C,ζ(Z)ΦHA,C,ζ

W ∗ (Z)

∣∣∣∣ A,C, ζ]
=⇒ 0 = ΣW ∗ − Eµ

[
HA,C,ζ(Z)ΦHA,C,ζ

W ∗ (Z)

∣∣∣∣ A,C, ζ]
so, ΣW ∗ = Eµ

[
HA,C,ζ(Z)ΦHA,C,ζ

W ∗ (Z)

∣∣∣∣ A,C, ζ]
so, W ∗ = Σ−1Eµ

[
HA,C,ζ(Z)ΦHA,C,ζ

W ∗ (Z)

∣∣∣∣ A,C, ζ]
so, HA,C,ζ

W ∗ = HA,C,ζ>Σ−1Eµ
[
HA,C,ζ(Z)ΦHA,C,ζ

W ∗ (Z)

∣∣∣∣ A,C, ζ]
= PΦ(HA,C,ζ

W ∗).

One rather restrictive condition of this lemma is that the Lipschitz constant τ of the
contraction Φ must be less than the reciprocal condition number κ−1. κ is a measure of how
orthonormal the columns of the autocorrelation matrix Σ are. In particular, if the columns
are indeed orthonormal, then κ = 1 and this condition ceases to be restrictive at all. If the
columns are close to being linearly dependant, then κ is large so the requirement that κ−1 is
small becomes troublesome. If indeed there is a linear dependence, the matrix Σ is not even
invertible and the theorem breaks down completely. If we interpret HA,C,ζ(Z) as a vector of
features, then κ grows with the correlation between features. Higher correlation between the
features imposes a greater constraint on the Lipschitz constant τ . If we have no inter-feature
correlation then κ = 1 and we have no restriction at all on τ .

To actually solve ODE (10) we may need to compute

h(W) := Eµ
[
HA,C,ζ(Z)

(
HA,C,ζ
W (Z)− ΦHA,C,ζ

W (Z)
) ∣∣∣∣ A,C, ζ] (12)

which may, or may not, be practical. For example, if the process Z is ergodic, we can
approximate (12) by taking a sufficiently long time average of

HA,C,ζT k(z)
(
HA,C,ζ
W T k(z)− ΦHA,C,ζ

W T k(z)
)
.

Alternatively, we may approach the problem of solving (10) by first considering the explicit
Euler method (with time-steps αk > 0)

Wk+1 = Wk − αkh(Wk)

= Wk − αkEµ
[
HA,C,ζ(Z)

(
HA,C,ζ
Wk

(Z)− ΦHA,C,ζ
Wk

(Z)
) ∣∣∣∣ A,C, ζ],

18

then we might (heuristically) expect the algorithm

Wk+1 = Wk − αkHA,C,ζT k(z)
(
HA,C,ζ
Wk

T k(z)− ΦHA,C,ζ
Wk

T k(z)
)

(13)

to converge to W ∗, where αk are positive definite real numbers that satisfy

∞∑
k=1

αk =∞
∞∑
k=1

α2
k <∞.

We believe this heuristic could be made rigorous under mild assumptions, because algorithm
(13) closely resembles the major algorithm extensively studied in [19] and [20] for which
similar results hold. Theorems 17 and 2.1.1. appearing in [19] and [20] respectively suggest
that an algorithm much like (13) converges almost surely to W ∗ if its associated ODE
(reminiscent of (10)) satisfies condition (11), and the input process Z is strongly mixing.
The conjecture that algorithm (13) converges to W ∗ is also reminiscent of Theorem 3.1 by
[21], and related results by [22]. These results are closely related to Q-learning and stochastic
gradient descent. We note that (sadly) finding the fixed point of the general contraction
mapping Φ renders the estimation of W a nonlinear problem.

The theory yields an online reinforcement learning algorithm which we state below. We
envision that the agent chooses a fixed policy π and continues executing the policy for `− 1
time steps. Under this policy, the agent makes observations zk and receives rewards rk. We
define zk(a) as the input to the ESN at time k if the agent had instead executed action a ∈ A
at time k.

Algorithm 2: Online Learning
1: Choose initial output layer W0 and reservoir state x0
2: Randomly generate A,C, ζ according to procedure 1
3: for each k from 0 to `− 1

4: Compute Wk+1 = Wk − αkxk
(
W>
k xk − rk −maxa{W>

k σ(Axk +Czk(a) + ζ)}
)

5: Compute xk+1 = σ(Axk +Czk + ζ)

4. Bee World

To demonstrate the theory presented in section 3, we created a game called Bee World
and show that a simple reinforcement learning algorithm supported by an ESN can learn to
play Bee World with respectable skill. The game is designed so that the theory presented
previously is easy to visualise, rather than because the game is hard to master.

Bee World is set on the circle of unit circumference, which we denote by S1, and represent
as an interval with edges identified. At every point y on the circle, there is a non-negative
quantity of nectar which may be enjoyed by the bee without depletion. ‘Without depletion’
means that the bee takes a negligible amount of nectar from the point y, so the bee occupying

19

point y does not cause the amount of nectar at y to change. Furthermore, the nectar at
every point y varies with time t according to the prescribed function

n(y, t) = 1 + cos(ωt) sin(2πy) (14)

(which we chose somewhat arbitrarily) that is unknown to the bee. Thus, the amount of
nectar enjoyed by the bee at time t is a value that lies in the interval [0, 2], which we will
denote N . Time advances in discrete integer steps t = 0, 1, 2, . . ., and at any time point t a
bee at point y observes the quantity of nectar r ∈ N at point y and nothing else. Having
made this observation, the bee may choose to move anywhere in the interval (y − c, y + c)
for some fixed 0 < c < 1 and arrive at its chosen destination at time t+ 1. The interval of
possible moves (−c, c) is called the action space and is denoted A. The goal of the bee is
to devise a policy whereby, given all its previous observations, the bee makes a decision as
to where to move next, such that the discounted sum over all future nectar is as great as
possible. The space of all previous (reward, action) pairs (N × A)Z− is contained by the
space of bi-infinite sequences (R2)Z. The agent playing Bee World makes no observations
beyond the rewards (nectar) and actions, but we could easily envision a more general game
where the agent makes observations from a set Ω and therefore makes its decisions based on
a left sequence of (reward, action, observation) triples.

The policy adopted by the bee may be realised as a deterministic policy π : (N×A)Z → A
(a CTI functional) for which the bee executes an action a ∈ A determined by the history of
(reward, action) pairs. Alternatively, the bee may adopt a stochastic policy, for which every
state history of (reward, action) pairs admits a distribution over actions A from which the
bee makes a random choice.

Though the evolution of Bee World is Markovian (and deterministic), the bee makes only
a partial observation of the state of Bee World (i.e the amount of nectar the bee observes at
time t) so the bee must take advantage of its memory to reconstruct the true state and find
an optimal policy. This need for memory renders the problem suitable for an ESN, while
ruling out the conventional theory of Markov Decision Processes. The problem of playing
Bee World can therefore be formulated as a Partially Observed Markov Decision Process.

4.1. Approximating the value functional
Under a policy π, the nectar-action pairs experienced by the bee yield a realisation of the

(N ,A)Z-valued random variable Z. It therefore makes sense to define the value functional
V : (N ×A)Z → R associated to Z by

V (z) = Eµ
[∞∑
k=0

γkRT k(Z)

∣∣∣∣ Zj = zj ∀j ≤ 0

]
(15)

where R : (N × A)Z → R is the reward functional defined by R(z) = r0, where r0 is the
nectar collected at time 0, T is the shift operator, and γ ∈ [0, 1) is the discount factor
representing the relative importance of near and long term nectar consumption. We can see
after a simple rearrangement of (15) that

V (z) = R(z) + γEµ[V TZ(z)]

20

so V is the unique fixed point of the contraction mapping Φ defined by

Φ(H)(z) := R(z) + γEµ[HTZ(z)]

as discussed in Section 3. Thus, by Theorem 3.6, we can approximate the value function
V using an ESN trained by regularised least squares as long as the nectar-action pairs
z ∈ (N ×A)Z are drawn from a suitable ergodic process Z. Therefore, we chose an initial
policy π0 such that Z is ergodic. In particular, we chose a stochastic policy π0(z) ∼ U(−c, c)
for all histories of (reward, action) pairs z ∈ (N ×A)Z so that the bee takes a uniform sample
from the action space A = (−c, c) at any point y ∈ S1. For the purpose of playing a game,
we set c = 0.1 and γ = 0.5. We allowed the bee to execute this policy for 2000 time steps and
recorded the observed nectar at every time. The first 250 time steps are plotted in Figure 1.

Next, we set up an ESN of dimension n = 300, with reservoir matrix, input matrix, and
bias A,C, ζ populated with i.i.d uniform random variables U(−0.05, 0.05). A was then
multiplied by a scaling factor such that the 2-norm of A satisfies ‖A‖2 = 1. We choose an
activation function σ(x) := max(0, x). We should pause here and note that ESN described
here differs slightly from the ESN described in procedure 1. We instead generated A,C, ζ in
a traditional way, which is empirically observed to be highly successful, as demonstrated in
the literature, rather than the more cumbersome method described in procedure 1. These
numerical results suggest that procedure 1 can be simplified.

We then computed a sequence of reservoir states xk ∈ R300 for the ESN using the iteration

xk+1 = σ(Axk +Czk + ζ)

where x0 = 0 and each zk ∈ (N ×A) comprises 2 components: the first is the quantity of
nectar observed by the bee at time k, and the second is the action a ∈ (−c, c) executed at
time k under policy π0. Now we return our attention to Theorem 3.6, and see that the W ∗

`

minimising (over W)

1

`

`−1∑
k=0

‖W>(HA,C,ζT−k(z)− γHA,C,ζT 1−k(z))−R(z)‖2 + λ‖W‖2

converges to W minimising

‖W>(xk − γxk+1)− rk‖2 + λ‖W‖2 (16)

so we can immediately reformulate (16) as the least squares problem

W = (Ξ>Ξ + λI)−1Ξ>U

where Ξ is the matrix with kth column

Ξk := xk − γxk+1

21

� �� ��� ��� ��� ���
�

�

(a) The nectar collected (blue) and the approximate value function under the initial policy π0 (red) is plotted for the first 250
time steps (x-axis).

� �� ��� ��� ��� ���

��� ��� ��� ��� ��� ���

(b) The nectar function n(y, t) (14) at every point represented as a heat map in the (t, y) plane, with the position of the bee
at time t under the initial policy indicated by the overlaid white circles.

Figure 1: Dynamics of Bee World where the bee executes the initial policy π0(z) ∼ U(−0.1, 0.1) for the first
250 time steps.

and U has kth entry rk the kth quantity of nectar, and λ is the regularisation parameter
which we set to 10−9. We solved this linear system using the SVD. Now

V (z) ≈ HA,C,ζ
W ∗
`

(z) ≡ (W ∗
`)>HA,C,ζ(z) ≡ W>x

where x is the reservoir state associated to the left infinite input sequence z. Furthermore,
the map (W>·) therefore approximates the unique fixed point of Φ (by Theorem 3.6) and
this fixed point is exactly the value functional we are looking for. Thus, we can easily
compute the approximate value of an arbitrary reservoir state x under the initial policy π by
computing the inner product W>x. We illustrate this in Figure 1a by plotting, at each time
k = 1, . . . , 250, the value of every observed state to accompany the observed nectar.

4.2. Updating the policy
Having computed an approximate value function under the initial policy π0(z) ∼

U(−0.1, 0.1), we were faced with the problem of how to improve upon this policy. Ex-
ploring efficient and effective algorithms for iteratively improving a policy is a rich area of
reinforcement learning research, but outside the scope of this section. Instead, we imple-
mented a simple and greedy approach. For a given reservoir state x we consider 100 actions
a1, a2, . . . a100 uniformly sampled over A = (−0.1, 0.1), then for each action we consider the

22

� �� ��� ��� ��� ���

�

�

�

�

(a) The nectar collected (blue) and the approximate value function (red) is plotted for the first 250 time steps (y-axis) under
the improved policy π1.

� �� ��� ��� ��� ���

��� ��� ��� ��� ��� ���

(b) The nectar function n(y, t) (14) at every point represented as a heat map in the (t, y) plane, with the position of the bee
at time t under the improved policy is indicated by the overlaid white circles.

Figure 2: Dynamics of Bee World where the bee executes the improved policy π1 for the first 250 time steps.

nectar-action pairs z(1), . . . , z(100) ∈ N × A where the nectar for each pair is the current
nectar; and is therefore the same in every pair. Then we compute the next reservoir states
for each pair

x
(i)
k+1 = σ(Axk +Cz

(i)
k + ζ)

and estimate the value of executing the ith action by computing W>x
(i)
k+1. Then we choose

to execute the action a∗ with the greatest estimated value - which determines our new policy
π1 - which yields a significant improvement over the initial policy π0, as illustrated in Figure
2. Under the initial policy π0 the bee collected an average of approximately 1.05 nectar per
unit time, in comparison to 1.52 nectar under the improved policy π1. This is much closer to
the optimal value of approximately 1.60, which we obtain in the next section. The algorithm
which first approximates the value function, and then updates the policy is described in
Algorithm 3.

4.3. An Analytic Solution for Bee World
In this section, we will analyse Bee World so that we can compare the ESN solution to

results that we can prove. To make our own lives easier, we consider a smooth version of Bee
World, rather than the discrete time version solved by the ESN, so that we can formulate

23

Algorithm 3: One Step Offline Learning Algorithm (Bee World)
1: Choose initial reservoir state x0
2: Randomly generate A,C, ζ
3: for each k from 0 to `− 1

4: Compute xk+1 = σ(Axk +C(rk, ak) + ζ)

5: Find W that minimises
∑`−1

k=0‖W>(xk − γxk+1)− rk‖2 + λ‖W‖2
6: for each k from ` to L− 1

7: Compute a∗ = maxa{W>σ(Axk +C(rk, a) + ζ)}
8: Compute xk+1 = σ(Axk +C(rk, a

∗) + ζ)

Bee World as a control problem that admits a solution via the Euler-Lagrange equation. We
have the control system

τ̇ = 1

ẏ = u(y, τ)

where u is the controller dependant on y and τ . Then we have a cost function

C(x, τ, u) = f(u)− n(y, τ)

where f(x) is the penalty term for using the control u and n(y, τ) is the nectar function. In
the above formulation of Bee World

f(u) =

{
0 if − c ≤ u ≤ c

∞ otherwise

where c = 0.1. Then the objective is to find

u∗ = arg min
u

{∫ ∞
0

γtC(y, τ, u) dt

}
.

We can see that f is not a well defined function so we will introduce the family of functions

fε(u) = −ε log(cos(πu/(2c)))

where ε > 0, and notice that fε approaches f pointwise as ε→ 0. Next, we recall that the
stationary points (including the minimum) of the integral functional

I[y] =

∫ ∞
0

F(t, y, ẏ) dt

all satisfy the Euler-Lagrange equation

d

dt

∂F
∂ẏ
− ∂F
∂y

= 0.

24

So, we let

F(t, y, ẏ) = γtC(t, y, ẏ)

= γt(−ε log(cos(πẏ/(2c)))− cos(ωt) sin(2πy)− 1)

then

0 =
d

dt

∂F
∂ẏ
− ∂F
∂y

=
d

dt

(
γt
d

dẏ
(−ε log(cos(πẏ/(2c))))

)
+ 2πγt cos(ωt) cos(2πy)

=
πε

2c

d

dt

(
γt tan(πẏ/(2c))

)
+ 2πγt cos(ωt) cos(2πy)

=
πε

(2c)

(
log(γ)γt tan(πẏ/(2c)) + γt

πÿ

2c
sec2(πẏ/(2c))

)
+ 2πγt cos(ωt) cos(2πy)

=
πε

2c

(
log(γ) tan(πẏ/(2c)) +

πÿ

2c
sec2(πẏ/(2c))

)
+ 2π cos(ωt) cos(2πy),

which we can reformulate as a dynamical system

v̇ = −2c cos2(πv/(2c))

π

(
4c cos(ωτ) cos(2πy)

ε
+ log(γ) tan(πv/(2c))

)
ẏ = v

τ̇ = 1 (17)

whose solutions are stationary points of the integral functional. For small ε, we approach the
Bee World problem. We took ε = 10−5, γ = 1/2, initial position y = 0, and initial velocity
v = 0 then simulated a trajectory of the ODE using scipy.integrate.odeint. We plotted
this in Figure 3. The average nectar collected by under this policy was approximately 1.60.

5. Application to Stochastic Control

ESNs have shown remarkable promise in solving problems in mathematical finance -
including by [23], [24], and [25] who used an ESN to predict the future values of stock prices.
[26] used an ESN to learn the solution to a credit rating problem and [27] used an ESN to
forecast exchange rates, comparing the results to forecasts made with an ARMA model. In
this section we will introduce a stochastic optimal control problem arising in the market
making problem. We will solve this problem analytically, and compare this to the solution
obtained by a reinforcement learning agent supported by an ESN.

5.1. A Market Making Problem
We consider a stochastic control problem inspired by the motivations of a market maker

acting in a general financial market. In practice the specific role of a market maker depends
25

� �� ��� ��� ��� ���

��� ��� ��� ��� ��� ���

Figure 3: A numerical solution to the ODE (17) with ε = 10−5 (white line) superposed on the heat map of
the nectar function n(y, t) given in (14). Dark colours indicate regions of low nectar, light regions indicate
high values of the nectar function. We observe that the solution trajectory spends much more time near
local maxima of the nectar function but has complicated oscillatory fluctuations during transitions between
local maxima. The oscillations are likely due to approaching a sort of singularity as ε→ 0.

on the particular market, but we consider a market maker who provides liquidity to other
market participants by quoting prices at which they are willing to sell (ask) and buy (bid)
an asset. By setting the ask price higher than the bid price in general they can profit from
the difference when they receive both a buy and sell order at these prices. However, the
market maker faces risk, since if they buy a quantity of the asset the market price might
move against them before they are able to find a seller.

The market making problem is a complex one, and has been studied extensively since the
publication of the paper by [28]. The paper of [29] gives a good overview of much of this
work. We consider a stylised version of this problem that focuses on inventory management
without considering explicit optimal quoting strategies. We consider that a market maker
acting relatively passively around the market price in ordinary conditions would expect to
observe a random demand for buy and sell orders. If as a result of random fluctuations they
find their inventory has drifted away from zero, they would set prices more competitively on
either the ask or bid side to encourage trades to balance their position. Very broadly the
conclusions of work on the market making problem are that there is a price to be paid to
exert control over the inventory process and bring inventories closer to zero.

Motivated by this insight, we consider the market maker’s inventory to be a stochastic
process (Y t)t≥0 with dynamics

dY t = πtdt+ σdW t

where (W t)t≥0 is a standard Brownian motion.
The parameter σ measures the volatility of the incoming order flow, and (πt)t≥0 is the

control process by which the market maker adds drift into their order flow by moving their
bid and ask quotes. Naturally, there is a cost involved in applying the control, and a further
cost to holding inventory away from zero. We introduce parameters α and β to quantify

26

these effects and model the market maker’s profit as a stochastic process solving

dZt = (r − απ2
t − βY 2

t)dt

where r is the rate of profit the market maker would achieve from the bid-ask spread if they
did not have concerns about the asset price movements. We consider the case where the
market maker seeks to maximise their long run discounted profit

v(y) = max
π

Ey
[∫ ∞

0

e−δtdZt

]
,

where Ey is the expectation with the process started at Y0 = y. We can show that the market
maker’s value function and optimal control are

v(y) = −αhy2 +
r − αhσ2

δ
, π∗(y) = −hy, (18)

where

h :=
−αδ +

√
α2δ2 + 4β

2α

Further, the inventory process Y t≥0, when controlled by the optimal control π∗(y) = −hy
is given by the Ornstein-Uhlenbeck process

dY t = −hY tdt+ σdW t

whose stationary distribution is a Gaussian N
(

0, σ
2

2h

)
.

We observe that this is an infinite horizon, Linear-Quadratic regulator (LQR) type
problem, a class of problems which have a long history in the control literature, and more
recently have been systematically studied in the reinforcement learning literature. Recent
work on online learning for the LQR problem (e.g. [30, 31, 32]) has considered a range of
variants of the LQR problem, including cases with uncertainty on the both the dynamics
and the reward, and where the state variable may only be partially observed. However
most of these approaches work in the setting of model-based learning approaches: that
is, they attempt to learn a “model” of the world, and therefore exploit the fact that the
LQR structure is known and can be learned from the data; in comparison, [30] still rely on
the LQR structure, but do not directly try to learn the “model” of the world. The paper
[33] analyses the difference between model-based and model-free approaches to the LQR
problem, showing that one should expect an exponential separation between model-based
and model-free approaches. In this context, our approach, which does not assume the LQR
structure, can also be compared to model-free approaches, such as the classical work of [34],
which takes a Q-learning approach.

5.2. Discretised problem
To turn this into a problem into one that can be used to train an Echo State Network we

reformulate it in discrete time; we consider a process Y 0,Y 1,Y 2, . . . such that

Y k+1 − Y k = επk + σ
√
εNk

27

where (Nk)k∈N are a sequence of i.i.d. random variables Nk ∼ N (0, 1) for each k ∈ N, and
ε > 0 is the time increment. The control is now a sequence π = (πk)k∈N. The profit function
satisfies Z0 = 0 and

dZk := Zk+1 −Zk = ε(r − απ2
k − βY 2

k).

and the market maker seeks to maximise the value function

v(y) = max
π

Ey
[∞∑
k=0

e−δεkdZk

]
,

over choices of the control π where Ey is the expectation with the process started at Y 0 = y.
It can be shown that in the limit as ε→ 0, the optimal control and value function for this

problem converge precisely to the optimal control and value function in the continuous case.
We state here the results in the case ε = 1, the value we will use for the application of

the Echo State Network below. Writing γ = e−δ, we find in this case that the value function
and optimal control are given by

v(y) = −αpy2 +
r − γαpσ2

1− γ
, π∗ = −py

where

p :=
(α(γ − 1) + γβ) +

√
(α(γ − 1) + γβ)2 + 4αβγ

2γα
.

The process Y controlled by π∗ is Markovian, and has transition operator

(T s)(y) =

∫ ∞
−∞

P(Y k+1 = y | Y k = x)s(x) dx

=
1√
2πσ

∫ ∞
−∞

e−
(y−(1−px))2

2σ2 s(x) dx.

It is straightforward to verify that the Gaussian probability density function

s∗(y) =

√
p(2− p)√

2πσ
e−

y2p(2−p)
2σ2 , (19)

is a fixed point of T and hence that the controlled process has stationary distribution
N
(

0, σ2

p(2−p)

)
.

5.3. Solving the Market Making Problem with an ESN
In this section, we seek to solve the the market making problem with a reinforcement

learning algorithm supported by an ESN. In this set up, we assume the market maker has no
knowledge of the cost function, and no knowledge of the effect of executing an action. The
agent must execute a variety of actions in a variety of states to learn about the environment
and the effect of its actions. Then, the market maker makes reasonable changes to its policy
to arrive at a policy that reduces the long term costs of operation. The policy obtained
by the reinforcement learning approach is compared to the optimal policy derived with full
knowledge of the system.

28

5.3.1. Approximating the value functional
For the purpose of running the simulation, we let the cost of operating the control α = 1,

the cost of straying from the origin β = 1, the timestep ε = 1, and the volatility parameter
σ = 1. We take the baseline profit parameter r = 0. The inventory held, and action taken, by
the market maker at time k will be denoted yk and ak respectively. A sequence of (inventory,
action) pairs will be denoted z ∈ (R2)Z with zk = (yk, ak). The value functional for the
market maker problem is defined

V (z) = Eµ
[∞∑
k=0

γkRT k(Z)

∣∣∣∣ Zj = zj ∀j ≤ 0

]
where R : (R2)Z → R is the reward functional

R(z) = −(αa2−1 + βy20),

T is the shift operator, and γ ∈ [0, 1) is the discount factor representing the relative
importance of near and long term costs. We can see after a simple rearrangement that

V (z) = R(z) + γEµ[V TZ(z)]

so V is the unique fixed point of the contraction mapping Φ defined by

Φ(H)(z) = R(z) + γEµ[HTZ(z)]

as discussed in Section 3. Thus, by Theorem 3.6, we can approximate the value function V
using an ESN trained by regularised least squares if the (inventory, action) pairs (yk, ak) are
the realisation of a stationary ergodic process. Consequently, we sought an initial policy π0
such that the process Z comprising the inventory-action pairs under policy π0 is stationary
and ergodic. In particular, we chose

π0(y) ∼ N (0, σ2
i)− ηy (20)

with η = 0.05 a constant representing the rate of exponential drift toward 0 and σ2
i = 1. We

ran this policy for 10000 time steps, and recorded the pairs zk along with the rewards rk.
Next, we set up an ESN of dimension n = 300, with reservoir matrix, input matrix, and bias
A,C, ζ populated with i.i.d uniform random variables U(−0.05, 0.05). A was then multiplied
by a scaling factor such that the 2-norm of A satisfies ‖A‖2 = 1. As in the previous example
we chose σ to be the ReLU activation function. We then computed reservoir states

xk+1 = σ(Axk +Czk + ζ)

starting with an initial reservoir state x0 = 0. An arbitrary reservoir state x then encodes
the left infinite sequence of (inventory,action) pairs z. We seek an expression for the value of
the reservoir state x by solving the least squares problem

W = (Ξ>Ξ + λI)−1Ξ>U

29

−15 −10 −5 0 5 10 15
inventory

−250

−200

−150

−100

−50

0

va
lu
e

Figure 4: Under the initial policy, the value V (Y) (y-axis) learned by the ESN at the inventory Y (x-axis)
at each of the 10000 timesteps is shown. The parabolic shape is consistent with the analytically derived
optimal value function (19) shown in red. We note that the value function under the initial policy π0 is not
expected to match the value function under the optimal policy π∗.

(using the singular value decomposition) where Ξ is the matrix with kth column is

Ξk := xk − γxk+1

and U is the vector of observations where the kth entry is the reward rk, and λ is the
regularisation parameter which we set to 1e-6. We also chose γ = e−1. In practice, the
discount factor is usually much larger. With this, we obtain an expression for value of the
reservoir state x given by W>x. The results of this policy are shown in Figures 4 and 5. The
procedure which estimates the value function and improves upon the policy is described in
Algorithm 4.

5.3.2. Updating the policy
We sought to create a new and improved policy based on the observations of under

the initial policy using a naïve approach. At each time step, we consider 100 trial actions
30

0 50 100 150 200 250
−15

−10

−5

0

5

(a)

0 50 100 150 200 250
−15

−10

−5

0

5

(b)

Figure 5: Dynamics of the market maker over time executing (a) the initial policy π0 and (b) the improved
policy π1. For each plot, the inventory (y-axis) is shown evolving with time (x-axis).

a(1), a(2), . . . , a(100) drawn from the standard normal distribution N (0, 1) and compute

x
(i)
k+1 = σ(Axk +Cz

(i)
k + ζ)

where z(i)k is the (inventory, action) pair (yk, a
(i)), and a(i) is trial action. For each i, we

compute W>x
(i)
k+1 to obtain the predicted value of executing action a(i). We then choose to

execute the action a∗ with the greatest predicted value, and update the reservoir state using
this (inventory, action) pair (yk, a

∗). This defines our new policy. We ran this new policy for
10,000 time steps and illustrated the results in Figures 6a, and 6b.

Algorithm 4: One Step Offline Learning Algorithm (Market Making)
1: Choose initial reservoir state x0
2: Randomly generate A,C, ζ
3: for each k from 0 to `− 1

4: Compute xk+1 = σ(Axk +C(yk, ak) + ζ)

5: Find W that minimises
∑`−1

k=0‖W>(xk − γxk+1)− rk‖2 + λ‖W‖2
6: for each k from ` to L− 1

7: Compute a∗ = maxa{W>σ(Axk +C(yk, a) + ζ)}
8: Compute xk+1 = σ(Axk +C(yk, a

∗) + ζ)

5.4. Comparison between the analytic and learned solutions
The one step reinforcement learning algorithm did not perfectly replicate the analytically

derived optimal control, but has moved in a promising direction. We can see in Figure 6a
31

−4 −3 −2 −1 0 1 2 3 4
inventory

−4

−3

−2

−1

0

1

2

3

4

ac
tio

n

(a)

−4 −3 −2 −1 0 1 2 3 4
Inventory

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Pr
ob

ab
ilit

y
de

ns
ity

(b)

Figure 6: (a) Illustrates the (inventory, action) pairs (yk, ak) under the improved policy π1 are represented as
points on the scatter plot. The inventory is on the x-axis, and action is on the y-axis. The red line represents
the analytically derived optimal control (equation (18)). (b) Illustrates the invariant measure of the inventory
process under the improved policy π1 is approximated with a histogram. The histogram is compared to the
analytically derived invariant measure of the optimal control process N (0, 1.82) (equation (19)).

that the inventory process under the improved policy produces (inventory, action) pairs that
have some scatter relative to the optimal policy indicated by the red straight line. This
suggests that the market maker trained by reinforcement learning is behaving well in some
average sense, despite performing many sub-optimal actions. It also appears that the the
reinforcement learning algorithm uses the control more aggressively than is optimal. This
sub-optimal control results in greater costs than the optimal control. In particular the average
cost incurred under the improved policy π1 is 2.65, while the average cost under the the
analytically derived optimal policy is σ/

√
p(2− p) = 1.35.

Despite these sub-optimal moves, it seems that the inventory process learned by the
market maker has an invariant measure that closely matches the optimal invariant measure.
It is reassuring to see that an invariant measure appears, at least numerically, to exist,
because the controlled process is assumed to be stationary and ergodic (and therefore admits
an invariant measure) in Theorem 3.6.

It is also worth noting that the inventory process, controlled either by the ESN or the
optimal control, has support on R, which is not a compact space. Therefore, the conditions
of Theorem 3.6 don’t technically hold. However, the numerical results here suggest that the
ESN has learned the value functional adequately well, suggesting that Theorem 3.6 may hold
under relaxed conditions. Of course, realisations of the stochastic processes always explore
only bounded subsets of R.

32

6. Conclusions and future work

In this paper we have presented three novel mathematical results concerning Echo State
Networks trained on data drawn from a stationary ergodic process. The first applies to
offline supervised learning. The theorem states that, given a target function, enough training
data and a large enough ESN, the least squares training procedure will yield an arbitrarily
good approximation to the target function. The second result applies to an agent performing
a stochastic policy π. After the agent has collected enough training data, and given a
sufficiently large ESN, the least squares training procedure will yield an arbitrarily good
approximation to the value function associated to the policy π. The third result is relevant
to online reinforcement learning. Though the result is quite preliminary, the lemma is
introduced with the intention of developing online algorithms (inspired by Q-learning) to
learn the optimal policy for non-Markovian problems.

We demonstrated the second result (which generalises the first) on a deterministic control
problem (Bee World) and a stochastic control problem (the market making problem). We
chose these ‘toy model’ problems to understand the performance of the algorithm completely
in cases that are solvable analytically, although these optimal solutions themselves are not
entirely trivial. The reinforcement learning algorithm we use to improve the policy in both
Bee World and the market making problem is extremely simple. It is essentially one iteration
of an ε-greedy policy [35], with ε set to 0. Despite the simplicity of the algorithm, the single
iteration considerably improved the policy, resulting in a reasonable approximation to the
optimal policy.

It therefore seems a natural direction of future work to develop more sophisticated
learning algorithms. Notably the linear upper confidence bound (linUCB) algorithm [35]
has a linear structure that fits cleanly into the the linear training framework of the ESN.
As this work develops, it will become essential to have a rigorous framework describing the
relationship between filters, functionals, random processes and reinforcement learning. The
theory presented in this paper tentatively connects these objects using ideas from Markov
Decision Processes, but the theory is far from complete.

Acknowledgements

Allen Hart and Kevin Olding are funded through the EPSRC Centre for Doctoral Training
in Statistical Applied Mathematics at Bath (SAMBa), grant number EP/L015684/1.

We thank Jeremy Worsfold for insights about reinforcement learning and the linUCB
algorithm, and for refactoring the Bee World code. We also thank Adam White for useful
discussions about reinforcement learning settings.

References

[1] H. Jaeger, The “echo state” approach to analysing and training recurrent neural networks, GMD-Report
148, German National Research Institute for Computer Science (01 2001).

[2] W. Maass, T. Natschläger, H. Markram, Real-time computing without stable states: A new framework
for neural computation based on perturbations, Neural Computation 14 (11) (2002) 2531–2560. doi:
10.1162/089976602760407955.

33

https://doi.org/10.1162/089976602760407955
https://doi.org/10.1162/089976602760407955

[3] M. Schlegel, A. Jacobsen, M. Zaheer, A. Patterson, A. White, M. White, General value function networks,
arXiv:1807.06763 (2018).

[4] L. Gonon, L. Grigoryeva, J.-P. Ortega, Approximation bounds for random neural networks and reservoir
systems, arXiv:2002.05933 (2020).

[5] M. Lukoševičius, H. Jaeger, Reservoir computing approaches to recurrent neural network training,
Computer Science Review 3 (3) (2009) 127 – 149. doi:https://doi.org/10.1016/j.cosrev.2009.
03.005.

[6] M. Lukoševičius, H. Jaeger, B. Schrauwen, Reservoir computing trends, Künstliche Intelligenz. 26 (4)
(2012) 365–371.

[7] A. Rodan, P. Tino, Minimum complexity echo state network, IEEE transactions on neural networks
22 (1) (2011) 131–144.

[8] F. Triefenbach, A. Jalalvand, B. Schrauwen, J.-P. Martens, Phoneme recognition with large hierarchical
reservoirs, in: J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, A. Culotta (Eds.),
Advances in Neural Information Processing Systems 23, Curran Associates, Inc., 2010, pp. 2307–2315.

[9] H. Jaeger, H. Haas, Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless
communication, Science 304 (5667) (2004) 78–80. arXiv:https://science.sciencemag.org/content/
304/5667/78.full.pdf, doi:10.1126/science.1091277.

[10] I. Szita, V. Gyenes, A. Lőrincz, Reinforcement learning with echo state networks, in: S. D. Kollias,
A. Stafylopatis, W. Duch, E. Oja (Eds.), Artificial Neural Networks – ICANN 2006, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2006, pp. 830–839.

[11] S. Peitz, K. Bieker, On the universal transformation of data-driven models to control systems,
arXiv:2102.04722 (2021).

[12] A. Saxe, P. W. Koh, Z. Chen, M. Bhand, B. Suresh, A. Ng, On random weights and unsupervised
feature learning, In Proceedings of the 28th International Conference on Machine Learning (2011).

[13] L. Grigoryeva, J.-P. Ortega, Echo state networks are universal, Neural Networks 108 (2018) 495 – 508.
doi:https://doi.org/10.1016/j.neunet.2018.08.025.

[14] L. Grigoryeva, J.-P. Ortega, Differentiable reservoir computing, Journal of Machine Learning Research
20 (179) (2019) 1–62.
URL http://jmlr.org/papers/v20/19-150.html

[15] K. McGoff, S. Mukherjee, N. Pillai, Statistical inference for dynamical systems: A review, Statist. Surv.
9 (2015) 209–252. doi:10.1214/15-SS111.
URL https://doi.org/10.1214/15-SS111

[16] A. Khaleghi, D. Ryabko, Clustering piecewise stationary processes, in: 2020 IEEE International
Symposium on Information Theory (ISIT), 2020, pp. 2753–2758. doi:10.1109/ISIT44484.2020.
9174045.

[17] A. Hart, J. Hook, J. Dawes, Embedding and approximation theorems for echo state networks, Neural
Networks 128 (2020) 234 – 247. doi:https://doi.org/10.1016/j.neunet.2020.05.013.
URL http://www.sciencedirect.com/science/article/pii/S0893608020301830

[18] A. G. Hart, J. L. Hook, J. H. Dawes, Echo state networks trained by tikhonov least squares are l2(µ)
approximators of ergodic dynamical systems, Physica D: Nonlinear Phenomena (2021) 132882doi:
https://doi.org/10.1016/j.physd.2021.132882.
URL https://www.sciencedirect.com/science/article/pii/S0167278921000403

[19] A. Benveniste, M. Métivier, P. Prioure, Adaptive Algorithms and Stochastic Approximations, Springer-
Verlag, 1990.

[20] V. S. Borkar, Stochastic Approximation: A Dynamical Systems Viewpoint, Hindustan Book Agency,
2009.

[21] F. S. Melo, M. I. Ribeiro, Q-learning with linear function approximation, in: N. H. Bshouty, C. Gentile
(Eds.), Learning Theory, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 308–322.

[22] Z. Chen, S. Zhang, T. T. Doan, S. T. Maguluri, J.-P. Clarke, Performance of q-learning with linear
function approximation: Stability and finite-time analysis, arXiv:1905.11425 (2019).

[23] X. Lin, Z. Yang, Y. Song, Short-term stock price prediction based on echo state networks, Expert

34

https://doi.org/https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/https://doi.org/10.1016/j.cosrev.2009.03.005
http://arxiv.org/abs/https://science.sciencemag.org/content/304/5667/78.full.pdf
http://arxiv.org/abs/https://science.sciencemag.org/content/304/5667/78.full.pdf
https://doi.org/10.1126/science.1091277
https://doi.org/https://doi.org/10.1016/j.neunet.2018.08.025
http://jmlr.org/papers/v20/19-150.html
http://jmlr.org/papers/v20/19-150.html
https://doi.org/10.1214/15-SS111
https://doi.org/10.1214/15-SS111
https://doi.org/10.1214/15-SS111
https://doi.org/10.1109/ISIT44484.2020.9174045
https://doi.org/10.1109/ISIT44484.2020.9174045
http://www.sciencedirect.com/science/article/pii/S0893608020301830
https://doi.org/https://doi.org/10.1016/j.neunet.2020.05.013
http://www.sciencedirect.com/science/article/pii/S0893608020301830
https://www.sciencedirect.com/science/article/pii/S0167278921000403
https://www.sciencedirect.com/science/article/pii/S0167278921000403
https://doi.org/https://doi.org/10.1016/j.physd.2021.132882
https://doi.org/https://doi.org/10.1016/j.physd.2021.132882
https://www.sciencedirect.com/science/article/pii/S0167278921000403
http://www.sciencedirect.com/science/article/pii/S0957417408006519

Systems with Applications 36 (3, Part 2) (2009) 7313 – 7317. doi:https://doi.org/10.1016/j.eswa.
2008.09.049.
URL http://www.sciencedirect.com/science/article/pii/S0957417408006519

[24] H. Zhang, J. Liang, Z. Chai, Stock prediction based on phase space reconstruction and echo state
networks, Journal of Algorithms & Computational Technology 7 (1) (2013) 87–100. arXiv:https:
//doi.org/10.1260/1748-3018.7.1.87, doi:10.1260/1748-3018.7.1.87.
URL https://doi.org/10.1260/1748-3018.7.1.87

[25] J. Dan, W. Guo, W. Shi, B. Fang, T. Zhang, Deterministic echo state networks based stock price
forecasting, Abstract and Applied Analysis 2014 (2014) 137148. doi:10.1155/2014/137148.
URL https://doi.org/10.1155/2014/137148

[26] J. Bozsik, Z. Ilonczai, Echo state network-based credit rating system, in: 2012 4th IEEE International
Symposium on Logistics and Industrial Informatics, 2012, pp. 185–190.

[27] L. Maciel, F. Gomide, D. Santos, R. Ballini, Exchange rate forecasting using echo state networks for
trading strategies, in: 2014 IEEE Conference on Computational Intelligence for Financial Engineering
Economics (CIFEr), 2014, pp. 40–47.

[28] M. Avellaneda, S. Stoikov, High-frequency trading in a limit order book, Quantitative Finance 8 (3) (2008)
217–224. arXiv:https://doi.org/10.1080/14697680701381228, doi:10.1080/14697680701381228.
URL https://doi.org/10.1080/14697680701381228

[29] O. Guéant, Optimal market making, Applied Mathematical Finance 24 (2) (2017) 112–154. arXiv:
https://doi.org/10.1080/1350486X.2017.1342552, doi:10.1080/1350486X.2017.1342552.
URL https://doi.org/10.1080/1350486X.2017.1342552

[30] M. Fazel, R. Ge, S. Kakade, M. Mesbahi, Global Convergence of Policy Gradient Methods for the Linear
Quadratic Regulator, in: International Conference on Machine Learning, PMLR, 2018, pp. 1467–1476,
iSSN: 2640-3498.

[31] Z. Mhammedi, D. J. Foster, M. Simchowitz, D. Misra, W. Sun, A. Krishnamurthy, A. Rakhlin,
J. Langford, Learning the linear quadratic regulator from nonlinear observations, arXiv:2010.03799
(2020).

[32] S. Dean, H. Mania, N. Matni, B. Recht, S. Tu, On the Sample Complexity of the Linear Quadratic
Regulator, Foundations of Computational Mathematics 20 (4) (2020) 633–679. doi:10.1007/
s10208-019-09426-y.
URL https://doi.org/10.1007/s10208-019-09426-y

[33] S. Tu, B. Recht, The Gap Between Model-Based and Model-Free Methods on the Linear Quadratic
Regulator: An Asymptotic Viewpoint, in: Conference on Learning Theory, PMLR, 2019, pp. 3036–3083,
iSSN: 2640-3498.
URL http://proceedings.mlr.press/v99/tu19a.html

[34] S. Bradtke, B. Ydstie, A. Barto, Adaptive linear quadratic control using policy iteration, in: Proceedings
of 1994 American Control Conference - ACC ’94, Vol. 3, 1994, pp. 3475–3479 vol.3. doi:10.1109/ACC.
1994.735224.

[35] R. S. Sutton, A. G. Barto, Reinforcement Learning: An Introduction, MIT-press, 2015.

35

https://doi.org/https://doi.org/10.1016/j.eswa.2008.09.049
https://doi.org/https://doi.org/10.1016/j.eswa.2008.09.049
http://www.sciencedirect.com/science/article/pii/S0957417408006519
https://doi.org/10.1260/1748-3018.7.1.87
https://doi.org/10.1260/1748-3018.7.1.87
http://arxiv.org/abs/https://doi.org/10.1260/1748-3018.7.1.87
http://arxiv.org/abs/https://doi.org/10.1260/1748-3018.7.1.87
https://doi.org/10.1260/1748-3018.7.1.87
https://doi.org/10.1260/1748-3018.7.1.87
https://doi.org/10.1155/2014/137148
https://doi.org/10.1155/2014/137148
https://doi.org/10.1155/2014/137148
https://doi.org/10.1155/2014/137148
https://doi.org/10.1080/14697680701381228
http://arxiv.org/abs/https://doi.org/10.1080/14697680701381228
https://doi.org/10.1080/14697680701381228
https://doi.org/10.1080/14697680701381228
https://doi.org/10.1080/1350486X.2017.1342552
http://arxiv.org/abs/https://doi.org/10.1080/1350486X.2017.1342552
http://arxiv.org/abs/https://doi.org/10.1080/1350486X.2017.1342552
https://doi.org/10.1080/1350486X.2017.1342552
https://doi.org/10.1080/1350486X.2017.1342552
https://doi.org/10.1007/s10208-019-09426-y
https://doi.org/10.1007/s10208-019-09426-y
https://doi.org/10.1007/s10208-019-09426-y
https://doi.org/10.1007/s10208-019-09426-y
https://doi.org/10.1007/s10208-019-09426-y
http://proceedings.mlr.press/v99/tu19a.html
http://proceedings.mlr.press/v99/tu19a.html
http://proceedings.mlr.press/v99/tu19a.html
https://doi.org/10.1109/ACC.1994.735224
https://doi.org/10.1109/ACC.1994.735224

	Introduction
	Background
	Novel results for ESNs
	Connection to Partially Observed Markov Decision Processes
	Training ESNs with online learning

	Bee World
	Approximating the value functional
	Updating the policy
	An Analytic Solution for Bee World

	Application to Stochastic Control
	A Market Making Problem
	Discretised problem
	Solving the Market Making Problem with an ESN
	Approximating the value functional
	Updating the policy

	Comparison between the analytic and learned solutions

	Conclusions and future work

