The proof of Theorem 2.1 will be “guess and verify” and consist of three steps:

1. formulate and solve HJB-equation,
2. an auxiliary technical result,
3. find appropriate supermartingale (needs Itô’s formula).
The proof of Theorem 2.1 will be “guess and verify” and consist of three steps:

1. formulate and solve HJB-equation,
2. an auxiliary technical result,
3. find appropriate supermartingale (needs Itô’s formula).

Step ??:
When π and c are constants, then the generator of w_t acts on $\tilde{v} \in C^2$ by

$$
(A^{c,\pi} \tilde{v})(w) = ((r + (\alpha - r)\pi)w - c)\tilde{v}'(w) + \frac{1}{2}w^2\pi^2\sigma^2\tilde{v}''(w).
$$
The proof of Theorem 2.1 will be “guess and verify” and consist of three steps:

1. formulate and solve HJB-equation,
2. an auxiliary technical result,
3. find appropriate supermartingale (needs Itô’s formula).

Step ??:
When π and c are constants, then the generator of w_t acts on $\tilde{v} \in C^2$ by

$$(A^c,\pi \tilde{v})(w) = ((r + (\alpha - r)\pi)w - c)\tilde{v}'(w) + \frac{1}{2}w^2\pi^2\sigma^2\tilde{v}''(w).$$

The HJB-equation reads

$$\max_{c,\pi}\{ (A^c,\pi \tilde{v})(w) + \frac{c^\gamma}{\gamma} - \delta \tilde{v}(w) \} = 0 \quad \text{for all } w > 0.$$
The maxima are achieved at

\[c = \tilde{v}'(w) \frac{-1}{1-\gamma} \quad \text{and} \quad \pi = \frac{-\beta \tilde{v}'(w)}{w \sigma \tilde{v}''(w)} \]
The maxima are achieved at

\[c = \tilde{v}'(w) \frac{-1}{1-\gamma} \quad \text{and} \quad \pi = \frac{-\beta \tilde{v}'(w)}{w \sigma \tilde{v}''(w)} \]

and hence the HJB-equation is equivalent to

\[rw\tilde{v}' - \frac{\beta^2}{2} \frac{(\tilde{v}')^2}{\tilde{v}''} + \frac{1-\gamma}{\gamma} (\tilde{v}')^{-\gamma/(1-\gamma)} - \delta \tilde{v} = 0. \]
The maxima are achieved at

\[c = \tilde{v}'(w)^{\frac{-1}{1-\gamma}} \quad \text{and} \quad \pi = \frac{-\beta \tilde{v}'(w)}{w \sigma \tilde{v}''(w)} \]

and hence the HJB-equation is equivalent to

\[rw\tilde{v}' - \frac{\beta^2}{2} \frac{(\tilde{v}')^2}{\tilde{v}''} + \frac{1-\gamma}{\gamma} (\tilde{v}')^{-\gamma/(1-\gamma)} - \delta \tilde{v} = 0. \]

It is easy to see that \(v(w) = \gamma^{-1} C^{\gamma-1} w^\gamma \) is solution of this differential equation.
Step ??:
Let \((c_t, \pi_t) \in \mathcal{U}\) be an arbitrary policy and define the process

\[
x_t := \int_0^t \sigma \pi_u \, dz_u.
\]

Then \(w_t\) is given explicitly (proof: Itô’s formula) by

\[
w_t = \left(w - \int_0^t c_s f_s \, ds \right) \mathcal{E}(x_t) \exp \left(rt + \int_0^t (\alpha - r) \pi_u \, du \right)
\]

where \(\mathcal{E}\) is the stochastic exponential of \(x_t\) and

\[
f_s := \exp \left(- rs - \int_0^s \left((\alpha - r) \pi_u - \frac{1}{2} \sigma^2 \pi_u^2 \right) \, du - \int_0^s \sigma \pi_u \, dz_u \right).
\]
Step ??:
Let \((c_t, \pi_t) \in \mathcal{U}\) be an arbitrary policy and define the process

\[x_t := \int_0^t \sigma \pi_u \, dz_u. \]

Then \(w_t\) is given explicitly (proof: Itô’s formula) by

\[w_t = \left(w - \int_0^t c_s f_s \, ds \right) \mathcal{E}(x_t) \exp \left(rt + \int_0^t (\alpha - r) \pi_u \, du \right) \]

where \(\mathcal{E}\) is the stochastic exponential of \(x_t\) and

\[f_s := \exp \left(-rs - \int_0^s \left((\alpha - r) \pi_u - \frac{1}{2} \sigma^2 \pi_u^2 \right) \, du - \int_0^s \sigma \pi_u \, dz_u \right). \]

\(\Rightarrow\) \(w_t\) has moments of all orders by Holder’s inequality and since \(\pi_t\) is bounded.
Step ??:
Define for any policy \((c_t, \pi_t)\) the process

\[
M_t := \int_0^t e^{-\delta s} u(c_s) \, ds + e^{-\delta t} v(w_t),
\]

where \(v(w) = \gamma^{-1} C \gamma^{-1} w^\gamma\).
Step ??:
Define for any policy \((c_t, \pi_t)\) the process

\[
M_t := \int_0^t e^{-\delta s} u(c_s) \, ds + e^{-\delta t} v(w_t),
\]

where \(v(w) = \gamma^{-1} C^{\gamma-1} w^\gamma\). Itô’s formula then shows that

\[
M_t = M_0 + \int_0^t e^{-\delta s} \left((A^c, \pi^c)(w_s) + \frac{c_s^\gamma}{\gamma} - \delta v(w_s) \right) \, ds
\]
\[
+ \sigma C^{\gamma-1} \int_0^t e^{-\delta s} \pi_s w_s^\gamma \, dz_s.
\]
Step ??:
Define for any policy \((c_t, \pi_t)\) the process

\[M_t := \int_0^t e^{-\delta s} u(c_s) \, ds + e^{-\delta t} v(w_t), \]

where \(v(w) = \gamma^{-1}C^{\gamma-1}w^\gamma\). Itô’s formula then shows that

\[M_t = M_0 + \int_0^t e^{-\delta s} \left((A^{c, \pi} v)(w_s) + \frac{c_s^\gamma}{\gamma} - \delta v(w_s) \right) \, ds \]
\[+ \sigma C^{\gamma-1} \int_0^t e^{-\delta s} \pi_s w_s^\gamma \, dz_s. \]

\(\Rightarrow \) \(M_t \) is a supermartingale and if \((c_t, \pi_t) = (c^*_t, \pi^*_t)\) it is a martingale. Thus,

\[v(w) = M_0 \geq \mathbb{E}_w[M_t] = \mathbb{E}_w[\int_0^t e^{-\delta s} u(c_s) \, ds] + \mathbb{E}_w[e^{-\delta t} v(w_t)]. \]
The proof is complete if we can show that

$$\lim_{t \to \infty} \mathbb{E}_w[e^{-\delta t}v(w_t)] = 0$$

for any \((c, \pi) \in \mathcal{U}\).
The proof is complete if we can show that

$$\lim_{t \to \infty} \mathbb{E}_w[e^{-\delta t} v(w_t)] = 0$$

for any \((c, \pi) \in \mathcal{U}\). To this end, observe that by Itô’s formula we may write

$$e^{-\delta t} w^\gamma_t = w^\gamma_0 \mathcal{E}(\gamma x_t) \exp \left(\int_0^t a_s \, ds \right),$$

where

$$a_s = \gamma \left(r + (\alpha - r) \pi_s - \frac{c_s}{w_s} - \frac{1}{2} (1 - \gamma) \pi_s^2 \sigma^2 \right) - \delta.$$
The proof is complete if we can show that

$$\lim_{t \to \infty} \mathbb{E}_w[e^{-\delta t} v(w_t)] = 0$$

for any \((c, \pi) \in \mathcal{U}\). To this end, observe that by Itô’s formula we may write

$$e^{-\delta t} w_t^\gamma = w_0^\gamma \mathcal{E}(\gamma x_t) \exp \left(\int_0^t a_s \, ds \right),$$

where

$$a_s = \gamma \left(r + (\alpha - r) \pi_s - \frac{c_s}{w_s} - \frac{1}{2} (1 - \gamma) \pi_s^2 \sigma^2 \right) - \delta.$$

Since \(a_s \leq -(1 - \gamma) C\) the claim follows. This completes the proof.
Guessing solution for problem with transaction costs.

Ansatz: try L and U absolutely continuous with bounded derivatives, that is,

$$L_t = \int_0^t l_s \, ds, \quad U_t = \int_0^t u_s \, ds, \quad 0 \leq l_s, u_s \leq \kappa$$
Guessing solution for problem with transaction costs.

Ansatz: try L and U absolutely continuous with bounded derivatives, that is,

$$L_t = \int_0^t l_s \, ds, \quad U_t = \int_0^t u_s \, ds, \quad 0 \leq l_s, u_s \leq \kappa$$

The HJB-equation reads

$$\max_{c,l,u} \left\{ \frac{1}{2} \sigma^2 y^2 \ddot{v}_{yy} + rx \ddot{v}_x + \alpha y \ddot{v}_y + \frac{1}{\gamma} c^\gamma - c \ddot{v}_x \right.\left. \right.$$\left.\right.$$

$$\left.\left.\left. - (1 + \lambda) \ddot{v}_x + \ddot{v}_y \right) l + ((1 - \mu) \ddot{v}_x - \ddot{v}_y) u - \delta \ddot{v} \right\} = 0.$$
Since \tilde{v}_x and \tilde{v}_y are positive (extra wealth gives increased utility), we see that the maxima are attained as follows:

\[
\begin{align*}
c & = (\tilde{v}_x)^{1/(\gamma-1)}, \\
l & = \begin{cases}
\kappa, & \text{if } \tilde{v}_y \geq (1 + \lambda)\tilde{v}_x, \\
0, & \text{if } \tilde{v}_y < (1 + \lambda)\tilde{v}_x,
\end{cases} \\
u & = \begin{cases}
0, & \text{if } \tilde{v}_y > (1 - \mu)\tilde{v}_x, \\
\kappa, & \text{if } \tilde{v}_y \leq (1 - \mu)\tilde{v}_x.
\end{cases}
\end{align*}
\]
Since \tilde{v}_x and \tilde{v}_y are positive (extra wealth gives increased utility), we see that the maxima are attained as follows:

\[
c = (\tilde{v}_x)^{1/(\gamma-1)},
\]
\[
l = \begin{cases}
\kappa, & \text{if } \tilde{v}_y \geq (1 + \lambda)\tilde{v}_x, \\
0, & \text{if } \tilde{v}_y < (1 + \lambda)\tilde{v}_x,
\end{cases}
\]
\[
u = \begin{cases}
0, & \text{if } \tilde{v}_y > (1 - \mu)\tilde{v}_x, \\
\kappa, & \text{if } \tilde{v}_y \leq (1 - \mu)\tilde{v}_x.
\end{cases}
\]

This indicates that the optimal transaction policies are “bang-bang”: buying and selling either take place at maximum rate or not at all, and the solvency region splits into three regions

- B, the region in which stocks are bought,
- S, the region in which stocks are sold,
- NT the region where no transactions take place.
Let us analyse the boundary

\[\tilde{v}_y = (1 + \lambda)\tilde{v}_x \]

between S and NT (a similar argument applies for the boundary between NT and B). To this end assume that $\tilde{v} \in C^1$ and that it is homothetic which implies that

\[\tilde{v}_x(\rho x, \rho y) = \rho^{\gamma-1}\tilde{v}_x(x, y). \]
Let us analyse the boundary

\[\tilde{v}_y = (1 + \lambda)\tilde{v}_x \]

between \(S \) and \(NT \) (a similar argument applies for the boundary between \(NT \) and \(B \)). To this end assume that \(\tilde{v} \in C^1 \) and that it is homothetic which implies that

\[\tilde{v}_x(\rho x, \rho y) = \rho^{\gamma - 1} \tilde{v}_x(x, y). \]

It follows that if \(\tilde{v}_y(x, y) = (1 + \lambda)\tilde{v}_x(x, y) \) for some point \((x, y)\), then the same is true for all points along the ray through \((x, y)\).
Heuristic argument suggests so far:

- boundaries between transaction and no-transaction regions are straight lines through the origin,
Heuristic argument suggests so far:

- boundaries between transaction and no-transaction regions are straight lines through the origin,
- in the transaction regions, transactions take place at maximum, i.e. infinite, speed, which implies that the investor will make an instantaneous finite transaction to the boundary of NT.
Heuristic argument suggests so far:

- boundaries between transaction and no-transaction regions are straight lines through the origin,
- in the transaction regions, transactions take place at maximum, i.e. infinite, speed, which implies that the investor will make an instantaneous finite transaction to the boundary of NT,
- the finite transaction in S or B moves the portfolio down or up a line of slope $-1/(1 - \mu)$ or $-1/(1 + \lambda)$.
Heuristic argument suggests so far:

- boundaries between transaction and no-transaction regions are straight lines through the origin,
- in the transaction regions, transactions take place at maximum, i.e. infinite, speed, which implies that the investor will make an instantaneous finite transaction to the boundary of NT,
- the finite transaction in S or B moves the portfolio down or up a line of slope $-1/(1 - \mu)$ or $-1/(1 + \lambda)$.
- after the initial transaction, all further transactions must take place at the boundaries, and this suggests a “local time” type of transaction policy,
Heuristic argument suggests so far:

- boundaries between transaction and no-transaction regions are straight lines through the origin,
- in the transaction regions, transactions take place at maximum, i.e. infinite, speed, which implies that the investor will make an instantaneous finite transaction to the boundary of NT,
- the finite transaction in S or B moves the portfolio down or up a line of slope $-1/(1 - \mu)$ or $-1/(1 + \lambda)$.
- after the initial transaction, all further transactions must take place at the boundaries, and this suggests a “local time” type of transaction policy,
- meanwhile, consumption takes place at rate $(v_x)^{1/(\gamma - 1)}$.
In NT the value function $v(x, y)$ satisfies the HJB-equation with $l = u = 0$:

$$\max_c \left\{ \frac{1}{2} \sigma^2 y^2 v_{yy} + (rx - c)v_x + \alpha y v_y + \frac{1}{\gamma} c^\gamma - \delta v \right\} = 0,$$

i.e.,

$$\frac{1}{2} \sigma^2 y^2 v_{yy} + (rx - c)v_x + \alpha y v_y + \frac{1 - \gamma}{\gamma} v_x^{-\gamma/(1-\gamma)} - \delta v = 0.$$
In NT the value function \(v(x, y) \) satisfies the HJB-equation with \(l = u = 0 \):

\[
\max_c \left\{ \frac{1}{2} \sigma^2 y^2 v_{yy} + (rx - c)v_x + \alpha yv_y + \frac{1}{\gamma} c^\gamma - \delta v \right\} = 0,
\]

i.e.,

\[
\frac{1}{2} \sigma^2 y^2 v_{yy} + (rx - c)v_x + \alpha yv_y + \frac{1 - \gamma}{\gamma} v_x^{-\gamma/(1-\gamma)} - \delta v = 0.
\]

The final step now consists of reducing this equation to an equation in one variable. In order to do so, define

\[
\psi(x) := v(x, 1).
\]

By the homothetic property it follows that \(v(x, y) = y^\gamma \psi(x/y) \).
If our conjectured optimal policy is correct then ν is constant along lines of slope $(1 - \mu)^{-1}$ in S and along lines of slope $(1 + \lambda)^{-1}$ in B, and this implies by homothetic property that

$$
\psi(x) = \frac{1}{\gamma}(x + 1 - \mu)^\gamma, \quad x \leq x_0,
$$

$$
\psi(x) = \frac{1}{\gamma}(x + 1 + \lambda)^\gamma, \quad x \geq x_T,
$$

for some constants A, B and x_0 and x_T as in the picture.
If our conjectured optimal policy is correct then \(v \) is constant along lines of slope \((1 - \mu)^{-1}\) in \(S \) and along lines of slope \((1 + \lambda)^{-1}\) in \(B \), and this implies by homothetic property that

\[
\psi(x) = \frac{1}{\gamma} (x + 1 - \mu)\gamma, \quad x \leq x_0, \\
\psi(x) = \frac{1}{\gamma} (x + 1 + \lambda)\gamma, \quad x \geq x_T,
\]

for some constants \(A, B \) and \(x_0 \) and \(x_T \) as in the picture. Using the homothetic property again, one can show that \(\psi \) satisfies for \(x \in [x_0, x_T] \),

\[
\beta_3 \psi''(x) + \beta_2 x \psi'(x) + \beta_1 \psi(x) + \frac{1 - \gamma}{\gamma} (\psi'(x))^{-\gamma/(1-\gamma)} = 0,
\]

where \(\beta_1 = -\frac{1}{2} \sigma^2 \gamma (1 - \gamma + \alpha \gamma) - \delta, \beta_2 = \sigma^2 (1 - \gamma) + r - \alpha, \beta_3 = \frac{1}{2} \sigma^2 \).
Theorem (4.1, follows from [?])

Take $0 < x_0 < x_T$ and let NT be the closed wedge shown in the picture, with upper and lower boundaries $\partial S, \partial B$ respectively. Let $c : NT \to [0, \infty)$ be any Lipschitz continuous function and let $(x, y) \in NT$. Then there exists a unique process s_0, s_1 and continuous increasing processes L, U such that for $t < \tau = \inf\{t \geq 0 : (s_0(t), s_1(t)) = 0\}$

$$ds_0(t) = (rs_0(t) - c(s_0(t), s_1(t)))dt - (1 + \lambda)dL_t + (1 - \mu)dU_t, \quad s_0(0) = x,$$

$$ds_1(t) = \alpha s_1(t)dt + \sigma s_1(t)dz_t - dU_t, \quad s_1(0) = y,$$

$$L_t = \int_0^t 1\{(s_0(\xi), s_1(\xi)) \in \partial B\}dL_\xi,$$

$$U_t = \int_0^t 1\{(s_0(\xi), s_1(\xi)) \in \partial S\}dU_\xi.$$

The process $\tilde{c}_t := c(s_0(t), s_1(t))$ satisfies condition (2.1)(i).
Define the set of policies that do not involve short selling:

\[\mathcal{U}' = \{(c, L, U) \in \mathcal{U} : (s_0(t), s_1(t)) \in \mathcal{S}'_\mu \text{ for all } t \geq 0\}, \]

where \(\mathcal{S}'_\mu = \{(x, y) \in \mathbb{R}^2 : y \geq 0 \text{ and } x + (1 - \mu)y \geq 0\}. \)
Theorem (4.2, proof in [?])

Let $0 < \gamma < 1$ and assume Condition A holds. Suppose there are constants A, B, x_0, x_T and a function $\psi : [-1(1-\mu), \infty) \rightarrow \mathbb{R}$ such that

$$0 < x_0 < x_T < \infty,$$

ψ is C^2 and $\psi'(x) > 0$ for all x,

$$\psi(x) = \frac{1}{\gamma} A(x + 1 - \mu)^\gamma \text{ for } x \leq x_0,$$

$$\beta_3 \psi''(x) + \beta_2 x \psi'(x) + \beta_1 \psi(x) + \frac{1 - \gamma}{\gamma} (\psi'(x))^{-\gamma/(1-\gamma)} = 0 \text{ for } x \in [x_0, x_T],$$

$$\psi(x) = \frac{1}{\gamma} B(x + 1 + \lambda)^\gamma \text{ for } x \geq x_T.$$
Theorem

Let N_T denote the closed wedge

$\{(x, y) \in \mathbb{R}_+^2 : x_T^{-1} \leq yx^{-1} \leq x_0^{-1}\}$

and let B and S denote the regions below and above N_T as in the picture. For $(x, y) \in N_T \setminus \{(0, 0)\}$ define

$c^*(x, y) = y\psi'(x/y)^{-1/(1-\gamma)}$.

Let $\tilde{c}_t^* = c^*(s_0(t), s_1(t))$ where (s_0, s_1, L^*, U^*) is the unique solution of (4.1) with $c := c^*$. Then the policy $(\tilde{c}_t^*(t), L^*(t), U^*(t))$ is optimal in the class \mathcal{U}' for any initial endowment $(x, y) \in N_T$. If $(x, s) \notin N_T$ then an immediate transaction to the closest point in N_T followed by application of this policy is optimal in \mathcal{U}'. The maximal expected utility is

$v(x, s) = y^{\gamma}\psi(x/y)$.