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Abstract

How best to summarize large and complex datasets is a problem that arises in many areas
of science. We approach it from the point of view of seeking data summaries that minimize
the average squared error of the posterior distribution for a parameter of interest under approxi-
mate Bayesian computation (ABC). In ABC, simulation under the model replaces computation of
the likelihood, which is convenient for many complex models. Simulated and observed datasets
are usually compared using summary statistics, typically in practice chosen on the basis of the
investigator’s intuition and established practice in the field. We propose two algorithms for au-
tomated choice of efficient data summaries. Firstly, we motivate minimisation of the estimated
entropy of the posterior approximation as a heuristic for the selection of summary statistics. Sec-
ondly, we propose a two-stage procedure: the minimum-entropy algorithm is used to identify
simulated datasets close to that observed, and these are each successively regarded as observed
datasets for which the mean root integrated squared error of the ABC posterior approximation
is minimized over sets of summary statistics. In a simulation study, we both singly and jointly
inferred the scaled mutation and recombination parameters from a population sample of DNA se-
quences. The computationally-fast minimum entropy algorithm showed a modest improvement
over existing methods while our two-stage procedure showed substantial and highly-significant
further improvement for both univariate and bivariate inferences. We found that the optimal set
of summary statistics was highly dataset specific, suggesting that more generally there may be no
globally-optimal choice, which argues for a new selection for each dataset even if the model and
target of inference are unchanged.
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1 Introduction

In a typical application of approximate Bayesian computation (ABC), a set of
summary statistics S is computed from both observed and simulated datasets
in order to define a between-dataset distance. For example, in the simplest
form of ABC, called “rejection ABC” (Tavaré, Balding, Griffiths, and Don-
nelly, 1997, Beaumont, Zhang, and Balding, 2002), many parameter values (φ)
are simulated from the prior distribution, each is used to simulate a dataset
under the given statistical model, and S is computed for each dataset. The
φ values that generate an S value closest to that observed, usually measured
by Euclidean distance, are then treated as an approximate random sample
from the posterior distribution for φ. The key advantage of such an ap-
proach is that complex models and high-dimensional datasets can be han-
dled in a Bayesian framework without having to explicitly compute the like-
lihood. Researchers are thus free to specify very detailed models, involving
many latent variables: the only limitation is that the model can readily be
simulated. ABC methods have been applied to inferences of demographic
history in population genetics (Fagundes, Ray, Beaumont, Neuenschwander,
Salzano, Bonatto, and Excoffier, 2007, François, Blum, Jakobsson, and Rosen-
berg, 2008), to infectious disease models (Luciani, Sisson, Jiang, Francis, and
Tanaka, 2009, McKinley, Cook, and Deardon, 2009) and to systems biology
(Ratmann, Jørgensen, Hinkley, Stumpf, Richardson, and Wiuf, 2007, Toni,
Welch, Strelkowa, Ipsen, and Stumpf, 2009). Software is becoming available
to assist its implementation (Hickerson, Stahl, and Takebayashi, 2007, Cor-
nuet, Santos, Beaumont, Robert, Marin, Balding, Guillemaud, and Estoup,
2008, Lopes, Balding, and Beaumont, 2009). In addition to the simple rejec-
tion approach outlined above, ABC approaches have been developed within
Markov chain Monte Carlo (MCMC) (Marjoram, Molitor, Plagnol, and Tavaré,
2003) and sequential Monte Carlo algorithms (Sisson, Fan, and Tanaka, 2007,
Beaumont, Cornuet, Marin, and Robert, 2009).

In practice, all these approaches rely on a good choice of S to extract
from the dataset most of its information about φ. Current practice is to rely
on expert opinion and established practice in the field for the choice of S,
with little or no quantitative justification, and no tailoring of the choice to the
observed dataset. Ideally S should be sufficient for φ, but this is almost never
achievable in practice. Joyce and Marjoram (2008) introduced a notion of
approximate sufficiency (AS), and used it to choose S. Briefly, if S is sufficient
then the posterior distribution for φ will be unaffected by replacing S with S′ =
S∪{X}, where X is an additional summary statistic. Accordingly, Joyce and
Marjoram (2008) propose an algorithm in which a potential summary statistic
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X is chosen randomly from a pool Ω, and is accepted into S if the change in
the corresponding posterior density approximation exceeds a threshold. The
AS approach was the first principled approach to choosing summary statistics
for ABC. Its limitations include dependence of the final value of S on the order
in which statistics are tested for inclusion, and on the choice of threshold for
accepting a new summary statistic.

Wegmann, Leuenberger, and Excoffier (2009) explored the use of partial
least squares (PLS) regression applied to a pool Ω of statistics that have (op-
tionally) been Box-Cox transformed (Box and Cox, 1964). In this approach,
the chosen S are the leading k PLS components, which are orthogonal lin-
ear combinations of elements of Ω, chosen to be maximally correlated with φ
(see for example Tenenhaus, 1998, Boulesteix and Strimmer, 2007). To choose
the optimal value of k, Wegmann et al. (2009) suggest a leave-one-out cross-
validation criterion, implemented in the pls R software package (Mevik and
Wehrens, 2007). For computational reasons, in practice the PLS components
are computed using a subsample of the simulated values, and the resulting
PLS loadings are applied to all simulated datasets. Below, we follow Wegmann
et al. (2009) and use a subsample of size 104, and we also use the ABCtoolbox

software (Wegmann, Leuenberger, Neuenschwander, and Excoffier, 2010) for
the PLS implementation. Neural networks can also be used for data reduction
instead of PLS (Blum and François, 2010).

Here, we first propose for use in ABC inference the set of summary
statistics SME ⊆ Ω that minimizes the entropy of the resulting approximate
posterior distribution. This criterion is easy to apply, and performs reasonably
well. For superior performance, at additional computational cost, we further
propose a two-stage procedure. Ideally we would wish to choose S that satisfies
an optimality criterion, such as minimising the square root of the sum of
squared errors (RSSE) of the resulting posterior approximation. In practice,
we can’t compute the RSSE since it implies knowledge of the φ underlying the
observed dataset, which is our target of inference. However, the φ values are
known for the simulated datasets. In Stage 2, we seek S2 that minimises the
mean RSSE (MRSSE) over simulated datasets that were selected in Stage 1
to be closest to that observed, in terms of Euclidean distance between SME

values.
We evaluate the performance of our ME and two-stage approaches,

relative to the AS and PLS methods, in estimating the scaled mutation and
recombination rates for a population sample of DNA sequences.
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2 Methods

2.1 Minimum Entropy (ME) approach

The entropy of a probability distribution is a measure of information (Shannon
and Weaver, 1948). High entropy corresponds to low information and vice-
versa. A sharply-peaked distribution with thin tails has low entropy. For
example, the entropy of a uniform distribution on the interval (0, a) is log(a),
reflecting low entropy (high information) when a is small. For a unimodal
distribution, entropy is related to variance (Ebrahimi, Maasoumib, and Soofi,
1999) but there is no general relationship: the entropy of the distribution that
is uniform over the pair of intervals (0, a) and (c, c+a), for c ≥ a, does not
depend on c whereas the variance does. Minimisation of entropy (Shannon and
Weaver, 1948) has been applied as a parameter selection technique in many
scientific fields (MacKay, 2003, Cover and Thomas, 2006). Since we seek to
extract maximal information about the parameter φ from the data, we propose
minimising the estimated entropy of the posterior approximation for φ as a
heuristic to select S for ABC inference.

The entropy of a distribution is equivalent to its Kullback-Leibler dis-
tance from the uniform distribution (Kullback and Leibler, 1951). We also
considered the Kullback-Leibler distance of the posterior approximation from
the prior, but found that this could give a good score to a “noise” statistic in
the case of an informative prior. We preferred minimising entropy rather than
variance as an optimality criterion because we expect better handling of mul-
timodal posteriors (see also Ebrahimi et al., 1999). Moreover, variance, unlike
entropy, is often a property of direct interest and if we focussed on minimising
variance our resulting variance estimates could be downwards biased for our
first algorithm. Although this problem may not be completely eliminated for
the ME algorithm, little if any effect is expected for the two-stage algorithm
since the selection process uses simulated datasets rather than that observed.

There are many sample-based estimators of entropy (Beirlant, Dudewicz,
Györfi, and Van der Meulen, 1997) that can be applied to the output of an ABC
algorithm. Some of these involve either kernel-based (Dmitriev and Tarasenko,
1974, Ahmad and Lin, 1976, Hall, 1987, Hall and Morton, 1993) or histogram-
based density estimators (Hall and Morton, 1993, Györfi and van der Muelen,
1987, Scott, 1992), while other methods are based on nearest-neighbor dis-
tances (Cressie, 1976, Vasicek, 1976, Tsybakov and Van Der Meulen, 1996,
Singh, Misra, Fedorowicz, and Demchuk, 2003). Since it is suitable for multi-
variate samples, here we adopt the unbiased kth nearest neighbor estimator of
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entropy (Singh et al., 2003):

Ĥ = log

[
πp/2

Γ(p/2+1)

]
− ψ(k) + log n+

p

n

n∑
i=1

logRi,k, (1)

where p denotes the dimension of φ and Ri,k is the Euclidean distance from φi
to its kth nearest neighbor in the posterior sample, while ψ(x) = Γ′(x)/Γ(x) is
the digamma function. The summation in (1) is small if the data are clustered
together so that the majority of kth nearest neighbour distances are small.
Below, we take k = 4 as suggested by Singh et al. (2003) for its error properties.

Given simulated parameter values φi, i = 1, . . . , nsim, and correspond-
ing simulated datasets, we can now define our ME algorithm:

Rejection-ABC algorithm: Compute S ⊆ Ω for the ith simulated dataset
(denoted Si) and accept the φi corresponding to the nacc smallest values
of ||Si− S∗||, where || · || denotes Euclidean distance and S∗ is the value
of S computed at the observed dataset.

ME algorithm: For every S ⊆ Ω, perform rejection-ABC and compute Ĥ
from the nacc accepted values. SME is the value of S that minimises Ĥ,
and the corresponding nacc values of φi provide the approximation to the
posterior distribution for φ.

For large Ω, rather than consider all S ⊆ Ω it may be necessary to restrict
attention for example to {S ⊂ Ω : |S| < k}, or to some other class of subsets
specified by the investigator. Alternatively, instead of an exhaustive search
over some subset of Ω, an iterative updating algorithm for S such as that of
Joyce and Marjoram (2008) could be implemented with an acceptance criterion
based on entropy.

2.2 Two-stage procedure

As noted above, if we treat a simulated dataset as if it were observed, we can
use the known φ to assess the performance of S in ABC inference, using any
preferred measure of average error of a distribution for φ. For example, we
could compute the RSSE using the nacc accepted values of φi:

RSSE =

(
1

nacc

nsim∑
i=1

Ii‖φi−φ‖2
)1/2

, (2)

where Ii = 1 if the pair (φi,Si) is accepted in the rejection-ABC algorithm,
otherwise Ii = 0. For multivariate φ the value of RSSE depends on the scale
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of each component. In the bivariate inferences below θ and φ are on similar
scales; in other settings it may be appropriate to initially standardise each
component.

The S that minimises (2) will vary over datasets, and so we minimise
the RSSE averaged over nobs simulated datasets close to that observed. In
practice the definition of “close” requires a good choice of S, and this is the
problem we have set out to solve. To overcome this circularity we first employ
the ME algorithm to find SME and use it to identify the nobs datasets.

Again assuming we have (φi,Si), i = 1, . . . , nsim, our two-stage algo-
rithm can be summarized as:

Stage 1: Implement the ME algorithm to identify SME. Find the nobs sim-
ulated datasets that minimize ||SME,i − S∗ME||, where SME,i and S∗ME

denote the values of SME computed from the ith simulated and the ob-
served datasets, respectively.

Stage 2: For each S ⊆ Ω, perform rejection-ABC and evaluate (2) for each
of the nobs datasets; denote the jth value RSSE(j). Hence identify the
S2 ⊆ Ω that minimizes

MRSSE =
1

nobs

nobs∑
j=1

RSSE(j). (3)

We consider all S ⊆ Ω in both stages, but it would be more computationally
efficient, and will usually give the same answer, to consider in the second stage
only the S that performed at least moderately well in the first stage.

2.3 Regression adjustment

ABC algorithms can usually be improved by adjusting the ith accepted param-
eter value φi to correct for the (small) discrepancy between its corresponding
summary statistic Si and the observed value S∗. Fitting the homoscedastic
regression model

φi = α + (Si−S∗)Tβ + εi

Beaumont et al. (2002) replaced φi with

φ′i = α̂ + ε̂i = φi + (S∗−Si)
T β̂, (4)

where (α̂, β̂) = (XTWX)−1XTWφ is the weighted least squares estimator
of (α, β) and X is the design matrix with ith row equal to (1, Si−S∗). The
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weight matrix W was taken to be

Wij =

{
K(‖Si − S∗‖), i = j
0 otherwise.

with K the Epanechnikov kernel

Kδ(t) =

{
3(1−(t/δ)2)/(4δ), t ≤ δ
0 t > δ.

Beaumont et al. (2002) also applied the weights Wii to the φ′i in posterior
approximations, but we have not used this reweighting below.

It may also be useful to adjust for systematic changes in the variance of
φ′i as Si deviates from S∗, using a locally log-linear regression for the squared
residuals from the mean adjustment:

log(ε̂i
2) = α′ + (Si−S∗)Tβ′ + εi,

and estimating (α′, β′) using the same weighted least squares approach (Fan
and Yao, 1998, Yu and Jones, 2004). Then we obtain the adjusted parameter
values

φ′′i = α̂ + ε̂i
σ̂(S∗)

σ̂(Si)
= α̂ + ε̂i exp{(S∗−Si)

T β̂′/2}. (5)

Feed-forward neural networks have also been proposed to make both mean
and variance adjustments in the ABC setting (Blum and François, 2010).

2.4 Simulation study: estimation of the scaled mutation
and recombination rates

Our simulation study is similar to that of Joyce and Marjoram (2008) except
that we consider joint inference of the two parameters in addition to inference
of each parameter separately. The parameters are the scaled mutation and
recombination rates, θ and ρ, and datasets consist of 50 haplotypes generated
using the ms software (Hudson, 2002) under the standard coalescent model,
with infinite-sites mutation (Nordborg, 2007). The (θ, ρ) values were simulated
from the uniform distribution on (2, 10) × (0, 10). This distribution was also
adopted as the prior for inference. Although it is unrealistic in practice for the
prior to be exactly the distribution from which the parameters were drawn,
this should not bias comparisons of methods.

Univariate inferences for θ and ρ using the ME and two-stage algorithms
were implemented with nsim = 106, nacc = 104 and nobs = 102. These are
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compared with both the PLS and AS methods, which have only been proposed
for univariate inferences. All four algorithms were repeated, implementing each
of the regression adjustments (4) and (5). The pool of summary statistics Ω
is shown in Table 1.

We were able to modify PLS, but not AS, for bivariate inference com-
parisons. Using cross-validation we found three and five to be the optimal num-
bers of PLS components for univariate inferences about θ and ρ, respectively,
and the results shown below are for these numbers of selected components.
For bivariate inferences, assessing predictive accuracy under cross-validation
is more difficult and instead we observed that three components minimized the
MRSSE of the resulting posterior approximation over the nobs datasets, and
we reported the results for three components below. In practice, RSSE isn’t
available because it requires knowledge of θ and/or ρ, and its use here should
bias results in favour of the PLS method.

3 Results

Table 1 shows the numbers of datasets for which each C ∈ Ω was included in
the optimal set by the AS, ME and two-stage methods in univariate, unad-
justed ABC inference about the scaled mutation parameter, θ and the scaled
recombination parameter, ρ. The results for AS are taken from Table 5 of
Joyce and Marjoram (2008); these authors used a uniform (0,10) prior for
each of θ and ρ while the other parameter was fixed. The “statistic” C2 does
not depend on the data and so should never be included in the chosen S. No
sufficient statistics are available for either θ or ρ, but C1 (number of segregat-
ing sites) is highly informative about θ (Hudson, 1990, Nordborg, 2007), while
C5 (number of distinct haplotypes) is informative about ρ, and so we expect
these to be often included in the respective optimal sets.

From Table 1, we see that the AS method performed well relative to
these expectations for unadjusted univariate inference of θ and ρ. ME per-
formed slightly less well, but the two-stage algorithm had a perfect score: it
never included C2 in the optimal set, while always including C1 and C5 for
inferences about, respectively, θ and ρ.

Table 2 includes the main result of the paper: that the set of summary
statistics selected by our novel two-stage algorithm led to substantially bet-
ter ABC inference in the simulation study than any of the other methods of
selecting summary statistics considered here. The two-stage algorithm gives
the lowest MRSSE in each row of Table 2, and its improvement over the PLS
and AS algorithms is statistically significant (Table 3). ME also performed
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Table 1: The pool of summary statistics Ω considered for summarising datasets of
DNA sequence haplotypes in the simulation study. For each statistic, we show the
number of observed datasets (out of 100) for which it was included in the optimal
set in univariate, unadjusted ABC inference by the methods described in the text.

Selected for θ (%) Selected for ρ (%)
Statistic Description AS ME 2-stage AS ME 2-stage
C1 no. of segregating sites 75 67 100 73 67 97
C2 Uniform[0,25] random variable 4 3 0 2 5 0
C3 mean no. of differences over all pairs of haplotypes 27 54 25 52 30 19
C4 25*(mean r2 across pairs separated by < 10%

of the simulated genomic region) 56 35 50 35 59 78
C5 no. of distinct haplotypes 43 19 20 78 73 100
C6 frequency of the most common haplotype 36 20 1 11 23 2
C7 no. of singleton haplotypes 16 14 5 16 31 5

Table 2: MRSSE for ABC inference in the simulation study for each of the seven
summary statistics taken alone (columns 1 – 7), all six summary statistics other
than C2 (column 8), and four methods of choosing S described in the text (columns
9 – 12). Bold indicates the lowest value in each row. In each section of the table,
first row: no regression adjustment; second row: mean adjustment (4); third row:
mean and variance adjustments (5).

C1 C2 C3 C4 C5 C6 C7 All 6 PLS AS ME 2-stage
θ no adj. 1.75 3.27 2.26 3.15 2.33 2.89 2.45 1.87 1.83 1.86 1.80 1.70

mean 1.75 3.27 2.26 3.14 2.33 2.89 2.45 1.74 1.78 1.76 1.74 1.68
mean+var. 1.75 3.27 2.26 3.14 2.33 2.89 2.45 1.70 1.75 1.76 1.70 1.67

ρ no adj. 3.93 3.95 3.93 3.92 3.83 3.84 3.88 3.59 3.91 3.68 3.54 3.44
mean 3.92 3.95 3.93 3.92 3.83 3.84 3.89 3.33 3.37 3.83 3.56 3.31
mean+var. 3.92 3.95 3.93 3.92 3.83 3.83 3.88 3.21 3.35 3.60 3.27 3.17

(θ, ρ) no adj. 4.36 5.19 4.62 5.10 4.55 4.89 4.65 4.81 4.15 - 4.03 3.97
mean 4.36 5.19 4.62 5.10 4.56 4.89 4.65 4.83 4.08 - 4.06 3.81
mean+var. 4.36 5.19 4.62 5.10 4.55 4.89 4.65 4.75 4.03 - 3.71 3.66

better than PLS, AS and the best-performing single summary statistic, but
the differences between these are usually not significant.

As expected, C1 was the best individual statistic for univariate infer-
ence about θ, and also for the bivariate inference (Table 2). For ρ, all the
statistics performed almost equally poorly: no single summary statistic can
capture much information about this parameter, but using all six statistics
(other than C2) was almost as effective as the two-stage algorithm after re-
gression adjustment. Reassuringly, the noise statistic C2 performed worst in
each inference, and generated MRSSE values similar to sampling from the
prior distribution. The statistic C4 performs poorly on its own for all infer-
ences, although it is included in several near-optimal combinations of summary
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Table 3: Difference in MRSSE (∆MRSSE) for the pair of methods indicated in the
column heading, together with its standard error and p-value (one-sided t99 test).

AS vs. 2-stage PLS vs. 2-stage
∆MRSSE (s.e.) p-value ∆MRSSE (s.e.) p-value

θ no adjustment 0.151 (0.024) < 10−8 0.130 (0.020) < 10−8

mean 0.078 (0.029) 0.0042 0.099 (0.020) < 10−5

mean+variance 0.097 (0.024) < 10−4 0.086 (0.023) 0.0002
ρ no adjustment 0.239 (0.048) < 10−5 0.471 (0.070) < 10−9

mean 0.525 (0.090) < 10−7 0.059 (0.031) 0.0300
mean+variance 0.426 (0.081) < 10−6 0.181 (0.042) < 10−4

(θ, ρ) no adjustment 0.185 (0.053) 0.0004
mean 0.270 (0.065) < 10−4

mean+variance 0.369 (0.071) < 10−6

ρ, but that information is apparently not captured by the other statistics.
The mean regression adjustment usually increases the efficacy of ABC

inference, and the variance adjustment typically offers a small further im-
provement (Table 2). The regression adjustments have little effect for the
seven single-statistic inferences (|S| = 1); the tolerance we use is small (accep-
tance rate = 1%) relative to the range of tolerances for which mean regression
adjustment was found to be useful by Beaumont et al. (2002). A fixed accep-
tance rate corresponds to an increasing tolerance in each dimension of S as
|S| increases, and a 1% acceptance rate does allow for regression adjustments
to convey an advantage when |S| > 1. Choosing all six summary statistics
is not efficacious without regression adjustment, but since |S| = 6 there is
a substantial gain from each of the regression adjustments for the univariate
inferences, though much less so for the bivariate inference.

Table 4 shows the best-performing S ⊆ Ω for unadjusted ABC infer-
ences. It is striking that there is rarely a clear “winner”: typically no one
S is near-optimal for a majority of datasets and thus the optimality of S in
extracting information from the data about the parameter holds at best only
locally. Our study included a wide range of values for θ and ρ, and so an
S that performs well in, say, the high-θ, low-ρ domain may be inferior when
θ is low and ρ is high. The superiority of the two-stage algorithm that we
have observed may lie in the fact that it optimizes S locally to the observed
dataset. While there is no universally best S, the set {C1, C4, C5} is the best
performing set for inferences about ρ and (θ, ρ).

The two-stage procedure is computationally the most expensive, re-
quiring about 10 hours of CPU time on a standard desktop computer for an

statistics (Table 4); this suggests that it conveys little information about θ or
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Table 4: Top three sets of summary statistics, measured as the frequency (number
of datasets out of 100) for which unadjusted ABC inference using that set achieved
within 1% of the optimal value of: true RSSE (which requires knowledge of the
parameter that is the target of inference), estimated entropy, and MRSSE (over the
100 nearest datasets, as used in the two-stage algorithm).

true RSSE frequency est. entropy frequency MRSSE frequency
θ {C1, C3} 26 {C1, C3} 31 {C1, C4} 60

{C1, C4} 23 {C1, C4} 29 {C1, C3} 34
{C1, C5} 12 {C1, C3, C4} 17 {C1, C4, C5} 33

ρ {C1, C4, C5} 34 {C1, C4, C5} 33 {C1, C4, C5} 73
{C1, C5} 17 {C1, C5} 23 {C1, C3, C4, C5} 40

{C1, C3, C4, C5} 15 {C3, C4, C5} 16 {C1, C5} 23
(θ, ρ) {C1, C4, C5} 29 {C1, C5} 41 {C1, C4, C5} 76

{C1, C3, C5} 17 {C1, C4, C5} 40 {C1, C3, C4, C5} 44
{C1, C5} 16 {C1, C3, C5} 27 {C1, C5} 39

exhaustive search over all 127 sets of summary statistics for one dataset. The
corresponding computational time for the ME, AS, and PLS methods are 6
minutes, 3 minutes and 2 minutes, respectively (including the cross-validation
for PLS). These timings do not include the ∼ 11 hrs required for the initial 106

simulations of parameter value and corresponding dataset, which are common
to all methods. (This step, as well as both the ME calculations and the two-
stage analysis, are readily parallelized). We repeated the two-stage analysis
for θ using nobs = 50 datasets closest to each observed dataset (previously
nobs = 100) and this led to only very slightly worse performance while halving
the compute time. To further reduce computing time, the search in Stage 2
can be limited to sets of summary statistics that performed well in Stage 1.

4 Discussion

We have proposed two new algorithms that automate the choice of summary
statistics in rejection-ABC inference. Both use the heuristic of minimising
the estimated entropy of the resulting posterior distribution approximation,
for which we adopted the unbiased 4th nearest neighbor estimator of entropy
(Singh et al., 2003). For our two-stage algorithm this heuristic is only used in
the first stage. In the second stage, selection is based on simulated datasets
similar to that observed, and since the true (simulated) parameter value is
known any measure of precision of a sample about a target value can be em-
ployed to identify the optimal posterior approximation – here we have adopted
the square root of the sum of squared errors (RSSE).
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In our simulation study, based on estimating the scaled mutation and
recombination rates from DNA sequence data, we found that the two-stage
algorithm gave a large, and usually highly-significant, improvement over the
other methods considered for both univariate and bivariate inferences. The
minimum entropy (ME) algorithm also performed consistently better than the
approximate-sufficiency (AS) (Joyce and Marjoram, 2008) and partial least-
squares (PLS) (Wegmann et al., 2009) methods, which each performed about
as well as the best single-statistic inference. The ME method conveys advan-
tages in being easy to apply and interpret, and does not require any user-
supplied quantities. The AS algorithm makes a series of pairwise comparisons
of summary statistics, and the result can depend on the way the sequence
is chosen and on an arbitrary threshold. The PLS algorithm requires opti-
misation of the number of components using cross-validation, and because
the selected statistics are linear combinations of an original set of summary
statistics, the selected statistics can lack interpretability.

We found that the best choice of summary statistics S ⊆ Ω varied
over datasets, which suggests that more generally there may be no univer-
sally optimal S for a given inference problem. Thus efficient ABC inference
may require a choice of summary statistics specific to the observed dataset.
It was, however, possible to identify some particular S, for example the set
{C1, C4, C5}, that performed well overall in our simulation study. Choosing
all summary statistics in Ω performed well here for univariate but not bivari-
ate inferences. It is unlikely that this will provide a good approach even for
univariate inferences when Ω is large.

In our simulation study we standardized each statistic but did not
orthogonalize. Better inferences should be possible by considering different
weightings of an orthogonal set of statistics, though a thorough exploration of
the space of possible weightings would be computationally prohibitive. A more
tractable route to improvement could be to consider weighted combinations of
posterior approximations from several near-optimal subsets of Ω.

The statistical efficiency of our two-stage algorithm comes at a sub-
stantial computational cost. While this cost remains modest relative to the
large simulation cost common to all rejection-ABC methods, and we have de-
veloped software to facilitate the implementation of our method (available on
request), there is likely to be ample scope for reducing computational cost with
little statistical loss. The exhaustive search over (a large subset of) Ω could
be replaced with an iterative updating scheme for S, such as that of Joyce
and Marjoram (2008). The update decision could be based on the RSSE for a
single dataset chosen with a probability that declines with distance from the
observed dataset. In this case the updates would not terminate at an optimal
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choice of S, but could be run for a large number of iterations, from which the
most frequently-selected values of S could be selected and their correspond-
ing posterior approximations averaged, or else used to assign weights to the
individual statistics.

In closing, we note that while we have focussed on rejection-ABC, sim-
ilar approaches should also be applicable to other ABC schemes.
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nip.

Toni, T., D. Welch, N. Strelkowa, A. Ipsen, and M. P. H. Stumpf (2009):
“Approximate Bayesian computation scheme for parameter inference and
model selection in dynamical systems,” J. Roy. Soc. Interface, 6, 187–202.

Tsybakov, A. B. and E. C. Van Der Meulen (1996): “Root-n consistent esti-
mators of entropy for densities with unbounded support,” Scand. J. Stat.,
23, 75–83.

Vasicek, O. (1976): “A test for normality based on sample entropy,” J. Roy.
Stat. Soc. B, 38, 54–59.

Wegmann, D., C. Leuenberger, and L. Excoffier (2009): “Efficient approximate
Bayesian computation coupled with Markov chain Monte Carlo without like-
lihood,” Genetics, 182, 1207–1218.

Wegmann, D., C. Leuenberger, S. Neuenschwander, and L. Excoffier (2010):
“ABCtoolbox: A versatile toolkit for approximate Bayesian computations,”
BMC Bioinformatics, 11, 116.

Yu, K. and M. C. Jones (2004): “Likelihood-based local linear estimation of
the conditional variance function,” J. Am. Stat. Assoc., 99, 139–144.

14

Statistical Applications in Genetics and Molecular Biology, Vol. 9 [2010], Iss. 1, Art. 34

http://www.bepress.com/sagmb/vol9/iss1/art34
DOI: 10.2202/1544-6115.1576


