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Abstract Time series arising in practice often have an in-
herently irregular sampling structure or missing values, that
can arise for example due to a faulty measuring device or
complex time-dependent nature. Spectral decomposition of
time series is a traditionally useful tool for data variabil-
ity analysis. However, existing methods for spectral estima-
tion often assume a regularly-sampled time series, or require
modifications to cope with irregular or ‘gappy’ data. Addi-
tionally, many techniques also assume that the time series
are stationary, which in the majority of cases is demonstra-
bly not appropriate. This article addresses the topic of spec-
tral estimation of a non-stationary time series sampled with
missing data. The time series is modelled as a locally sta-
tionary wavelet process in the sense introduced by Nason
et al (2000) and its realization is assumed to feature miss-
ing observations. Our work proposes an estimator (the pe-
riodogram) for the process wavelet spectrum, which copes
with the missing data whilst relaxing the strong assumption
of stationarity. At the centre of our construction are second
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generation wavelets built by means of the lifting scheme
(Sweldens, 1995), designed to cope with irregular data. We
investigate the theoretical properties of our proposed pe-
riodogram, and show that it can be smoothed to produce
a bias-corrected spectral estimate by adopting a penalized
least squares criterion. We demonstrate our method with real
data and simulated examples.
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1 Introduction

The importance of spectral densities for stochastic processes
and the usefulness of their estimation is well established in
the time series analysis literature. In this article, we assume
a basic knowledge of general time series concepts, but em-
phasize important results where needed.

For stationary processes, the question of spectral estima-
tion has been studied extensively, see for example Priestley
(1981). However, in various fields, such as finance (Mikosch
and Starica, 2004; Fryźlewicz et al, 2006), and medicine
(Nason et al, 2001; Cranstoun et al, 2002; Cazelles et al,
2007), modelling the observed data as stationary is not al-
ways appropriate. There have been many recent contribu-
tions to the literature dealing with non-stationary time se-
ries, such as the estimation of time-varying ARCH mod-
els (Dahlhaus and Subba Rao, 2006, 2007), spectral esti-
mation methods based on SLEX bases (Ombao et al, 2002)
or locally stationary wavelet-based approaches (Nason et al,
2000; Fryźlewicz and Nason, 2006; Van Bellegem and Von Sachs,
2008).

The second complexity is that time series with miss-
ing data frequently appear in practice. The ‘patterns’ of the
missing observations and reasons behind them are varied:
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for instance a whole sequence of data might be missing due
to a malfunction of the machine recording the observations,
the data may be censored, observations may be missing at
random or follow a systematic pattern. The existence of miss-
ing observations induces irregularities in the time locations,
while certain types of data naturally have irregularly-spaced
observations, such as environmental time series (Witt and
Schumann, 2005; Dilmaghani et al, 2007) or “high-frequency”
financial data (Engle, 2000). In this context, data analysis
cannot take place within the well-specified framework de-
voted to discrete time series measured at equal time inter-
vals. Quite commonly, when missing observations are present
in the data, they are imputed following various recommen-
dations, for example by ‘common sense’, or some compu-
tations may be performed on the ‘gappy’ data (for more de-
tails, see e.g. Chatfield (2004)). Traditional spectral estima-
tion methods can then be performed on the ‘complete’ time
series.

Methods for autocovariance and spectral estimation for
stochastic processes sampled at irregular locations have been
developed (Hall et al, 1994; Bos et al, 2002). Some spectral
estimation techniques involve mapping the inherent irreg-
ular structure of time series so that regularly-spaced spec-
tral analysis can be performed, for example through sam-
pling (Clinger and Van Ness, 1976; Broersen, 2008). For
an overview of preprocessing methods for spectral estima-
tion of irregular time series that parallel approaches built for
regularly-spaced data, see Stoica and Sandgren (2006). The
authors of this work underline the limited choice of spectral
analysis techniques for irregularly-sampled data, and em-
phasize the large number of fields that could benefit from
it, such as biomedicine, astronomy, seismology or engineer-
ing.

Models specifically developed for time series with miss-
ing data and their use for spectral estimation have been dis-
cussed in the literature (Broersen et al, 2004; Broersen, 2006).
Mondal and Percival (2008) formulate unbiased spectral es-
timators assuming wavelet models of stationary time series
and also investigate their asymptotic properties. If the miss-
ing observations occur with a periodic structure, Jones (1962)
provides a development for spectral estimation of a station-
ary time series.

The current existing techniques in the literature of non-
stationary time series do not easily extend to handle irregular
data observations or missing data, as the constructions for
missing data situations outlined above are only valid forsta-
tionarytime series. Hence the focus in this article is to inves-
tigate the problem of spectral estimation for a non-stationary
process with missing observations. In our approach, non-
stationarity is defined in the sense introduced by Nason et al
(2000) and our construction will make use of a ‘nondeci-
mated’ wavelet algorithm introduced in Knight and Nason
(2009). At the core of our construction are second genera-

tion wavelets built following the lifting scheme (Sweldens,
1995), that removes ‘one coefficient at a time’ (LOCAAT)
by Jansen et al (2001, 2009) and used extensively in Nunes
et al (2006) and Knight and Nason (2006).

This article is organized as follows. Section 2 briefly in-
troduces (stationary) time series and outline ways of mod-
elling time series data without imposing the strong assump-
tion of stationarity. We discuss the concept of rescaled time
introduced by Dahlhaus (1997), and then present the main
results in the construction of a spectral estimator for locally
stationary wavelet (LSW) processes of Nason et al (2000).
Section 3 details our wavelet periodogram for a LSW pro-
cesswith missing observations. The missing data is handled
by using a generalized wavelet transform, known aslifting
and introduce the LOCAAT algorithm of Jansen et al (2001)
and set out the ‘nondecimated’ lifting transform (NLT) of
Knight and Nason (2009). We then provide a series of both
actual and simulated data examples in Section 4. Section 5
investigates the raw periodogram and proposes a penalty cri-
terion for removing its inherent bias and ‘power leakage’.
Section 6 concludes and outlines ideas for further work.

2 Spectral estimation for locally stationary time series

2.1 Locally stationary time series

In order to be able to make inferences on the characteris-
tics of a time series (such as its variance or autocovariance
function), certain assumptions must be imposed on its evo-
lution. Most often, the process is assumed to be such that if
we divide any of its realizations into smaller sections, then
each section looks much like any other section of that real-
ization, i.e. the statistical properties of the time seriesdo not
change with time. Such processes are called (strictly) sta-
tionary time series, and many excellent monographs are en-
tirely devoted to studying them — see, for instance, Priestley
(1981), Chatfield (2004) or Brockwell and Davis (2009).

We emphasize that, in practice, it is not always reason-
able to assume that time series are stationary. However, once
the stationarity assumption is dropped, other assumptionson
the process, although less restrictive, still have to be imposed
in order to be able to make inferences on the process char-
acteristics, such as its evolving variance or autocovariance
structure.

Throughout this article we shall concentrate on trend-
free processes with a second order structure that varies slowly
with time. Such time series appear to have a stationary be-
haviour over short stretches of time and so are calledlocally
stationary(Dahlhaus, 1997; Nason and Von Sachs, 1999).

Dahlhaus (1997) introduced a new concept of rescaled
time to provide a framework with which asymptotic process
inference could be made: controlling the evolution of the in-
dividual amplitudes of the locally stationary process through
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a function dependent on rescaled time ensures that its statis-
tical characteristics, e.g. the autocovariance function or the
process spectral density, can be (locally) estimated by pool-
ing the observed data over the regions of local stationarity.

2.2 Locally stationary wavelet (LSW) processes

Wavelets have been so far used for a wide variety of prob-
lems that arise in time series analysis. For a review of the use
of wavelets for time series analysis, see Nason and Von Sachs
(1999) or the comprehensive monograph by Percival and
Walden (2000).

Due to their nature, wavelets deliver a time–scale repre-
sentation, complementary to the time–frequency interpreta-
tion that arises from a Fourier analysis and so the classical
Fourier spectral analysis can be complemented by a wavelet
spectral analysis.

This article builds upon the work of Nason et al (2000),
who proposed a new way to model time series with a time-
dependent second order structure, based on the concept of
rescaled time of Dahlhaus (1997) and a family of discrete
nondecimated wavelets{ψj,k(t)}j,k, which replaces the set
of sine and cosine waves in traditional Fourier analysis. In-
stead of assuming a stationary process behaviour, their pro-
cess is assumed to have a stationary characterlocally, by
constraining the model coefficients to change slowly within
each scale. The authors refer to processes built as above un-
der the name of locally stationary wavelet (LSW) processes.

In what follows we give the main points of the formal
definition of a LSW process, and the interested reader can
refer to Nason et al (2000) for the complete definition.

Definition 2.1 A sequence of stochastic processes
{Xt,T}t∈0,T−1, T = 2J(T ) is a zero-mean LSW process if it
admits the following representation

Xt,T =

−1
∑

j=−J(T )

∑

k∈Z

wj,k;Tψj,k(t)ξj,k, (1)

whereψj,k(t) is a nondecimated discrete wavelet at scalej

and locationk, wj,k;T is its corresponding amplitude and
{ξj,k}j,k is a sequence of zero-mean, orthonormal random
variables.

Within each scalej, the evolution of the amplitudes
{wj,k;T }k∈0,T−1 is regulated by the Lipschitz continuous

functionWj(· ), defined for rescaled timez = k
T

.

Note that we (somewhat abusively) refer to the non-random
component of the building block coefficients under the name
of amplitudes. The functions{Wj(· )}j control the degree
of local stationarity of the process by forcing the amplitudes
{wj,k;T }k to vary slowly within each level.

The LSW process defined above has an associatedevo-
lutionary wavelet spectrum(EWS){Sj(· )}j∈−J(T ),−1 that
can be defined by

Sj(z) = |Wj(z)|
2 = limT→∞|wj,⌊zT ⌋;T |

2, (2)

wherez ∈ (0, 1) and⌊zT⌋ denotes the largest integer not
exceedingzT . The spectrum quantifies the contribution to
the process variance made at locationz and scalej.

For fixedT , the autocovariance of the process(Xt,T )t∈0,T−1

depends both on the lag,τ and on the rescaled time location,
z, and it is denoted bycT (z, τ) = cov(X⌊zT ⌋, X⌊zT ⌋+τ ).
Nason et al (2000) show that the autocovariance function
cT (· , · ) tends to an (asymptotic) local autocovariancec(· , · ):
|cT (z, τ) − c(z, τ)| = O(T−1), wherec(z, τ) is defined in
the following.

Definition 2.2 The local autocovariance (LACV) function
of a LSW process defined in Definition 2.1 is given by

c(z, τ) =
−1
∑

j=−∞

Sj(z)Ψj(τ), (3)

whereΨj(τ) =
∑Lj−1+min{0,τ}

k=max{0,τ} ψj,k(0)ψj,k(τ), τ ∈ Z is
the discrete autocorrelation wavelet at scalej.

Although representation (1) of a LSW process is not
unique, the EWS is unique in terms of the local autocovari-
ance, and vice versa (Nason et al (2000)).

The linear independence of the family{Ψj(· )}j≤−1 en-
sures the invertibility of the covariance–spectrum represen-
tation:

Sj(z) =

−1
∑

l=−∞

A−1
j,l

(

∑

τ

c(z, τ)Ψl(τ)

)

, (4)

whereA−1
J = (A−1

j,l )j,l∈−J(T ),−1 is the inverse of the ma-
trix AJ previously introduced (Nason et al, 2000). Formu-
lae (3) and (4) are the analogues of the Fourier pair relation-
ship between classical spectrum and autocovariance.

If Ŝj(z) denotes a spectrum estimator, then by taking
ĉ(z, τ) =

∑−1
j=−J(T ) Ŝj(z)Ψj(τ) we obtain an estimator for

c(z, τ). For certain choices of̂Sj(z), the estimator̂c(z, τ)
enjoys good properties, such as consistency (see Proposition
5 of Nason et al (2000)), which motivates obtaining a well-
behaved estimator for the wavelet spectrum.

2.3 Spectral estimation for LSW processes

Nason et al (2000) introduced thewavelet periodogram of a
LSW process(Xt,T )t∈0,T−1 (constructed with respect to the
nondecimated discrete wavelet family{ψj,k(t)}j,k) given
by:

I
j
k,T = d2j,k;T , (5)
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wheredj,k;T =
∑T−1

t=0 Xt,Tψj,k(t) is the empirical wavelet
coefficient at scalej and locationk.

For z ∈ (0, 1), let us denote the (vector) wavelet pe-
riodogram byIT (z) = (Ij⌊zT ⌋,T )j∈−J(T ),−1. Similarly, the
(vector) evolutionary wavelet spectrum is denoted byS(z) =

(Sj(z))j∈−J(T ),−1.
Nason et al (2000) show that

E(IT (z)) = AJS(z) +O(T−1), z ∈ (0, 1), (6)

which implies forz = k
T

,

E(Ijk,T ) =

−1
∑

l=−J(T )

Aj,lSl

(

k

T

)

+O(T−1). (7)

Hence the expected value of the wavelet periodogram
is (asymptotically) a linear combination of wavelet spectra,
and Nason et al (2000) propose using acorrected vector of
periodograms,L(z) = (Lj

⌊zT ⌋,T )j∈−J(T ),−1 for estimating
S(z):

L(z) = A−1
J IT (z).

Relation (6) shows thatL(z) is asymptotically an unbiased
estimator for the evolutionary wavelet spectrum,S(z) for
all z ∈ (0, 1). However, Nason et al (2000) show thatIT (z)

has an asymptotically non-vanishing variance, so it is not
a consistent estimator for the wavelet spectrum. To obtain
consistency,Ij⌊zT ⌋,T will be first smoothed as a function

of z within each scalej. Then correction withA−1
J of the

smoothedIT (z) will provide a wavelet spectrum estima-
tor, (Ŝj(z))j∈−J(T ),−1. For properties of this estimator, the
reader is referred to Nason et al (2000).

3 Spectral estimation for LSW processes with missing
observations

We now derive an estimate for the evolutionary wavelet spec-
trum, when the observed LSW process features missing ob-
servations.

3.1 LSW processes with missing observations

Assume that for someT we observe(Xt,T )t∈0,T−1, where
Xt,T admits the representation from Definition 2.1,

Xt,T =

−1
∑

j=−J(T )

∑

k∈Z

wj,k;Tψj,k(t)ξj,k,

but unlike before, we do not have an observed valueXt,T

for eacht ∈ 0, T − 1, i.e we start with a realization of a
LSW process which features missing observations: at some
time points we do not have the correspondingX values.

Let us denote the set of time points corresponding to
observations on the process byS = {t1, t2, . . . , tn} ⊆

{0, 1, ..., T − 1}. We will use the notationIS for the vector
of (It1 , It2 , . . . , Itn), and similarlyIS̄ = (It)t∈S̄ for the
set of missing time points, wherēS = {0, 1, ..., T−1}\S .

For a future asymptotic theory to make sense, the ele-
ments ofS cannot be constrained to belong to a fixed inter-
val, and their number must increase withT , see Hall et al
(1994). To reflect this we shall modelS as follows. We
defineT independent identically distributed Bernoulli ran-
dom variables which model the appearance of each time
point for eacht ∈ 0, T − 1, say, It ∼ Bernoulli(p) by
which we mean that each time point has probability (1 − p)
of being missing. In this setting, the number of observa-
tions on the process, that is, the number of elements inS ,
|S | =

∑T−1
t=0 It = n, is a random variablen ∼ Bin(T, p).

Therefore, the number of observations is in fact a function
of T , n(T ), but to avoid notational clutter we denote it byn
throughout the paper.

For a LSW process, defined as a sequence of stochastic
processes (see Definition 2.1), there are two ways in which
the locations of the missing values can arise for different val-
ues ofT – we can either assume that the locations change
with T , or that the missing time locations corresponding to
the smallerT are fixed. These issues need to be further con-
sidered for an asymptotic development. Throughout the pa-
per we will be working conditional on the time locations
corresponding to observations on the process being fixed. In
other words, we will assume that in practice we have avail-
able information at then locations,t1, . . . , tn and we ignore
the random character of these locations.

3.2 Wavelet periodogram in the missing data setting

The methodology of Nason et al (2000) for estimation of the
process characteristics of interest (such as the EWS or the
LACV) centres on obtaining the wavelet periodogram (de-
fined by equation (5)) by computing the nondecimated em-
pirical wavelet coefficientsdj,k;T at each scalej and loca-
tionk. It is clear that these classical wavelet formulae cannot
be directly applied in the context of missing data. For this
reason, we propose using a wavelet decomposition based on
second generation wavelets, able to deal with irregularly-
spaced data and hence able to produce empirical wavelet
coefficients (details) at the observed time points.

3.2.1 The lifting scheme (LOCAAT)

Second generation wavelets are essentially a generalization
of ‘classical’ wavelets, designed to cope with irregular set-
tings or with data that is not of a dyadic length. Our ap-
proach uses wavelets constructed via the lifting scheme that
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‘removes one coefficient at a time’ (LOCAAT) of Jansen
et al (2001), and explored in Nunes et al (2006).

Briefly, the aim of the lifting scheme is to transform a
function sampled atn irregularly-spaced locations (which
we denote by{(xi, fi)}i∈1,n) into a set of say,L scaling and
(n−L) wavelet coefficients, whereL is the desired primary
resolution level. The algorithm is usually represented by re-
cursively applying three steps:split, predictandupdate.

Thesplit step consists in choosing a point to be removed,
and essentially Jansen et al (2001) propose to remove points
in an order dictated by thex-configuration: those points cor-
responding to denser areas are removed first, and further
steps generate detail in progressively coarser areas. Eachlo-
cation is therefore associated with an interval which it in-
tuitively ‘spans’: the shorter the interval, the more densely
sampled the area around the location is.

The value of the function (f ) is thenpredictedat the
point selected for removal based on regression over its neigh-
bourhood, and the prediction error will be thedetail coeffi-
cientcorresponding to that location.

In theupdatestep, thef -values of the neighbouring points
are updated by using a linear combination with the detail co-
efficient, such that the mean signal stays the same through-
out the algorithm application. At this stage the lengths of the
intervals associated to the neighbouring points also get up-
dated in order to account for the decreasing number of scal-
ing points that remain to ‘span’ the interval and accordingly,
scale now has a continuous character. Jansen et al (2001,
2004) propose an artificial split into levels to mimick dis-
crete scales from the classical wavelet setting, where each
point uniquely corresponds to a scale.

In summary, the lifting scheme produces exactly one de-
tail coefficient at each observedx-point, which is in turn
associated to one (artificial) scale.

3.2.2 The nondecimated lifting transform (NLT)

A nondecimated transform in the lifting ‘one coefficient at
a time’ context was introduced in Knight and Nason (2009),
who proposed a technique that produces a set of wavelet co-
efficients associated to eachx-location, at various artificial
scales. This is known as the nondecimated lifting transform
(NLT) for irregularly-spaced data and replaces the nondeci-
mation in the classical, regularly spaced context.

Simply put, the application of the LOCAAT wavelet al-
gorithm of Jansen et al (2001) transforms an irregular ob-
served dataset into a set of wavelet (detail) coefficients, such
that there is one detail coefficient corresponding to each ‘lifted’
point. In the approach introduced by Jansen et al (2001), the
order of transforming scaling coefficients into detail coeffi-
cients is established by using the integral lengths of the scal-
ing functions, which account for the ‘span’ of each point.

t1 t2 t3 t4 t5 t6

l1t3

t1 t2 t3 t5 t6

l2t3

t1 t3 t5 t6

l3t3

Fig. 1 Relationship between scale and order of point removal in the
modified LOCAAT lifting algorithm. Top:t3 (x) is the first point to be
lifted. The scale associated to the detail coefficientd1t3 is shown below
it (l1t3 ). Middle: t3 is lifted after pointt4. Part of the interval corre-
sponding tot4 is redistributed to its neighbours and so the associated
scalel2t3 for d2t3 increases. Bottom:t3 is removed after botht2 andt4.
In this situation, the detail coefficientd3t3 has a large scalel3t3 associ-
ated to it. By varying the order of point removal during the LOCAAT
algorithm, the nondecimated lifting transform (NLT) is able to generate
multiple detail coefficients for each location with different associated
scales.

The NLT approach of Knight and Nason (2009) allows
for full flexibility in choosing the order of obtaining the de-
tail coefficients. The LOCAAT transform is modified to ac-
commodate arandomorder of generating the wavelet coef-
ficients, while the prediction and update steps are left un-
changed. This transform is then repeatedly applied, every
time following a different order of removing the points, and
consequently generating the detail coefficients. A ‘large enough’
sample of these permutations ensures that a distribution of
the empirical wavalet coefficients associated to each loca-
tion is obtained.

Let us now formalize the NLT approach. Then observed
time pointst1, ..., tn can be arranged in (ordered) vectors of
lengthn in n! ways. Out of this sample space, we randomly
extract saym such orderings (trajectories), which will give
the paths that the lifting algorithm will take.

For each selected trajectory, the modified lifting trans-
form will generate a set of detail coefficients. Let us de-
note then-dimensional (row) vector of detail coefficients by
dT = (dti,T )i∈1,n. Using the matrix representation of the
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wavelet transform, we can write




dt1,T
· · ·

dtn,T



 = R





Xt1,T

· · ·

Xtn,T



 ,

whereR ∈ Mn,n is the matrix built during the lifting trans-
form.

From the above it follows thatdti,T =
∑n

j=1 ri,jXtj ,T ,
∀i ∈ 1, n, and each detail is a linear combination of the
observedXti,T ’s, i ∈ 1, n.

The vector of details,dT has a random character, inher-
ited from the process(Xti,T )i∈1,n. The elements of the ma-
trix R depend on the prediction and update filters, which
(for a linear transform) in turn depend only on the time lo-
cations and the regression order used in the prediction step
(see Nunes et al (2006)). Therefore, since we work condi-
tional on having fixed design points,(tk)k∈1,n, the elements
of the matrixR can be assumed fixed.

For each of them ‘paths’, we apply the lifting algorithm
and hence generatem different matricesR1, ..., Rm. Corre-
spondingly, we getm sets of wavelet vectorsd1,T , ..., dm,T .

Each time locationtk is therefore associated to a set of
detail coefficients,{dαtk,T }α∈1,m. Each detaildαtk,T is asso-
ciated to an interval that intuitively accounts for the ‘span’
of time locationtk at the respective stage in the algorithm
(see Figure 1). We shall denote the length of this interval by
lαtk,T , and this will provide our measure of scale. Therefore,
at eachtime location we obtaina setof details, which we
can model as a function of their scale.

3.2.3 Proposed raw wavelet periodogram construction

In Section 2.3 we introduced the raw periodogram proposed
by Nason et al (2000) for estimating the evolutionary wavelet
spectrum (equation (5)). We saw that this was an array filled
in with the values of the squared nondecimated detail coeffi-
cients corresponding to each level and time location, where
the level had the usual multiresolution meaning on a log2(T )

scale. To obtain consistency, the raw periodogram was then
first smoothed as a function of location within each scale and
then was corrected byA−1

J in order to provide an unbiased
spectrum estimator.

In our context, the challenge comes from the irregularly-
spaced data that hinders the application of classical wavelet
techniques, such as nondecimation. Our aim is to propose a
periodogram for estimating the wavelet spectrum of an LSW
process despite dealing with a realization that features miss-
ing observations.

We now summarize the steps that we propose in order to
obtain a raw periodogram for an LSW process sampled with
missing data (see flowchart in Figure 2):

1. Apply the NLT of Knight and Nason (2009) introduced
in the section above on the sampled process data, and

obtain a set of detail coefficients at each observed time
point.

2. The details associated to each location are in fact asso-
ciated to various scales, as we explained in the previ-
ous section. Consequently we shall ‘discretize’ the scale
in order to ensure comparability specifically with the
construction from Nason et al (2000), and more gener-
ally with classical wavelet constructions. More exactly,
we shall choose a set of ‘evaluation’ lengths, which we
denote byl1, l2, . . . , lJ

∗

for someJ∗, and through the
choice ofJ∗ we are in fact able to tune the proposed
discreteness of the scale.

3. We want to estimate the function that links the squared
detail coefficients with the scale at which they arise, in
order to produce an estimate of the squared detail at each
chosen scaleli with i ∈ {1, . . . , J∗} and at each ob-
served time locationtk with k ∈ {1, . . . , n}.
This can be achieved by taking a nonparametric regres-
sion approach in modelling the magnitude of the associ-
ated squared details(d1tk,T )

2, . . . , (dmtk,T )
2 as a function

of the corresponding interval lengthsl1tk,T , . . . , l
m
tk,T

for
each fixed locationtk (refer to Figure 4). For each time
locationtk, we denote byftk,T the function we want to
estimate. In other words, for eachtk with k ∈ 1, n, we
model the data as

(dαtk,T )
2 = ftk,T (l

α
tk,T

) + εα, α ∈ 1,m, (8)

and we want to obtain an estimatêftk,T (l
i) for each

i ∈ 1, J∗. We estimate eachftk,T (· ) by using a linear
smoother, hence

f̂tk,T (l
i) =

m
∑

α=1

Kα(l
i)(dαtk,T )

2, ∀i ∈ 1, J∗, (9)

whereKα(l
i) are weight functions that are non-zero only

for thoseα values such thatlαtk,T is in a neighbourhood
of li. We note that the weightsKα(· ) are different for
eachtk, but we do not indicate it to avoid cluttering the
notation. The above value of̂ftk,T (l

i) is an estimate of
the magnitude of the squared detail(dαtk,T )

2 at timetk
associated to the interval lengthli.

4. The matrix(f̂tk,T (l
i))i∈1,J∗,k∈1,n is our proposed raw

periodogram, and corresponds to the raw periodogram
(d2j,k;T )j∈−J(T ),−1,k∈0,T−1 introduced by Nason et al
(2000).

Section 5 will show that our proposed raw periodogram
is not an unbiased estimator for the EWS and will discuss
the technical and computational challenge of correcting it.

3.3 Periodogram applicability and smoothing

Let us now make a few remarks on the periodogram con-
struction.
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Fig. 2 Flowchart for constructing the NLT periodogram: (i) The modified nondecimated lifting algorithm (NLT) is applied to theraw observations
using a fixed number of random lifting trajectories to form sets of detail coefficients and corresponding scales for each observation (ii) For each
observation in turn, a linear smoother is applied to the NLToutput to predict the values of the squared details at a set of chosen evaluation scales
(iii) The smoothed values for all observations are then concatenated (columnwise) to form a matrix which represents theraw periodogram.

Applicability. The construction is valid for irregularly-
sampled locally stationary time series, not necessarily ofa
dyadic length, and in particular, is suitable for those time
series whose irregular structure is induced from a regular
time series with missing observations. Examples for both
cases are shown in Section 4.

The periodogram construction also lends itself to exten-
sions using data from repeated time series using the lifting
transform modifications for multiple observations described
in Nunes et al (2006). An alternative approach would be to
simply average raw periodograms via merging time indices.

Scale interpretation. In classical wavelet theory, the no-
tion of scale has a meaningful interpretation associated to
the support of the wavelet, and, since the discrete wavelet
transform (DWT) is defined on equispaced grids of dyadic
length, the coefficients at a particular scale represent a dyadic
powered number of the observations through decimation.
This meaning transfers to the periodogram for the regular
setting.

However, due to the lifting of one coefficient at each
step, in the most general case our periodogram will not fea-
ture a dyadic structure in the scaling of wavelet support or
have a dyadic number of coefficients represented from one
scale to the next, although the scale is still connected to the
wavelet support. In practice, to ensure that our final peri-
odogram representation parallels the classical one, instead
of the actual scale values, we use their log2 values. This has
the interpretation that if the scale increases by one, the“av-
erage” wavelet function support doubles.

Smoothing. Nason et al (2000) approach the problem of
the biasedness of their periodogram by first smoothing the
periodogram via non-linear (translation-invariant) wavelet
smoothing on the periodogram values, and then applying an
inverse correction matrix. An alternative method using the
Haar-Fisz transform has been proposed to smooth the peri-
odogram (Fryźlewicz and Nason, 2006; Nason, 2008).

Ideally we would like to smooth our nondecimated lift-
ing periodogram per level over time. However, due to the
missing data in our framework, the data have an inherent
irregularly-spaced structure and classical wavelet smoothing

methods (such as those used for the usual regular time se-
ries setting) are not applicable here. Sanderson (2010) copes
with this by averaging the periodogram values over a num-
ber of resolution bands to mirror the regular setting, and
then smoothing their averaged periodogram over time by
employing a simple moving average.

Since each periodogram value is produced from a spe-
cific run of a lifting transform, a natural approach to con-
sider would be to smooth the squared coefficients across
time by first denoising the detail coefficients within the run
that produced them. This would not require pooling coeffi-
cient information from different NLT runs prior to smooth-
ing as in the averaging approach of Sanderson (2010). For
example, smoothing the periodogram values could be ob-
tained by using lifting transforms to denoise the data (Nunes
et al, 2006; Knight and Nason, 2009) and then pre- and post-
transforming the values using the logarithm transformation.
However, it remains unclear what strategy is best to consider
when smoothing the periodogram over time, and is left as an
area of future research.

4 Examples

We now give some illustrative examples of our periodogram
for irregular time series. Our periodograms are produced in
R by the lifting algorithm implementationsadlift (Nunes and
Knight, 2010) andnlt (Knight and Nunes, 2010).

4.1 Simulated example

Let us take the evolutionary wavelet spectrum{Sj(· )}j≤−1,
described in formula (10), which at the finest level (-1) ex-
hibits a burst of activity, and at the coarser level -4 exhibits
a squared sinusoidal behaviour (see Figure 3).

Sj(z) =











1, for j = −1, z ∈ (180256 ,
209
256 ),

sin2(4πz), for j = −4,

0, otherwise.

(10)
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Fig. 3 Left: An evolutionary wavelet spectrum (EWS) with power at fine and mid-scales. The scale (y-axis) runs from finest (bottom) to coarsest
(top); right: simulated LSW process corresponding to the spectrum featuring missing observations. Triangles indicate locations of missing time
points.

Using theLSWsimfunction implemented in the R add-
on packageWaveThresh(Nason et al, 2008), we first sim-
ulate a LSW process of lengthT = 256 corresponding to
the above spectrum. We take a random sample ofn = 200

time points out of the 256, and then record their correspond-
ing ‘observed’ process values in order to obtain an example
of a LSW process with missing observations. An example
of such a process (with missing data) appears in Figure 3
(right), and is represented on an irregular time grid. Note
that the sinusoidal character might be guessed in the first
half of the realization, but in the second half the burst masks
it.

The locations of the 56 missing time points are also rep-
resented in the figure. Note also that the region which fea-
tures the activity burst has slightly more missing observa-
tions, which will probably influence the accuracy of the final
spectrum estimator. Also, the estimation will be influenced
by the overall proportion of missing observations.

For the lifting procedure there are 256! possible removal
orderings of the time points that can be used in order to gen-
erate the detail coefficients. In what follows we take a sim-
ple random sample ofm = 1000 trajectories out of the total
256!. Each trajectory gives the order in which the empirical
lifted wavelet coefficients will be produced. For each case,
we modify the lifting scheme such that it follows the cor-
responding random path, and use a prediction step that em-
ploys linear regression with an intercept and with 2 neigh-
bours in a symmetrical configuration in order to generate the
details at each step (see Nunes et al (2006)).

Let us now examine the relationship between details pro-
duced during the NLT transform and their associated scales.
As an example we take the observation at time 15. Figure
4 shows the distribution of squared detail coefficients and
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Fig. 4 Magnitude of the squared details associated to the observation
at time 15, versus (log2 of) their associated integral lengths. The super-
imposed curve is obtained by smoothing using a cubic spline.

associated integral lengths for this point resulting from our
‘nondecimated’ lifting algorithm withm = 1000 trajecto-
ries. The cubic spline smoothing estimator is also shown.

Figure 5 gives two examples of our periodogram con-
struction outlined in Section 3.2.3, each corresponding toa
different ‘evaluation’ scale. The scale in the right picture is
finer, and it essentially shows that we can tune the level of
detail given by the periodogram. This zoom in – zoom out
feature of wavelets is nicely reflected in our construction at
the estimated spectrum level.

The range of these scales is roughly0 to 8 (in a con-
tinuous manner, with smaller values corresponding to finer
scales), and an approximate correspondence can be estab-
lished with the initial discrete levels−1, . . . ,−8. Note though
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Fig. 5 Proposed ‘raw’ wavelet periodograms to estimate the wavelet spectrum of Figure 3. The smoothed squared details are represented on two
different ‘evaluation’ scales (with 17, respectively 27 equally spaced divisions for the interval 0–8), with the picture on the right corresponding
to the finer scale division. In each plot, the scale gets coarser from bottom upwards and darker pixels correspond to a higher estimated spectrum
value.

that since not all time points are associated to integral lengths
spanning the whole0 to 8 range, missing values appear at
the bottom and top rows of the matrices represented in Fig-
ure 5. However, the use of the finer scale diminishes this
problem to some extent. Observe that both the burst and the
four squared sinusoidal peaks are detected within the correct
scales. The region approximately between times 150 to 175
does not contain much signal, which can be explained by the
slightly higher proportion of missing observations from that
area than from the rest.

4.2 Environmental time series

4.2.1 Orbital forcing data

In this example, we demonstrate our periodogram construc-
tion on environmental time series. A well-known school of
thought in astronomy accepts that the positioning of the Earth
as it moves around its orbit has an effect on climatic events
over time, in particular the characteristics of ice ages, through
changes in the Earth’s insolation (received solar energy) mea-
surement (Crucifix et al, 2007; Crucifix, 2008). Thisorbital
forcing has been quantified via certain trigonometrical as-
tronomical parameters so that time series representing the
forcing can be generated (Berger, 1978). Since the time se-
ries produced from the mathematical framework of Berger
(1978) are based on quantities derived from the physics of
the Earth’s orbit, the time series is unobserved (it is calcu-
lated), and thus contains no uncertainty or source of mea-
surement error; this makes it a good candidate for testing
whether the periodogram applied to these orbital forcing
data can extract what is known about the cyclic variability
components of the time series from orbital mechanics. It is

also of interest to determine whether our spectral estimation
method detects other frequency variance contributions that
do not feature in other glacial characteristic investigations,
namely energy at higher scales. The data was originally ex-
plored in Berger (1978).

The methodology as described in the flowchart (Figure
2) was applied to this orbital forcing data usingm = 5000

trajectories in the nondecimated lifting algorithm. The re-
sulting periodogram shows a clear periodic structure at mid-
coarse scales (see Figure 6). This is the so-calledprecession
forcing due to the movement of the periapsis between the
Earth and the sun (Crucifix, 2008), and has an an average
period of 21kyr (see Sanderson (2010)). This behaviour is
thus evident at approximately at scale14.4 = log2(21 ×

103). Note that the periodogram also exhibits characteris-
tic ‘troughs’ representing the periodogram power leakage
across the scales.

4.2.2 Trace carbon dioxide time series

Other paleoclimatic time series, for example, gas/isotopecon-
tent in drilled ice-cores can also be used to map climatic
events through history. Time series obtained from ice-cores
are characterized by an uneven sampling rate, as deep within
the ice-core, the snow/ice is under a strong mass pressure
that results in depletion, pinching and swelling of layers (see
Wolff (2005) for more details on the particular features of
ice-core records). It is thus of interest to determine whether
time series from these other sources can yield similar cli-
matic information as orbital forcing time series. The com-
parison between orbital forcing and other ice-core time se-
ries has been investigated using a smoothed version of our
lifting periodogram to some effect in Sanderson (2010).
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Fig. 6 Left: Plot of orbital forcing time series; right: periodogram of the orbital forcing time series using the algorithm in Section 3.2.3.
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Fig. 7 Left: Plot of ice-core carbon dioxide content (parts per million by volume) versus associated historical age; right: NLT periodogram of the
carbon dioxide time series.

The trace amount of trapped carbon dioxide in an ice-
core can give indications of atmospheric changes during the
time-span of the ice-core. We investigated a trace carbon
dioxide time series with the NLT periodogram from Sec-
tion 3.2.3 withm = 5000 paths. The time series has been
analyzed by Lüthi et al (2008) was obtained from the World
Data Center for Paleoclimatology in Boulder, USA.

Although some coarse-scale blurring is present, a peri-
odic structure of roughly 100 kyr can be seen from the pe-
riodogram shown in Figure 7 (marked on the right axis at
scalelog2(100 × 103) = 16.6)). The periodicity is clearest
during the second half of the series; this spectral information
agrees with evidence indicated by other studies of historical
climatic changes, which acknowledges that there has been
a climatic 100kyr cycle over the last 500 kyr (Crucifix and
Rougier, 2009).

4.3 Infant ECG data

In this section, we compare the lifting periodogram con-
struction introduced in Section 3.2.3 with that of Nason et al
(2000) for the regular data setting (see Section 2.3). The
data to which we have applied both methods is a time series
recording the heart rate (ECG) during sleep of a young in-
fant. The data consist of 2048 regularly-spaced observations
sampled at116Hz (see Nason et al (2000)). The dataset has
been made available in the R add-on packageWaveThresh
(Nason et al, 2008).

To compare our periodogram with one applicable for
regularly-spaced data, we randomly selected 10% of the data
to be treated as missing. After removing the selected points,
the ECG time series hadn = 1843 irregularly-spaced ob-
servations (205 were treated as missing). The irregular time
series can be seen in the top-right of Figure 8; the triangles
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Fig. 8 Top left: original infant ECG time series; top right: infantECG data with 205 artificially created missing values (shownbelow the time
series); bottom left: the spectral estimate using theNvSK method; bottom right: NLT periodogram construction. For both periodograms the scale
progress from fine at the bottom to coarse scales at the top.

below the time series represent the locations of the missing
observations. We applied the lifting periodogram to the ir-
regular ECG observations (m = 5000 lifting paths). This
is shown in Figure 8 (bottom-right), together with the cor-
responding regular data setting spectral estimate of Nason
et al (2000) from Section 2.3 (using all 2048 observations).
We denote this spectral estimate byNvSK.

We consider that the periodogram displays similar spec-
tral characteristics as that of Nason et al (2000) using the full
dataset (Figure 8, bottom-left). In particular, the main fea-
tures of theNvSK periodogram are evident in the NLT peri-
odogram, namely at the mid-coarse scales (approximately at
times 22:00, 23:15, 03:00 and 06:00). Furthermore, the fine
scale behaviour is also present (at 22:00, 03:00 and 06:00).
However, it is debatable whether the spectral information in
our periodogram at fine scales at time 23:15 is a real feature
of the data: it is noticeable that the periodogram shows some
spurious spectral information across observations at the ex-
tremes of the scale range (below scale 1 and near scale 10).

We have repeated this example with increased propor-
tions of missingness up to 25% without any significant degra-
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Fig. 9 Periodogram for infant ECG data with 25% of the observations
deemed missing.

dation in the spectral information shown in the resulting
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NLT periodograms. The periodogram for the ECG data with
25% missing is shown in Figure 9.

To investigate how the NLT spectral estimates change
with the amount of data considered missing from the infant
ECG dataset, we performed the following study. In the first
instance, the method described in Figure 2 was used to cre-
ate a periodogram for the ECG time series with a single ran-
domly chosen datapoint. We then calculated the (squared)
error between this and the periodogram produced with an
increased degree of missingness, treating the periodogram
with one missing datapoint as ‘the truth’ (only the common
subset of timepoints were considered in the error calcula-
tion). The motivation behind this comparison is that the cal-
culation gives an overall (rather than pointwise) measure of
how the periodograms change as the proportion of missing
datapoints increases. The error calculation was then repeated
K = 100 times (each repetition corresponding to indepen-
dently resampling the datapoints to be considered missing)
and then averaged over theK sampling runs. Note that in the
calculations described, the periodograms were scaled prior
to performing the error calculation so that they represented
the same variance as the infant ECG data.

Table 2 shows the average mean squared error (MSE)
of the degradation for different chosen amounts of miss-
ingness. The table reveals that, as expected, the fidelity to
the ’true’ periodogram decreases as the amout of missing-
ness becomes more severe, with the degradation increasing
slightly more significantly for higher percentages of missing
data.

Missingness (%) Error (MSE)
5 0.144
10 0.156
15 0.178
20 0.214
25 0.252

Table 1 Mean square error (MSE) results indicating degradation of in-
fant ECG NLT spectral estimates for different degrees of missingness.

At this point we should stress that a periodogram for
nonstationary processes with missing and/or irregular data
is so far unavailable using the spectral estimation methods
curently available in the literature. Indeed, theNvSK tech-
nique for classical LSW processes cannot be used even with
only a single missing observation. As noted in Section 1,
spectral estimation techniques often rely on imputation in
order to handle missing observations, or in the simplest case,
the data is treated as equispaced. This less principled way
of obtaining periodograms for irregular data can introduce
errors in estimation, especially with significant missingness
(for example greater than 5%). It is thus reassuring that our
raw periodogram correctly detects the spectral structure in

this difficult situation, albeit with obvious power leakage
across the scales.

Note that in the examples above the data has been ran-
domly selected and treated as missing. If the missing points
are clustered such that some feature of the data is lost, then
the spectral estimate will not be able to capture the power
activity in that region of the time series. However, this ob-
servation would be true of all spectral estimation methods
for irregular data in this case.

5 Correction of raw periodogram (theory)

In this section, we establish the relationship between the ini-
tial (unknown) evolutionary wavelet spectrum and our pro-
posed ‘raw’ periodogram, in order to make a step towards
a bias-corrected periodogram. We then discuss the spectral
correction of the periodogram and highlight its technical dif-
ficulty, reflected in its computational complexity. Future av-
enues for development of this periodogram correction are
also considered.

5.1 Relationship between the proposed periodogram and
the evolutionary wavelet spectrum

In what follows, we aim to obtainE(f̂tk,T (l
i)|IS = 1, IS̄ =

0). This can be viewed as establishing an equivalent formula
in our setting to that from the LSW approach in Nason et al
(2000) (see equation (7)). The following treatment is only
meant to parallel such a formula and is not a rigorous asymp-
totic development. It is clear from the illustrations shown
thus far (e.g. Figure 5) that some kind of blurring is present
in our proposed periodogram, and the formula we derive in
this section suggests that the blurring can, in principle, be
corrected.

We shall first obtain the covariance structure of the wavelet
coefficients as a function of the initial spectrum, both within
the lifting scheme corresponding to each trajectory, and also
between different trajectories. In other words, we are in-
terested incov(dαti,T , d

β
ti′ ,T

|IS = 1, IS̄ = 0), ∀i, i′ ∈

1, n, ∀α, β ∈ 1,m. Note that we are in fact also condition-
ing on the trajectories being fixed, rather than take into ac-
count their randomness, as this would in turn induce ran-
domness in the matricesR1, ..., Rm. This conditioning will
be assumed for all results in this section, and so we omit
noting it explicitly throughout the paper.

As a first step, the following lemma will establish a link
between the variance–covariance matrix of the detail coeffi-
cients and the (sample) autocovariance matrix of the initial
LSW process at the observed time points. The proof of this
lemma and subsequent results in this section can be found
in Appendix A.
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Lemma 5.1 Under the previous notation, the following re-
lation holds: for anyα, β ∈ 1,m, i, i′ ∈ 1, n ,

cov(dαti,T , d
β
ti′ ,T

|IS = 1, IS̄ = 0) =

n
∑

j=1

n
∑

j′=1

rαi,j cov(Xtj ,T , Xtj′ ,T
|IS = 1, IS̄ = 0)rβi′,j′ .

(11)

We have expressed the detail coefficient covariance as
a linear combination ofsampleautocovariances of the ini-
tial process(Xt,T )t∈0,T−1 involving only the observed lo-
cations. We now extend this relation to express it in terms of
the local autocovariance of the process.

Proposition 5.2 For anyα, β ∈ 1,m, i, i′ ∈ 1, n , we have

cov(dαti,T , d
β
ti′ ,T

|IS = 1, IS̄ = 0) =

n
∑

j=1

n
∑

j′=1

rαi,jc

(

tj

T
, tj′ − tj

)

r
β
i′,j′ + R̃T , (12)

whereR̃T is a term of orderO(T−1).

Using the definition of the local autocovariance and equa-
tion (12), we can obtain an expression of the detail coeffi-
cient covariance in terms of the EWS of the LSW process,
{Sl(· )}l, and the discrete autocorrelation wavelets{Ψl(· )}l
of Nason et al (2000) introduced in Section 2.2.

More exactly, by substituting the local autocovariance
c(z, τ) =

∑−1
l=−∞ Sl(z)Ψl(τ) from equation (3) in equation

(12), we obtain, for anyα, β ∈ 1,m, i, i′ ∈ 1, n ,

cov(dαti,T , d
β
ti′ ,T

|IS = 1, IS̄ = 0) =

−1
∑

l=−∞

n
∑

j=1

n
∑

j′=1

rαi,jr
β
i′,j′Ψl(tj − tj′ )Sl

(

tj

T

)

+ R̃T . (13)

In the above formula we used the symmetry around0 of
{Ψl(· )}l.

Fryźlewicz (2003) observes that in order to achieve the
convergence of the autocovariancecT (· , · ) (established in
proposition 1 of Nason et al (2000)), the ‘tail’ of the se-
quence{Sj(· )}j≤−1 needs to be controlled. An approach to
this would be to allow non-zero contributions to{Sj(· )}j≤−1

only from levels sayj ∈ {−J ′, . . . ,−1} for a large enough
J ′, which would in turn mean thatlwould have a finite range
in the above formula (and therefore also in the subsequent
ones).

Equation (13) links the detail coefficient variances, and
implicitly, E(dαti,Td

β
ti′ ,T

|IS = 1, IS̄ = 0), to the (unknown)

wavelet spectrum at the observed time points,{Sl(
tj
T
)}l,j ,

involving only tractable coefficients. We shall now re-write
the previous expression in (13) in terms of this expectation.

Proposition 5.3 For anyα, β ∈ 1,m, i, i′ ∈ 1, n , we have

E(dαti,Td
β
ti′ ,T

|IS = 1, IS̄ = 0) =

−1
∑

l=−∞

n
∑

j=1

n
∑

j′=1

rαi,jr
β
i′,j′Ψl(tj − tj′ )Sl

(

tj

T

)

+ R̃T , (14)

whereR̃T is a term of magnitudeO(T−1).

We can now obtain the expectation of the smoothed squared
details,E(f̂tk,T (l

i)|IS = 1, IS̄ = 0), which will give us
an insight into the relationship between our proposed peri-
odogram and the wavelet spectrum of the process.

Theorem 5.4 For the wavelet periodogram estimatorsf̂tk,T (· )
constructed in (9), and for alli ∈ 1, J∗, k ∈ 1, n the fol-
lowing relation holds:

E(f̂tk,T (l
i)|IS = 1, IS̄ = 0) = Trace(Ali,kST ) + R̃∗

T ,

(15)

where

R̃∗
T = O(T−1),

S = (Sl,j)l≤−1,j∈1,n with Sl,j = Sl(
tj
T
),

Ali,k = (al
i,k
l,j )l≤−1,j∈1,n with

a
li,k
l,j =

∑n

j′=1

{

∑m

α=1Kα(l
i)rαk,jr

α
k,j′

}

Ψl(tj − tj′) and

{Kα(· )}α are as defined in equation (9).

The result in the previous theorem corresponds to (7) in
the development of Nason et al (2000). However, recall that
our result is conditional on the time locations correspond-
ing to the observations on the process being fixed, and on
ignoring the randomness in the lifting trajectories. For fur-
ther work, it would be interesting to try and eliminate these
restrictions, as well as rigorously set a framework in which
to investigate the asymptotic behaviour of our estimator.

Equation (15) shows that our proposed ‘raw’ periodogram
is not an unbiased estimator for the wavelet spectrum, and it
therefore needs correction. This does not come as a surprise,
given the similar result that follows from (7) for the simpler
case of observing a LSW process with no missing observa-
tions. Formula (15) also highlights that the used smoother
will influence the amount of bias.

5.2 Periodogram correction

In this section we discuss the computational issues and im-
plications arising from missing data when estimating the
wavelet spectrum of a LSW process, and the challenge is
to work towards correcting the proposed raw periodogram
in the missing data setting.

Relation (15) indicates a way for proposing a better esti-
mator (than the raw periodogram) for the spectrum matrixS
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curtailed down toJ(T ) rows,S = (Sl(
tj
T
))

l∈−J(T ),−1,j∈1,n
.

To achieve this, we shall first re-write the unknown spectrum
valuesS into vector format,

s̃ = ((S−1,j)j∈1,n | · · · | (S−J(T ),j)j∈1,n) ∈ M1,J(T )×n.

On the same principle as above, let us put each matrix
Ali,k into vector format, as follows

ãl
i,k = ((al

i,k
−1,j)j∈1,n | (al

i,k
−2,j)j∈1,n | · · · | (al

i,k

−J(T ),j)j∈1,n),

where for eachl ∈ −J(T ),−1, (al
i,k
l,j )j∈1,n is ann-dimensional

row vector, and hencẽal
i,k ∈ M1,J(T )×n, ∀k ∈ 1, n, ∀i ∈

1, J∗. For each observed pointtk, i.e. for eachk ∈ 1, n,
define the associated matrix

Ãk =











ãl
1,k

ãl
2,k

· · ·

ãl
J∗

,k











∈ MJ∗,J(T )×n.

Similarly, also define for eachk ∈ 1, n ,

f̂
k
= (f̂tk,T (l

1), f̂tk,T (l
2), . . . , f̂tk,T (l

J∗

)) ∈ M1,J∗ .

In this notation, an estimator for the vector of wavelet
spectrum values corresponding to the observed locations,
s̃, can be obtained by solving the following system with
J(T )× n unknowns andJ∗ × n equations









Ã1

Ã2

· · ·

Ãn









s̃T =











(f̂
1
)T

(f̂
2
)T

· · ·

(f̂
n
)T











. (16)

Solving this large system of equations in equation (16)
can obviously be computationally intensive. Upon investiga-
tion of theA-matrices structure, they exhibit a sparse struc-
ture: forAli,k, only those columns corresponding to neigh-
bouring time points oftk are non-zero (see Figure 10).

In order to take advantage of this sparsity, we rearrange

theA-matrices into matricesBj,k = (bl
i,l
j,k = a

li,k
l,j )i∈1,J∗,l∈1,J ,

to obtain

E(f̂
k
) ∼
∑

j s.t.tj∈Vtk

Bj,kS·,j , (17)

whereVtk is a neighbourhood of the time pointtk. For fixed
tk, theBj,k-matrices are non-zero only for those time points
tj that are aroundtk. Due to the reduction in the size of the
system, we also reduce computational costs.

Nason et al (2000) note that wavelet periodograms ex-
hibit ‘power leakage’ from fine to coarser scales, also ex-
hibited in our raw periodograms (see Figure 5). Hence we
formulate a set ofpenalizedlinear least squares problems
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Fig. 10 Example of an A matrix. Darker pixels correspond to higher
values.

(with inequality constraints) in order to estimateS using the
formulation (17).

More exactly, for each time pointtk we solve

min

{

∥

∥

∥f̂
k
−
∑

j s.t.tj∈Vtk

Bj,kS·,j

∥

∥

∥

2

+

−1
∑

l=−J(T )

2−(l+1)(λ‖S′′
l ‖

2+µ‖Sl‖
2)

}

to estimate the unknown spectrum values, subject toS[, tj ] ≥

0, whereλ, µ ∈ R are unknown constants. This penalization
criterion incorporates a cost for high power at coarse scales
as well as a smoothness constraint for spectral content over
time at particular scales.

For computational reasons, we take the neighbourhood
Vtk to be small in practice, e.g.j ∈ {k − 1, k, k + 1}. This
represents a narrow (vertical) strip around the point of inter-
est.

The solution to the penalized linear least squares prob-
lem above is our proposedcorrectedperiodogram that esti-
mates the evolutionary wavelet spectrum,S.

Since the penalized least squares correction employs a
search for values over the time series, it is essentially look-
ing for J x n best fitting (real) spectrum values subject to a
convergence tolerance. This means that the correction could
potentially find spectral solutions which look quite differ-
ent on separate implementations of the search. However, we
have found that the spectral estimates resulting from the pe-
nalized least squares correction seem to be more stable as
long as the weightµ is chosen to be non-zero. The norm
weightsλ andµ can also be incorporated in the optimiza-
tion search.

For time series of increasing length, the number of scales
also increases, and so the number of real values to find grows
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across time as well as scale asn increases. Hence the cor-
rected spectrum search increases dramatically in computa-
tional cost and time.

We also note that the penalized correction used above
can be applicable to irregular time series generally, by map-
ping the irregular time structure to the regular time series
with missing observations framework.

5.3 Example

As a demonstration of this method of correction for the pro-
posed periodogram from Section 3.2.3, let us consider a wavelet
spectrum characterized by a fine-level burst (Figure 11). As
with the example in Section 4, we simulate a LSW process
from the spectrum, and then remove a number of observa-
tions, forming a time series from which we hope to estimate
the original spectrum (shown in the top-right of Figure 11).

The raw periodogram of Section 3.2.3 was obtained by
using the algorithm from the flowchart (Figure 2) on the time
series with missing observations, by usingm = 1000 trajec-
tories in the NLT. The resulting periodogram (bottom-left)
shows a well-defined power burst (in terms of time) at the
location of the burst in the original spectrum, but also ex-
hibits apparent power leakage across the finer scales.

The penalized spectral search algorithm of Section 5.2
was then applied to the raw periodogram to form a corrected
spectrum estimate (bottom-right of Figure 11). The edges
of the burst are still well-defined, but the penalized criterion
has successfully removed a lot of bias and power leakage
from our raw periodogram.

6 Conclusions and further work

In this article we have addressed the problem of spectral es-
timation for a non-stationary process that exhibits missing
observations, a problem which so far has not been addressed
in the literature. Non-stationarity was understood here aslo-
cal stationarity, and the wavelet model introduced by Na-
son et al (2000) was adopted. Second generation wavelet
methods constructed by means of the lifting scheme that
‘removes one coefficient at a time’ (Jansen et al, 2001) were
employed, due to their flexibility of working with irregularly-
spaced data not necessarily of a dyadic length. In this con-
text a ‘nondecimated’ lifting transform (Knight and Nason,
2009) was used to ensure that a set of empirical wavelet co-
efficients is available at each (observed) time location through-
out a continuous distribution of scales. Exploiting the flexi-
bility behind the continuous nature of scale in second gener-
ation wavelet approaches, we proposed a ‘raw’ periodogram
for estimating the wavelet spectrum at the (rescaled) ob-
served locations. We presented two sets of examples from

environmental and medical time series that show the util-
ity of our approach in obtaining local spectral information
from locally stationary time series which suffer from miss-
ing data. In both cases we were able to elicit frequencies at
which significant power existed and, in the case of the envi-
ronmental series, agree with the current accepted knowledge
in the field.

Theoretically, we showed that the periodogram is not an
unbiased estimator for the evolutionary wavelet spectrum,
and have also explored initial work towards a corrected pe-
riodogram through using a penalized criterion on the spec-
trum. However, our approach is highly computationally in-
tensive.

For the future, it would be interesting to further investi-
gate the properties of the corresponding estimator, as wellas
its asymptotic behaviour. Also, to this moment we have not
explored the possible advantages of using theadaptivelift-
ing of Nunes et al (2006) in our development, which would
give our method the potential of not having to choose the
wavelet basis a priori.

An existing challenge is to set up a locally stationary
wavelet type model that would directly handle the problem
of correcting the periodogram for irregular data.

Finally we note that the methods and ideas presented in
this paper of using nondecimated lifting for spectral analysis
can be readily generalized to multidimensional settings, for
example, by modifying the Voronoi polygon- or tree-based
lifting transforms introduced in Jansen et al (2009). The use
of nondecimated lifting techniques similar to those in this
article for multivariate time series is an interesting avenue
of research and initial work in this area seems promising
(see Sanderson (2010)).
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A Proofs

This appendix gives the proofs of the results from Section 5.1, follow-
ing the notation outlined in the text.
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Fig. 11 Top left: Wavelet spectrum – finest scale on bottom. Top right: Simulated LSW process of length 64 with 4 observations deemed missing.
Bottom left: (Uncorrected) proposed raw periodogram. Bottom right: penalized linear least squares estimate ofS (with λ = µ = 35).

A.1 Proof of Lemma 5.1

For anyα, β ∈ 1,m, let us denote

Σα,T = var((dα,T )T |IS = 1, I
S̄

= 0, fixed paths) ∈ Mn,n.

Aα,β,T = cov((dα,T )T , (dβ,T )T |IS = 1, I
S̄

= 0, fixed paths) ∈ Mn,n.

The variance–covariance matrix of the vector(dα,T , dβ,T )T ∈
M2n,1 thus takes the form

var

((

(dα,T )T

(dβ,T )T

)

|IS = 1, I
S̄

= 0, fixed paths
)

=

(

Σα,T Aα,β,T

(Aα,β,T )T Σβ,T

)

. (18)

Since(dα,T )T = Rα((Xti,T )i∈1,n)
T for α ∈ 1, m, it follows

that for anyα, β ∈ 1,m we have

(

(dα,T )T

(dβ,T )T

)

=

(

Rα

Rβ

)

((Xti,T )i∈1,n)
T .

Hence

var

((

(dα,T )T

(dβ,T )T

)

|IS = 1, I
S̄

= 0, fixed paths
)

=

(

RαΣ(T )(Rα)T RαΣ(T )(Rβ)T

RβΣ(T )(Rα)T RβΣ(T )(Rβ)T

)

, (19)

where

Σ(T ) = var(((Xti,T )i∈1,n)
T |IS = 1, I

S̄
= 0) = (σj,k;T )j,k∈1,n

is the (symmetric) variance-covariance matrix of the observed signal
(with missing observations), having assumed that the missing points
are deterministic rather than random quantities.

Using relation (18), we obtain

Σα,T = RαΣ(T )(Rα)T , ∀α ∈ 1, m, (20)

Aα,β,T = RαΣ(T )(Rβ)T , ∀α, β ∈ 1, m. (21)

Written explicitly, equation (21) takes the form

cov(dαti,T , d
β
ti′ ,T

|IS = 1, I
S̄

= 0, fixed paths) =

n
∑

j=1

n
∑

j′=1

rαi,j cov(Xtj ,T ,Xtj′ ,T
|IS = 1, I

S̄
= 0)rβ

i′,j′
,

for anyα, β ∈ 1, m, i, i′ ∈ 1, n.

A.2 Proof of Proposition 5.2

If we let zj =
tj
T

∈ (0, 1), then the process autocovariance can be
written as

cov(Xtj ,T ,Xtj′ ,T
|IS = 1, I

S̄
= 0) =

cov(X⌊zjT⌋,X⌊zjT⌋+(t
j′

−tj)
|IS = 1, I

S̄
= 0).

Therefore, we can write

cov(Xtj ,T , Xtj′ ,T
|IS = 1, I

S̄
= 0) = cT (

tj

T
, tj′ − tj), (22)
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wherecT (· , · ) is the autocovariance of the LSW process(Xt,T )
t∈0,T−1,

introduced in Section 2.2, and we assume the conditioning still holds.
From the result in Lemma 5.1 and equation (22), we obtain

cov(dαti,T , d
β
ti′ ,T

|IS = 1, I
S̄

= 0, fixed paths) =

n
∑

j=1

n
∑

j′=1

rαi,jcT (
tj

T
, tj′ − tj)r

β

i′,j′
.

Nason et al (2000) proved that the process autocovariance and lo-
cal autocovariance functions are linked through the relationcT (z, τ) =
c(z, τ) + RT , for any rescaled time locationz and lagτ , whereRT is
a term of magnitudeO(T−1). From the above relation, the following
becomes apparent:

cov(dαti,T , d
β
ti′ ,T

|IS = 1, I
S̄

= 0, fixed paths) =

n
∑

j=1

n
∑

j′=1

rαi,jc(
tj

T
, tj′ − tj)r

β

i′,j′
+

n
∑

j=1

n
∑

j′=1

rαi,jRT r
β

i′,j′
,

for anyα, β ∈ 1, m, i, i′ ∈ 1, n.

Let us denote

R̃T = RT

n
∑

j=1

n
∑

j′=1

rαi,jr
β

i′,j′
= RT

n
∑

j=1

rαi,j

n
∑

j′=1

r
β

i′,j′
.

Since matrices associated to a LOCAAT lifting transform have a
sparse character, for a fixedi the sums of the type

∑n
j=1 r

α
i,j only in-

volve a finite number of elements, independent of the magnitude ofn.
If more data is collected, then there is a chance that the new observa-
tions will be involved in

∑n
j=1 r

α
i,j for a fixedi, but the combination

will still be sparse, and so
∑n

j=1 r
α
i,j := Cα < ∞. AsRT = O(T−1),

it follows that∃ k < ∞ such that|R̃T | ≤ kT−1CαCβ < ∞, soR̃T

also has magnitudeO(T−1).

A.3 Proof of Proposition 5.3

In the LSW model, the sequence of processes(Xt,T )
t∈0,T−1, is as-

sumed to have zero mean, i.e.E(Xt,T ) = 0, ∀t ∈ 0, T − 1, ∀T .
Since

E(dαti,T d
β
ti′ ,T

) = cov(dαti,T , d
β
ti′ ,T

) + E(dαti,T )E(dβ
ti′ ,T

)

and from formula (13)

E(dαti,T |IS = 1, I
S̄

= 0, fixed paths) =
n
∑

j=1

rαi,jE(Xtj ,T ),

we obtain the desired equation.

A.4 Proof of Theorem 5.4

Sincef̂tk,T (li) =
∑m

α=1 Kα(li)(dαtk,T
)2, ∀i ∈ 1, J∗, ∀k ∈ 1, n, it

follows that

E(f̂tk,T (li)|IS = 1, I
S̄

= 0, fixed paths) =
m
∑

α=1

Kα(l
i)E((dαtk,T

2)|IS = 1, I
S̄

= 0, fixed paths).

By takingα = β and i = i′ := k in (14), E(f̂tk,T (li)|IS =
1, I

S̄
= 0, fixed paths) can be expressed as

m
∑

α=1

Kα(l
i)







−1
∑

l=−∞

n
∑

j=1

n
∑

j′=1

rαk,jr
α
k,j′Ψl(tj − tj′ )Sl(

tj

T
) + R̃T







=

−1
∑

l=−∞

n
∑

j=1





n
∑

j′=1

{

m
∑

α=1

Kα(l
i)rαk,jr

α
k,j′

}

Ψl(tj − tj′ )



Sl(
tj

T
)

+R̃T

m
∑

α=1

Kα(l
i), (23)

∀i ∈ 1, J∗, ∀k ∈ 1, n.

As a
li,k
l,j

=
∑n

j′=1

{

∑m
α=1 Kα(li)rαk,jr

α
k,j′

}

Ψl(tj − tj′ ), the

above equation can be equivalently written as

E(f̂tk,T (li)|IS = 1, I
S̄

= 0, fixed paths) =
−1
∑

l=−∞

n
∑

j=1

a
li,k

l,j
Sl(

tj

T
) + R̃T

m
∑

α=1

Kα(l
i). (24)

Therefore

E(f̂tk,T (li)|IS = 1, I
S̄

= 0, fixed paths)

=

−1
∑

l=−∞

(Ali,kST )l,l + R̃T

m
∑

α=1

Kα(l
i)

= Trace(Ali,kST ) + R̃T

∑m
α=1 Kα(li).

Observe that in order to obtain(Ali,kST )l,l for a fixed timetk and
scaleli, only the terms corresponding to time locationstj , tj′ such that
(tj − tj′ ) does not exceed the support of the autocorrelation wavelet
Ψl(· ) are contributing to the sum.

Let us denoteR̃∗
T = R̃T

∑m
α=1 Kα(li). For finitem, R̃∗

T has
magnitudeO(T−1) asR̃T has magnitudeO(T−1) from the previous
proposition.
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