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Abstract Time series arising in practice often have an in-generation wavelets built by means of the lifting scheme

herently irregular sampling structure or missing valueatt (Sweldens, 1995), designed to cope with irregular data. We

can arise for example due to a faulty measuring device anvestigate the theoretical properties of our proposed pe-

complex time-dependent nature. Spectral decomposition afodogram, and show that it can be smoothed to produce

time series is a traditionally useful tool for data variabil a bias-corrected spectral estimate by adopting a penalized

ity analysis. However, existing methods for spectral estim least squares criterion. We demonstrate our method with rea

tion often assume a regularly-sampled time series, or requi data and simulated examples.

modifications to cope with irregular or ‘gappy’ data. Addi-

tlonally,.many technlques also.as.sume that the time Serlqgeywords missing data nondecimated transform

are stationary, which in the majority of cases is demonstra- L -
. . . . spectral estimationwavelet lifting

bly not appropriate. This article addresses the topic of-spe

tral estimation of a non-stationary time series sampletl wit

missing data. The time series is modelled as a locally star |ntroduction

tionary wavelet process in the sense introduced by Nason

et al (2000) and its realization is assumed to feature missrhe importance of spectral densities for stochastic psE=es
ing observations. Our work proposes an estimator (the peind the usefulness of their estimation is well established i
riodogram) for the process wavelet spectrum, which copeghe time series analysis literature. In this article, weiass
with the missing data whilst relaxing the strong assumptior pasic knowledge of general time series concepts, but em-
of stationarity. At the centre of our construction are secon phasize important results where needed.

For stationary processes, the question of spectral estima-
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for instance a whole sequence of data might be missing duén wavelets built following the lifting scheme (Sweldens
to a malfunction of the machine recording the observationsl995), that removes ‘one coefficient at a time’ (LOCAAT)
the data may be censored, observations may be missing lay Jansen et al (2001, 2009) and used extensively in Nunes
random or follow a systematic pattern. The existence of-misgt al (2006) and Knight and Nason (2006).
ing observations induces irregularities in the time lamadi This article is organized as follows. Section 2 briefly in-
while certain types of data naturally have irregularlycgrh  troduces (stationary) time series and outline ways of mod-
observations, such as environmental time series (Witt andlling time series data without imposing the strong assump-
Schumann, 2005; Dilmaghani et al, 2007) or “high-frequéndjon of stationarity. We discuss the concept of rescale@ tim
financial data (Engle, 2000). In this context, data analysisntroduced by Dahlhaus (1997), and then present the main
cannot take place within the well-specified framework de+esults in the construction of a spectral estimator forllgca
voted to discrete time series measured at equal time intestationary wavelet (LSW) processes of Nason et al (2000).
vals. Quite commonly, when missing observations are ptese®ection 3 details our wavelet periodogram for a LSW pro-
in the data, they are imputed following various recommen<esswith missing observation3 he missing data is handled
dations, for example by ‘common sense’, or some compuby using a generalized wavelet transform, knowriftisg
tations may be performed on the ‘gappy’ data (for more deand introduce the LOCAAT algorithm of Jansen et al (2001)
tails, see e.g. Chatfield (2004)). Traditional spectrahest and set out the ‘nondecimated’ lifting transform (NLT) of
tion methods can then be performed on the ‘complete’ tim&night and Nason (2009). We then provide a series of both
series. actual and simulated data examples in Section 4. Section 5
Methods for autocovariance and spectral estimation folnvestigates the raw periodogram and proposes a penalty cri
stochastic processes sampled at irregular locations fesre b terion for removing its inherent bias and ‘power leakage’.
developed (Hall et al, 1994; Bos et al, 2002). Some spectratection 6 concludes and outlines ideas for further work.
estimation techniques involve mapping the inherent irreg-
ular structl_Jre of time series so that regularly-spaced-spe% Spectral estimation for locally stationary time series
tral analysis can be performed, for example through sam-
pling (Cli_nger and Van Ne_ss, 1976; Broersen, 2008). _Fo&_1 Locally stationary time series
an overview of preprocessing methods for spectral estima-

tion of irregular time series that parallel approachestboil -\, orer 1o be able to make inferences on the characteris-
regularly-spaced data, see Stoica and Sandgren (2006). TRes of 4 time series (such as its variance or autocovariance
authors of this work underline the limited choice of SpdC"afunction), certain assumptions must be imposed on its evo-
analysis techniques for irregularly-sampled data, and eMgion. Most often, the process is assumed to be such that if
phasize the large number of fields that could benefit fromye givide any of its realizations into smaller sectionsnthe
it, such as biomedicine, astronomy, seismology or engineeg,ch section looks much like any other section of that real-
Ing. ization, i.e. the statistical properties of the time sediesiot
Models specifically developed for time series with miss-change with time. Such processes are called (strictly) sta-
ing data and their use for spectral estimation have been diﬁonary time Series’ and many excellent monographs are en-
cussed in the literature (Broersen et al, 2004; Broersed6R0 tirely devoted to studying them — see, for instance, Pegstl
Mondal and Percival (2008) formulate unbiased spectral e§1981), Chatfield (2004) or Brockwell and Davis (2009).
timators assuming wavelet models of stationary time series \We emphasize that, in practice, it is not always reason-
and also investigate their asymptotic properties. If thesmi  able to assume that time series are stationary. Howeves, onc
ing observations occur with a periodic structure, Jone8Z)9 the stationarity assumption is dropped, other assumptions
provides a development for spectral estimation of a stationthe process, although less restrictive, still have to besep
ary time series. in order to be able to make inferences on the process char-
The current existing techniques in the literature of non-acteristics, such as its evolving variance or autocovagan
stationary time series do not easily extend to handle iteggu structure.
data observations or missing data, as the constructions for Throughout this article we shall concentrate on trend-
missing data situations outlined above are only validstar ~ free processes with a second order structure that varie$yslo
tionarytime series. Hence the focus in this article is to inveswith time. Such time series appear to have a stationary be-
tigate the problem of spectral estimation for a non-statign haviour over short stretches of time and so are cadiedlly
process with missing observations. In our approach, norstationary(Dahlhaus, 1997; Nason and Von Sachs, 1999).
stationarity is defined in the sense introduced by Nason et al Dahlhaus (1997) introduced a new concept of rescaled
(2000) and our construction will make use of a ‘nondeci-time to provide a framework with which asymptotic process
mated’ wavelet algorithm introduced in Knight and Nasoninference could be made: controlling the evolution of the in
(2009). At the core of our construction are second generadividual amplitudes of the locally stationary process tigio



a function dependent on rescaled time ensures that itsstati  The LSW process defined above has an assoceted

tical characteristics, e.g. the autocovariance functiothe  lutionary wavelet spectrufEWS) {.S; (- )}j I =1 that
process spectral density, can be (locally) estimated by poocan be defined by '
ing the observed data over the regions of local stationarity .

Sj(2) = [W;(2)]* = lim_oo|wy, )0, )

wherez € (0,1) and|2T| denotes the largest integer not
2.2 Locally stationary wavelet (LSW) processes exceeding:T'. The spectrum quantifies the contribution to
the process variance made at locaticend scalg.
Wavelets have been so far used for a wide variety of prob-  For fixedT', the autocovariance of the procés§ r), g7
lems that arise in time series analysis. For a review of te usjepends both on the lag and on the rescaled time location,
of wavelets for time series analysis, see Nason and Von Sachsand it is denoted byr(z,7) = cov(X o7 |, X o7 4)-
(1999) or the comprehensive monograph by Percival anflason et al (2000) show that the autocovariance function
Walden (2000). cr(-,-) tends to an (asymptotic) local autocovariange - ):
Due to their nature, wavelets deliver a time—scale repreqer (2, 7) — ¢(z,7)| = O(T '), wherec(z, 7) is defined in
sentation, complementary to the time—frequency inteapret the following.
tion that arises from a Fourier analysis and so the classical
Fourier spectral analysis can be complemented by a wavelBtefinition 2.2 The local autocovariance (LACV) function

spectral analysis. of a LSW process defined in Definition 2.1 is given by
This article builds upon the work of Nason et al (2000), 1
who proposed a new way to model time series with a timez(, ) = Z S;(2)%;(7), 3)

dependent second order structure, based on the concept of
rescaled time of Dahlhaus (1997) and a family of discrete L, 14min{o.r}
. . Jj— 5T 1

nondecimated wavelefss; «(t)},,x, which replaces the set Wherew;(r) = > .7 o oy ¢5k(0)¢k(r), T € Zis
of sine and cosine waves in traditional Fourier analysis. Inthe discrete autocorrelation wavelet at scgle
stead of assuming a stationary process behaviour, their pro
cess is assumed to have a stationary chardatadly, by
constraining the model coefficients to change §Iowly Wlthmance, and vice versa (Nason et al (2000)).
each scale. The authors refer to processes built as above un- : .

. The linear independence of the fam{ly; (- )};<_1 en-
der the name of locally stationary wavelet (LSW) processes, =

) . : sures the invertibility of the covariance—spectrum regmnes
In what follows we give the main points of the formal ___. y P

j=—0c0

Although representation (1) of a LSW process is not
unique, the EWS is unique in terms of the local autocovari-

tion:
definition of a LSW process, and the interested reader car‘?I on .
refer to Nason et al (2000) for the complete definition. - _
(2000 P 0= 3 4 (Tetermen). @
l=—00 T

Definition 2.1 A sequence of stochastic processes

{Xi.1}eor=1 T = 271 is a zero-mean LSW process if it whereA; ' = (Aj_,ll)j,lem is the inverse of the ma-

admits the following representation trix A previously introduced (Nason et al, 2000). Formu-

lae (3) and (4) are the analogues of the Fourier pair relation

ship between classical spectrum and autocovariance.

Xer= Y > wikrtr()én, (1) If S;(2) denotes a spectrum estimator, then by taking
J==J(T) kel &(z,7m) = 32 iy S;(2)¥;(7) we obtain an estimator for

whered; x (1) is a nondecimated discrete wavelet at sgale (%, 7)- For certain choices of;(z), the estimator(z,7)
and locationk, w; ;.7 is its corresponding amplitude and €Njoys good properties, such as consistency (see Prapositi

variables. behaved estimator for the wavelet spectrum.

-1

Within each scalg, the evolution of the amplitudes
{wj ;1 }eo 71 is regulated by the Lipschitz continuous

_ ) ) 2.3 Spectral estimation for LSW processes
function; (- ), defined for rescaled time= £.

. Nason et al (2000) introduced thevelet periodogram of a
Note that we (somewhat abusively) refer to the non—randorESW proceséX, 1), s (constructed with respectto the
s €0,T—

component of the building block coefficients under the name . - . .
ondecimated discrete wavelet famifyy; ..(¢)}, iven
of amplitudes. The function§iW;(- )}, control the degree int)}in) O

of local stationarity of the process by forcing the ampléad ~
{w; k;7}1 to vary slowly within each level. Ilr= & s (5)



whered; ;7 = ZtT:’Ol X1 1(t) is the empirical wavelet Let us denote the set of time points corresponding to

coefficient at scalg and locatiork. observations on the process BY = {t1,t2,...,tn} C
Forz € (0,1), let us denote the (vector) wavelet pe- {0,1,...,7 — 1}. We will use the notatiod s~ for the vector

riodogram byl (z) = (IszJ,T)jGW' Similarly, the  of (I, I1,,...,I;,), and similarlyl ; = (I;),c .~ for the

(vector) evolutionary wavelet spectrum is denotedlby) =  set of missing time points, wher = {0,1,...,T—1}\.7.
(S;(2)) eI =T For a future asymptotic theory to make sense, the ele-
Nason et al (2000) show that ments of¥ cannot be constrained to belong to a fixed inter-
val, and their number must increase with see Hall et al
E(Lr(2)) = As8(z) + O(T™), z € (0,1), (6)  (1994). To reflect this we shall modst as follows. We
which implies forz = % defineT _independgnt identically distributed Bernoulli ran-
dom variables which model the appearance of each time
point for eacht € 0,7 — 1, say, I, ~ Bernoulli(p) by
E(I] ;) e Z Aj,le ( ) +0(T71). (7)  which we mean that each time point has probability-(p)
I=—J(T of being missing. In this setting, the number of observa-
Hence the expected value of the wavelet periodogra ons on tg(ilprocess,_that s, the ”””_‘ber of elgmem%“m
S| =3y I+ = n,is arandom variable ~ Bin(7, p).

is (asymptotically) a linear combination of wavelet spactr
and Nason et al (2000) propose usingoarected vector of
periodogramsL(z) = ; for estimating
S(z):

Therefore, the number of observations is in fact a function
of T, n(T), but to avoid notational clutter we denote it by
throughout the paper.

For a LSW process, defined as a sequence of stochastic
L(z) = AjllT(Z)- processes (see Definition 2.1), there are two ways in which

the locations of the missing values can arise for differait v

Relation (6) shows thal(z) is asymptotically an unbiased yes of7" — we can either assume that the locations change
estimator for the evolutionary wavelet spectrusifz) for  with 7', or that the missing time locations corresponding to
all z € (0, 1). However, Nason et al (2000) show tiat(z)  the smallefT” are fixed. These issues need to be further con-
has an asymptotically non-vanishing variance, so it is noidered for an asymptotic development. Throughout the pa-
a consistent estimator for the wavelet spectrum. To obtaiper we will be working conditional on the time locations
consistency,I/_;., . will be first smoothed as a function corresponding to observations on the process being fixed. In
of z within each scalg. Then correction with4;' of the  other words, we will assume that in practice we have avail-
smoothedl -(z) will provide a wavelet spectrum estima- able information at the locations{,, ..., t, and we ignore
tor, (S‘j(z))jem. For properties of this estimator, the the random character of these locations.
reader is referred to Nason et al (2000).

(Llary 1) je=iim =

o ) o 3.2 Wavelet periodogram in the missing data setting
3 Spectral estimation for LSW processes with missing

observations The methodology of Nason et al (2000) for estimation of the
process characteristics of interest (such as the EWS or the
We now derive an estimate for the evolutlonarywaveletspeq_ACV) centres on obtaining the wavelet periodogram (de-
trum, when the observed LSW process features missing olg,a4 by equation (5)) by computing the nondecimated em-
servations. pirical wavelet coefficientd; ;. at each scalg and loca-
tion k. Itis clear that these classical wavelet formulae cannot
be directly applied in the context of missing data. For this
reason, we propose using a wavelet decomposition based on
second generation wavelets, able to deal with irregularly-
spaced data and hence able to produce empirical wavelet
coefficients (details) at the observed time points.

3.1 LSW processes with missing observations

Assume that for som& we observe X r), 57—, where
X admits the representation from Definition 2.1,

X = w , o

T = N ; k% 35k (D)5 k 3.2.1 The lifting scheme (LOCAAT)
but unlike before, we do not have an observed valiye-  Second generation wavelets are essentially a generalizati
for eacht € 0,7 — 1, i.e we start with a realization of a of ‘classical’ wavelets, designed to cope with irregular se
LSW process which features missing observations: at soméegs or with data that is not of a dyadic length. Our ap-
time points we do not have the correspondifigalues. proach uses wavelets constructed via the lifting schente tha



‘removes one coefficient at a time’ (LOCAAT) of Jansen
et al (2001), and explored in Nunes et al (2006).
Briefly, the aim of the lifting scheme is to transform a

function sampled at irregularly-spaced locations (which a1 t2 t3 4 ts te
we denote by (z;, fi)};c15) into a set of sayL. scaling and 1

t3

(n— L) wavelet coefficients, wherg is the desired primary
resolution level. The algorithm is usually representeddsy r
cursively applying three stepsplit, predictandupdate
Thesplit step consists in choosing a point to be removed, 4 to ta ts ts
and essentially Jansen et al (2001) propose to remove points D ——
in an order dictated by the-configuration: those points cor- 2,
responding to denser areas are removed first, and further
steps generate detail in progressively coarser areas.I&ach
cation is therefore associated with an interval which it in-
tuitively ‘spans’: the shorter the interval, the more déyse 1 i3 ts l6
sampled the area around the location is. 3
The value of the functionf{) is then predictedat the ’
point selected for removal based on regression over ithneig
bourhood, and the prediction error will be tHetail coeffi-

cientcorresponding to that location.
~ : . .. Fig. 1 Relationship between scale and order of point removal in the
In theupdatestep, thef-values of the neighbouring pOIntSmodified LOCAAT lifting algorithm. Topts (X) is the first point to be

are updated by using a linear combination with the detail COrifred. The scale associated to the detail coefficigtis shown below
efficient, such that the mean signal stays the same throughi}, ). Middle: t5 is lifted after pointt,. Part of the interval corre-
out the algorithm application. At this stage the lengthdief t sponding to, is redistributed to its neighbours and so the associated
intervals associated to the neighbouring points also get ugcalelz, for 7, increases. Bottont; is removed after both, andts.

n this situation, the detail coefficienf, has a large scalg, associ-

dated in order to account for the decreasing number of sca ied to it. By varying the order of poiit removal during the CAAT

ing points that remain to ‘span’ the interval and accordingl aigorithm, the nondecimated lifting transform (NLT) is @bt generate
scale now has a continuous character. Jansen et al (200dyltiple detail coefficients for each location with diffeteassociated

2004) propose an artificial split into levels to mimick dis- scales.
crete scales from the classical wavelet setting, where each
point uniquely corresponds to a scale.

In summary, the lifting scheme produces exactly one de-
tail coefficient at each observedpoint, which is in turn
associated to one (artificial) scale.

The NLT approach of Knight and Nason (2009) allows
for full flexibility in choosing the order of obtaining the de
tail coefficients. The LOCAAT transform is modified to ac-
commodate aandomorder of generating the wavelet coef-
ficients, while the prediction and update steps are left un-
changed. This transform is then repeatedly applied, every

A nondecimated transform in the lifting ‘one coefficient at time following a differ(?nt order of _remov_in_g the points, and
atime’ context was introduced in Knight and Nason (2009)consequently generating the detail coefficients. A ‘largeLgh’
who proposed a technique that produces a set of wavelet cgaMPle Of these permutations ensures that a distribution of
efficients associated to eaehocation, at various artificial the (.ampmc.al wavalet coefficients associated to each loca-
scales. This is known as the nondecimated lifting transforn{On iS obtained.
(NLT) fqr irregularly-spaced data and replaces the nondeci Let us now formalize the NLT approach. Thebserved
mation in the classical, regularly spaced context. time pointsty, ..., t,, can be arranged in (ordered) vectors of
Simply put, the application of the LOCAAT wavelet al- |engthy, in n! ways. Out of this sample space, we randomly

gorithm of Jansen et al (2001) transforms an irregular obgyiract sayn such orderings (trajectories), which will give
served dataset into a set of wavelet (detail) coefficienth s  {he paths that the lifting algorithm will take.

that there is one detail coefficient corresponding to eaitadr

point. In the approach introduced by Jansen et al (2001), the For each selected trajectory, the modified lifting trans-
order of transforming scaling coefficients into detail deef form will generate a set of detail coefficients. Let us de-
cients is established by using the integral lengths of the sc note then-dimensional (row) vector of detail coefficients by
ing functions, which account for the ‘span’ of each point. d’ = (di;, 1) ie17- Using the matrix representation of the

3.2.2 The nondecimated lifting transform (NLT)



wavelet transform, we can write
di,. T X
e =R e

dtn,T th,T

whereR € ., ,, is the matrix built during the lifting trans-
form.

From the above it follows that;, = >°7_, 7i ; X4,
Vi € 1,n, and each detail is a linear combination of the
observedX;, r's,i € 1,n.

The vector of detailsj” has a random character, inher-

ited from the procesgXy, 1), The elements of the ma-

trix R depend on the prediction and update filters, which3.

(for a linear transform) in turn depend only on the time lo-
cations and the regression order used in the prediction step
(see Nunes et al (2006)). Therefore, since we work condi-
tional on having fixed design pointgy ), .1, the elements

of the matrixR can be assumed fixed.

For each of then ‘paths’, we apply the lifting algorithm
and hence generate different matricesk’, ..., R™. Corre-
spondingly, we getn sets of wavelet vectois~” | ..., d™ 7.

Each time locatior,, is therefore associated to a set of
detail coefficients{d{, r},c7;- Each detailly ;. is asso-
ciated to an interval that intuitively accounts for the ‘spa
of time locationt;, at the respective stage in the algorithm
(see Figure 1). We shall denote the length of this interval by
If: 7, and this will provide our measure of scale. Therefore,
at eachtime location we obtaira setof details, which we
can model as a function of their scale.

3.2.3 Proposed raw wavelet periodogram construction

In Section 2.3 we introduced the raw periodogram proposed
by Nason et al (2000) for estimating the evolutionary watvele
spectrum (equation (5)). We saw that this was an array filled
in with the values of the squared nondecimated detail coeffi-
cients corresponding to each level and time location, where
the level had the usual multiresolution meaning on g(@g
scale. To obtain consistency, the raw periodogram was then
first smoothed as a function of location within each scale and
then was corrected b)ﬁjl in order to provide an unbiased
spectrum estimator.

In our context, the challenge comes from the irregularly-
spaced data that hinders the application of classical wavel
techniques, such as nondecimation. Our aim is to propose a
periodogram for estimating the wavelet spectrum of an LSW

4. The matrix(f;, 7(1%))

obtain a set of detail coefficients at each observed time
point.

. The details associated to each location are in fact asso-

ciated to various scales, as we explained in the previ-
ous section. Consequently we shall ‘discretize’ the scale
in order to ensure comparability specifically with the
construction from Nason et al (2000), and more gener-
ally with classical wavelet constructions. More exactly,
we shall choose a set of ‘evaluation’ lengths, which we
denote byl',i2,...,1/" for someJ*, and through the
choice of J* we are in fact able to tune the proposed
discreteness of the scale.

We want to estimate the function that links the squared
detail coefficients with the scale at which they arise, in
order to produce an estimate of the squared detail at each
chosen scalé’ with i € {1,...,J*} and at each ob-
served time location, with k € {1,...,n}.

This can be achieved by taking a nonparametric regres-
sion approach in modelling the magnitude of the associ-
ated squared detailg;, ;) ..., (d;" ;)*as afunction

of the corresponding interval lengthjs ., ..., 1" ;. for
each fixed locationy, (refer to Figure 4). For each time
locationt;,, we denote byf;, r the function we want to
estimate. In other words, for ea¢pwith k € 1, 7n, we
model the data as

(df, ) (8)

and we want to obtain an estimafg, r(I*) for each
1, J*. We estimate eaclfy, (- ) by using a linear
smoother, hence

:ftk,T(lgc_’T)ﬁLEa, a € 1,m,

fror(lf ZK A 7)% Vie 1, Jr, 9)
whereK, (1*) are weight functions that are non-zero only
for thosea values such thaf,  is in a neighbourhood

of I'. We note that the weight& (- ) are different for
eacht, but we do not indicate it to avoid cluttering the
notation. The above value ¢f, (I°) is an estimate of
the magnitude of the squared det@lf’ ,)* at timet;
associated to the interval length

11,7+ kel IS our proposed raw
periodogram, and corresponds to the raw periodogram
introduced by Nason et al

(da,kT)ge J(T),—1,k€0,T—1
(200

Section 5 will show that our proposed raw periodogram

process despite dealing with a realization that features-mi is not an unbiased estimator for the EWS and will discuss

ing observations.

We now summarize the steps that we propose in order to
obtain a raw periodogram for an LSW process sampled with
missing data (see flowchart in Figure 2):

the technical and computational challenge of correcting it

3.3 Periodogram applicability and smoothing

1. Apply the NLT of Knight and Nason (2009) introduced Let us now make a few remarks on the periodogram con-
in the section above on the sampled process data, arstiruction.



RAW PERIODOGRAM

apply linear
aggilng LT I smoother to smoothed square_d
m , )
raw data random & G squarsg detail to evaluation scales
; ; associated scales . i
trajectories log, scales & observed location

Fig. 2 Flowchart for constructing the NLT periodogram: (i) The rifigdi nondecimated lifting algorithm (NLT) is applied to thew observations
using a fixed number of random lifting trajectories to fornssaf detail coefficients and corresponding scales for edskmvation (i) For each
observation in turn, a linear smoother is applied to the Nliffpat to predict the values of the squared details at a sdiafen evaluation scales
(iii) The smoothed values for all observations are then aterated (columnwise) to form a matrix which representsaheperiodogram.

Applicability. The construction is valid for irregularly- methods (such as those used for the usual regular time se-
sampled locally stationary time series, not necessarily of ries setting) are not applicable here. Sanderson (201@scop
dyadic length, and in particular, is suitable for those timewith this by averaging the periodogram values over a num-
series whose irregular structure is induced from a reguldber of resolution bands to mirror the regular setting, and
time series with missing observations. Examples for botthen smoothing their averaged periodogram over time by
cases are shown in Section 4. employing a simple moving average.

The periodogram construction also lends itself to exten-  Since each periodogram value is produced from a spe-
sions using data from repeated time series using the liftingific run of a lifting transform, a natural approach to con-
transform modifications for multiple observations desetdib sider would be to smooth the squared coefficients across
in Nunes et al (2006). An alternative approach would be tdime by first denoising the detail coefficients within the run
simply average raw periodograms via merging time indicesthat produced them. This would not require pooling coeffi-

Scale interpretationin classical wavelet theory, the no- cient information from different NLT runs prior to smooth-
tion of scale has a meaningful interpretation associated tthd as in the averaging approach of Sanderson (2010). For
the support of the wavelet, and, since the discrete wavel&xample, smoothing the periodogram values could be ob-
transform DWT) is defined on equispaced grids of dyadic tained by using lifting transforms to denoise the data (Nune
length, the coefficients at a particular scale represenadidy et al, 2006; Knight and Nason, 2009) and then pre- and post-
powered number of the observations through decimatiorfransforming the values using the logarithm transfornmatio
This meaning transfers to the periodogram for the regulaffowever, it remains unclear what strategy is best to conside
setting. when smoothing the periodogram over time, and is left as an

However, due to the lifting of one coefficient at each&réa of future research.
step, in the most general case our periodogram will not fea-
ture a dyadic structure in the scaling of wavelet support or
have a dyadic number of coefficients represented from on% Examples
scale to the next, although the scale is still connectedeo thWe now give some illustrative examples of our periodoaram
wavelet support. In practice, to ensure that our final periz 9 P P g

i . . for irregular time series. Our periodograms are produced in
odogram representation parallels the classical one,adste e ) . . )
: ) R by the lifting algorithm implementatiorallift (Nunes and

of the actual scale values, we use their,leglues. This has Knight, 2010) andhlt (Knight and Nunes, 2010)
the interpretation that if the scale increases by one'afe ' ' '
erage” wavelet function support doubles.

SmoothingNason et al (2000) approach the problem of4 1 Simulated example
the biasedness of their periodogram by first smoothing the
periodogram via non-linear (translation-invariant) wlate | et us take the evolutionary wavelet spectr{i (- )} j<_1,
smoothing on the periodogram values, and then applying afescribed in formula (10), which at the finest level (-1) ex-
inverse correction matrix. An alternative method using thenibits a burst of activity, and at the coarser level -4 extsibi
Haar-Fisz transform has been proposed to smooth the pe#-squared sinusoidal behaviour (see Figure 3).
odogram (Fryzlewicz and Nason, 2006; Nason, 2008).

Ideally we would like to smooth our nondecimated lift- ) 180 209
ing periodogram per level over time. However, due to the 1, forj = —1. 2 € (555 356>
missing data in our framework, the data have an inheren?;(?) = { sin*(4rz), forj = —4, (10)
irregularly-spaced structure and classical wavelet shingt 0, otherwise
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Fig. 3 Left: An evolutionary wavelet spectrum (EWS) with power aefiand mid-scales. The scale (y-axis) runs from finest (botto coarsest
(top); right: simulated LSW process corresponding to thecspm featuring missing observations. Triangles indidatations of missing time
points.

Using theLSWsimfunction implemented in the R add-
on package@VaveThrest{Nason et al, 2008), we first sim-
ulate a LSW process of length = 256 corresponding to
the above spectrum. We take a random sampte sf 200
time points out of the 256, and then record their corresponds  * |
ing ‘observed’ process values in order to obtain an exampl%
of a LSW process with missing observations. An exampleg
of such a process (with missing data) appears in Figure & © -
(right), and is represented on an irregular time grid. Noteé N
that the sinusoidal character might be guessed in the firs§’ )
half of the realization, but in the second half the burst rsask ~ —
it.

The locations of the 56 missing time points are also rep-
resented in the figure. Note also that the region which fea-
tures the activity burst has slightly more missing observa-
tions, which will probably influence the accuracy of the final Fig. 4 Magnitude of the squared details associated to the obgzvat
spectrum estimator. Also, the estimation will be influencedt iMe 15, versus (logof) their associated integral lengths. The super-
by the overall proportion of missing observations. imposed curve is obtained by smoothing using a cubic spline.

For the lifting procedure there are 256! possible removal
orderings of the time points that can be used in order to gerassociated integral lengths for this point resulting fram o
erate the detail coefficients. In what follows we take a sim-nondecimated’ lifting algorithm withnn = 1000 trajecto-
ple random sample of. = 1000 trajectories out of the total ries. The cubic spline smoothing estimator is also shown.
256!. Each trajectory gives the order in which the empirical  Figure 5 gives two examples of our periodogram con-
lifted wavelet coefficients will be produced. For each casestruction outlined in Section 3.2.3, each corresponding to
we modify the lifting scheme such that it follows the cor- different ‘evaluation’ scale. The scale in the right pietis
responding random path, and use a prediction step that erfiner, and it essentially shows that we can tune the level of
ploys linear regression with an intercept and with 2 neighdetail given by the periodogram. This zoom in — zoom out
bours in a symmetrical configuration in order to generate théeature of wavelets is nicely reflected in our constructibn a
details at each step (see Nunes et al (2006)). the estimated spectrum level.

Let us now examine the relationship between details pro- The range of these scales is roughlyo 8 (in a con-
duced during the NLT transform and their associated scaleinuous manner, with smaller values corresponding to finer
As an example we take the observation at time 15. Figurscales), and an approximate correspondence can be estab-
4 shows the distribution of squared detail coefficients andished with the initial discrete levelsl, ..., —8. Note though

Scale
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Fig. 5 Proposed ‘raw’ wavelet periodograms to estimate the wasgelectrum of Figure 3. The smoothed squared details aresepted on two
different ‘evaluation’ scales (with 17, respectively 27ually spaced divisions for the interval 0-8), with the pietwn the right corresponding
to the finer scale division. In each plot, the scale gets eodrsm bottom upwards and darker pixels correspond to aehigktimated spectrum
value.

that since not all time points are associated to integraltlenn  also of interest to determine whether our spectral estonati
spanning the whol@ to 8 range, missing values appear atmethod detects other frequency variance contributioris tha
the bottom and top rows of the matrices represented in Figdo not feature in other glacial characteristic investigadi
ure 5. However, the use of the finer scale diminishes thisamely energy at higher scales. The data was originally ex-
problem to some extent. Observe that both the burst and th@ored in Berger (1978).
four squared sinusoidal peaks are detected within thectorre  The methodology as described in the flowchart (Figure
scales. The region approximately between times 150 to 172) was applied to this orbital forcing data using= 5000
does not contain much signal, which can be explained by thgajectories in the nondecimated lifting algorithm. The re
slightly higher proportion of missing observations fromatth sulting periodogram shows a clear periodic structure at mid
area than from the rest. coarse scales (see Figure 6). This is the so-calledession
forcing due to the movement of the periapsis between the
Earth and the sun (Crucifix, 2008), and has an an average
4.2 Environmental time series period of 21kyr (see Sanderson (2010)). This behaviour is
thus evident at approximately at scdlé.4 = log,(21 x
10%). Note that the periodogram also exhibits characteris-

. . tic ‘troughs’ representing the periodogram power leakage
In this example, we demonstrate our periodogram construc- g P g P g P g

. . . , across the scales.

tion on environmental time series. A well-known school of

thoughtin astronomy accepts that the positioning of thétEar

as it moves around its orbit has an effect on climatic eventd.2.2 Trace carbon dioxide time series

overtime, in particular the characteristics of ice agasugh

changesinthe Earth’s insolation (received solar energyg@m Other paleoclimatic time series, for example, gas/isotmme
surement (Crucifix et al, 2007; Crucifix, 2008). Tloibital  tent in drilled ice-cores can also be used to map climatic
forcing has been quantified via certain trigonometrical as-events through history. Time series obtained from iceore
tronomical parameters so that time series representing ttae characterized by an uneven sampling rate, as deep within
forcing can be generated (Berger, 1978). Since the time s¢he ice-core, the snow/ice is under a strong mass pressure
ries produced from the mathematical framework of Bergethat results in depletion, pinching and swelling of layesess(
(1978) are based on quantities derived from the physics diVolff (2005) for more details on the particular features of
the Earth’s orbit, the time series is unobserved (it is calcuice-core records). It is thus of interest to determine weeth
lated), and thus contains no uncertainty or source of medime series from these other sources can yield similar cli-
surement error; this makes it a good candidate for testingnatic information as orbital forcing time series. The com-
whether the periodogram applied to these orbital forcingparison between orbital forcing and other ice-core time se-
data can extract what is known about the cyclic variabilityries has been investigated using a smoothed version of our
components of the time series from orbital mechanics. It idifting periodogram to some effect in Sanderson (2010).

4.2.1 Orbital forcing data
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Fig. 7 Left: Plot of ice-core carbon dioxide content (parts pedionil by volume) versus associated historical age; rightT lderiodogram of the
carbon dioxide time series.

The trace amount of trapped carbon dioxide in an ice4.3 Infant ECG data
core can give indications of atmospheric changes during the
time-span of the ice-core. We investigated a trace carbom this section, we compare the lifting periodogram con-
dioxide time series with the NLT periodogram from Sec-struction introduced in Section 3.2.3 with that of Nasonlet a
tion 3.2.3 withm = 5000 paths. The time series has been(2000) for the regular data setting (see Section 2.3). The
analyzed by Luthi et al (2008) was obtained from the Worlddata to which we have applied both methods is a time series
Data Center for Paleoclimatology in Boulder, USA. recording the heart rate (ECG) during sleep of a young in-
fant. The data consist of 2048 regularly-spaced obsemnatio
Although some coarse-scale blurring is present, a persampled atizHz (see Nason et al (2000)). The dataset has
odic structure of roughly 100 kyr can be seen from the pebeen made available in the R add-on packégeeThresh
riodogram shown in Figure 7 (marked on the right axis afNason et al, 2008).
scalelog, (100 x 10%) = 16.6)). The periodicity is clearest To compare our periodogram with one applicable for
during the second half of the series; this spectral infoimnat regularly-spaced data, we randomly selected 10% of the data
agrees with evidence indicated by other studies of histbric to be treated as missing. After removing the selected points
climatic changes, which acknowledges that there has beghe ECG time series had = 1843 irregularly-spaced ob-
a climatic 100kyr cycle over the last 500 kyr (Crucifix and servations (205 were treated as missing). The irregula tim
Rougier, 2009). series can be seen in the top-right of Figure 8; the triangles
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Fig. 8 Top left: original infant ECG time series; top right: infaBCG data with 205 artificially created missing values (shdgtow the time
series); bottom left: the spectral estimate usingNk€K method; bottom right: NLT periodogram construction. Fottbperiodograms the scale

progress from fine at the bottom to coarse scales at the top.

below the time series represent the locations of the missing
observations. We applied the lifting periodogram to the ir-
regular ECG observationsn( = 5000 lifting paths). This

is shown in Figure 8 (bottom-right), together with the cor-
responding regular data setting spectral estimate of Nason
et al (2000) from Section 2.3 (using all 2048 observations).
We denote this spectral estimate BySK.

cale

We consider that the periodogram displays similar spec”
tral characteristics as that of Nason et al (2000) usingute f
dataset (Figure 8, bottom-left). In particular, the maia-fe
tures of theNvSK periodogram are evident in the NLT peri-
odogram, namely at the mid-coarse scales (approximately at
times 22:00, 23:15, 03:00 and 06:00). Furthermore, the fine
scale behaviour is also present (at 22:00, 03:00 and 06:00).
However, it is debatable whether the spectral information i

00 01 02 03 04 05

Time (hours)

our periodogram at fine scales at time 23:15 is a real featureig. 9 Periodogram for infant ECG data with 25% of the observations
of the data: it is noticeable that the periodogram shows soméeemed missing.

spurious spectral information across observations atxthe e
tremes of the scale range (below scale 1 and near scale 10).

We have repeated this example with increased propor-

tions of missingness up to 25% without any significant degradation in the spectral information shown in the resulting
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NLT periodograms. The periodogram for the ECG data withthis difficult situation, albeit with obvious power leakage
25% missing is shown in Figure 9. across the scales.

To investigate how the NLT spectral estimates change Note that in the examples above the data has been ran-
with the amount of data considered missing from the infanflomly selected and treated as missing. If the missing points
ECG dataset, we performed the following study. In the firs@re clustered such that some feature of the data is lost, then
instance, the method described in Figure 2 was used to créhe spectral estimate will not be able to capture the power
ate a periodogram for the ECG time series with a single ranactivity in that region of the time series. However, this ob-
domly chosen datapoint. We then calculated the (square@grvation would be true of all spectral estimation methods
error between this and the periodogram produced with afr irregular data in this case.
increased degree of missingness, treating the periodogram
with one missing datapoint as ‘the truth’ (only the common
subset of timepoints were considered in the error calculad Correction of raw periodogram (theory)
tion). The motivation behind this comparison is that the cal
culation gives an overall (rather than pointwise) meastire dn this section, we establish the relationship betweenrthe i
how the periodograms change as the proportion of missintjial (unknown) evolutionary wavelet spectrum and our pro-
datapoints increases. The error calculation was thenteghea posed ‘raw’ periodogram, in order to make a step towards
K = 100 times (each repetition corresponding to indepena bias-corrected periodogram. We then discuss the spectral
dently resampling the datapoints to be considered missingjorrection of the periodogram and highlight its technicl d
and then averaged over theésampling runs. Note that in the ficulty, reflected in its computational complexity. Futuke a
calculations described, the periodograms were scaled pri@nues for development of this periodogram correction are
to performing the error calculation so that they represkntealso considered.
the same variance as the infant ECG data.

Table 2 shows the average mean squared error (MSE)
of the degradation for different chosen amounts of miss5.1 Relationship between the proposed periodogram and
ingness. The table reveals that, as expected, the fidelity the evolutionary wavelet spectrum
the 'true’ periodogram decreases as the amout of missing- . 4
ness becomes more severe, with the degradation increasiligwhat follows, we aim to obtaifi( f:, v (I*)[1> = 1,17 =

slightly more significantly for higher percentages of migsi  0). This can be viewed as establishing an equivalent formula
data. in our setting to that from the LSW approach in Nason et al

(2000) (see equation (7)). The following treatment is only
meant to parallel such a formula and is not a rigorous asymp-

Missingness (%)| Error (MSE) totic development. It is clear from the illustrations shown

150 8:1‘512 thus far (e.g. Figure 5) that some kind of blurring is present
15 0.178 in our proposed periodogram, and the formula we derive in
20 0.214 this section suggests that the blurring can, in principé, b
25 0.252 corrected.

Table 1 Mean square error (MSE) results indicating degradation-of i We shall first obtain the covariance structure of the wavelet

fant ECG NLT spectral estimates for different degrees obingness. coefficients as a function of the initial spectrum, both With

the lifting scheme corresponding to each trajectory, asd al
between different trajectories. In other words, we are in-
At this point we should stress that a periodogram forterested incov(dy: 1,d;, 7|I» = 1,I; = 0), Vi,i' €

nonstationary processes with missing and/or irregulaa datl, n, Vo, 3 € 1, m. Note that we are in fact also condition-
is so far unavailable using the spectral estimation methodgg on the trajectories being fixed, rather than take into ac-
curently available in the literature. Indeed, tNeSK tech-  count their randomness, as this would in turn induce ran-
nique for classical LSW processes cannot be used even wittomness in the matrice?', ..., R™. This conditioning will
only a single missing observation. As noted in Section 1pe assumed for all results in this section, and so we omit
spectral estimation techniques often rely on imputation imoting it explicitly throughout the paper.
order to handle missing observations, or in the simplegt,cas  As a first step, the following lemma will establish a link
the data is treated as equispaced. This less principled wdgetween the variance—covariance matrix of the detail coeffi
of obtaining periodograms for irregular data can introducecients and the (sample) autocovariance matrix of the Initia
errors in estimation, especially with significant missiagss LSW process at the observed time points. The proof of this
(for example greater than 5%). It is thus reassuring that odemma and subsequent results in this section can be found
raw periodogram correctly detects the spectral structure iin Appendix A.
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Lemma 5.1 Under the previous notation, the following re- Proposition 5.3 Foranya, 3 € 1,m, i, i’ € 1,n, we have
lation holds: for anyn, 3 € 1,m, i,i' € 1,n, 5
B(df, rdy, 7 =115 =0) =

cov(df p,dy, 7|l =115 =0) =

n n

-1
t; -
g S 3 Yttty -t () + e, 19
SN e cov(Xy, 1, Xy wlly = 1,15 =0)r) . I=—o0 j=1j/=1
7 (11) whereRy is a term of magnitud®(7-1).
) o i We can now obtain the expectation of the smoothed squared
We have expressed the detail coefficient covariance aFetails E(ft +()|I = 1,15 = 0), which will give us
. . . . .. ’ ks - = - =)
a linear combination osampleagtocovanances of the ini- an insight into the relationship between our proposed peri-
tlal_process(Xt7T)t€07T71 mvolvmg only the ob§(a_rved lo- odogram and the wavelet spectrum of the process.
cations We now extend this relation to express it in terms of
thelocal autocovariance of the process. Theorem 5.4 For the wavelet periodogram estimatqfs (- )

L constructed in (9), and for all € 1,J*, k € 1,n the fol-
Proposition 5.2 Foranya, 8 € 1,m, i, i € 1,n,we have lowing relation holds:

COV(dz_’T,dtBH_’T|Iy =1, Ij = Q) = E(ft;“T(ll”Iy =1, Ii = _) = TrvaAli,kST) + R;,
SOS e (Gt 1) el 4
1 17”1'.40 (Tﬂf] tj) rig t e, (12) where
j=1j'=

whereRy is a term of ordeiO(T1). Ry =0(T71),

_ o | S = (S1.j)i<—1,jeT With S1; = Si(4),

. Using the deﬂmtlon.of the local au.tocovanance and equagrk (aﬁ,}k)zg—u@,_n with
tion (12), we can obtain an expression of the detail coeffi- ,; .

: : : Pk s S Ko ()re e, bw(t; — ty) and
cient covariance in terms of the EWS of the LSW process®.; = 2uj/=1\Zwa=1a\l)T% Tk 5o ¢ F1ll; = 1y
{S;(-)}:, and the discrete autocorrelation wavelgls(-)};  {£a(-)}a are as defined in equation (9).
of Nason et al (2000) introduced in Section 2.2.

More exactly, by substituting the local autocovarianc
c(z, 1) = Zl;l_oo S1(2)¥%;(r) from equation (3) in equation
(12), we obtain, foranw, 3 € 1,m, i, € 1,n,

The result in the previous theorem corresponds to (7) in
Cthe development of Nason et al (2000). However, recall that
our result is conditional on the time locations correspond-
ing to the observations on the process being fixed, and on
ignoring the randomness in the lifting trajectories. Far fu
ther work, it would be interesting to try and eliminate these
—1 t: . restrictions, as well as rigorously set a framework in which
Z Z Z rﬁjrfyj,% (tj —t57)5 (fj) +Rr. (13) o investigate the asymptotic behaviour of our estimator.

cov(dij,dﬁ/,Tﬁy =1,I;=0)=

n n

I=—o0j=1j'=1 Equation (15) shows that our proposed ‘raw’ periodogram
In the above formula we used the symmetry aro0iod is not an unbiased estimator for the wavelet spectrum, and it
(@), therefore needs correction. This does not come as a surprise

Fryzlewicz (2003) observes that in order to achieve th(given the simila-\r result that follows frgm (7) fgr the simple
convergence of the autocovarianeg(-, -) (established in case of observing a LSW process with no missing observa-

proposition 1 of Nason et al (2000)), the ‘tail’ of the se- ti(_)n_s. Formula (15) also high_lights that the used smoother

quence(S;(-)}j<—1 needsto be controlled. An approach to will influence the amount of bias.

this would be to allow non-zero contributionsfts; (- )} j<—1

only from levels say € {-J',...,—1} for alarge enough 5 » Periodogram correction

J’, which would in turn mean thatwould have a finite range

in the above formula (and therefore also in the subsequety this section we discuss the computational issues and im-

ones). plications arising from missing data when estimating the
Equation (13) links the detail coefficient variances, andyavelet spectrum of a LSW process, and the challenge is

implicitly, E(d: 7d; 7|I> = 1,1, = 0),tothe (unknown) o work towards correcting the proposed raw periodogram

wavelet spectrum at the observed time poipﬁﬁl,(t—Tj)}l_j, in the missing data setting.

involving only tractable coefficients. We shall now re-writ Relation (15) indicates a way for proposing a better esti-

the previous expression in (13) in terms of this expectationmator (than the raw periodogram) for the spectrum méttrix
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. t
curtalle_d dow_n toJ (1) row§,S = (S{(T]))lem,jeﬁ'
To achieve this, we shall first re-write the unknown spectrum
valuesS into vector format,

5= ((S-1)jetm | - | (S—s(1).5)jetm) € A0, 5(Tyxn-

On the same principle as above, let us put each matrix
A"F into vector format, as follows

Uk _ 'k 1"k 1k
a = ((afl,j)jel,_n | (a727j)jeﬁ |- (a_J(T)J)jeﬁ)a

Initial Scale

where foreach ¢ —J(T), -1, (af}k)jeﬁ is ann-dimensional

row vector, and henc@li’k € M, j(T)xn, Yk € 1,n,Vie
1, J*. For each observed point, i.e. for eachk ¢ 1,n, ~
define the associated matrix

dll ,k T T T T T
Pk 50 100 150 200 250
Ak _ a c %J* J(T)xn- Observed Timepoints
J* . . . .
al” ok Fig. 10 Example of an A matrix. Darker pixels correspond to higher

values.
Similarly, also define foreach € 1,n,

ok ; ; 2 * (with inequality constraints) in order to estimateising the
= I 1?),... 17 M g .
f= a0 fur (), fur (7)) € A formulation (17).
In this notation, an estimator for the vector of wavelet  More exactly, for each time poinj, we solve
spectrum values corresponding to the observed locations,

- . . . . . ke 2 —1
ﬁJ,(jC“?l l::leu?]ﬁ:]ac;cvicl gzd?glzlzge;hueatfizlrl:;W|ng system Wlthm'”{Hi _—ZBj,kS‘,j +Z 9 (l+1)()‘||Sl”||2+ﬂ||5l||2)}
JStt;EVy, I=—J(T)
~ A1
Al (f)" to estimate the unknown spectrum values, subjesf ;] >
A? T — (fQ)T (16) 0, where\, 1 € R are unknown constants. This penalization
N . ' criterion incorporates a cost for high power at coarse scale
A (f”)T as well as a smoothness constraint for spectral content over

) . ) . ) time at particular scales.
Solving this large system of equations in equation (16)  For computational reasons, we take the neighbourhood
can obviously be computationally intensive. Uponinvestig v, o be small in practice, e.g.€ {k — 1,k k + 1}. This

tion of thezq_él-matrices structure, they exhibit a sparse struCrepresents a narrow (vertical) strip around the point afrint
ture: for A%, only those columns corresponding to neigh-gt

bouring time points of;, are non-zero (see Figure 10). The solution to the penalized linear least squares prob-
In order to take advantage of this sparsity, we rearranggm apove is our proposamrrectedperiodogram that esti-
. . . 1% 1k .
theA-matncesmto matriceB;x = (b; }, = a; ;' );cT 77177 Mates the evolutionary wavelet spectrusn,
to obtain Since the penalized least squares correction employs a
Ak search for values over the time series, it is essentiallig-loo
E ~>Y» B;rS. 17 . o ' .
(£) Z LA (17) ing for J x n best fitting (real) spectrum values subject to a

jstt; eV, . .
I convergence tolerance. This means that the correctiod coul

whereV}, is a neighbourhood of the time poitit For fixed  potentially find spectral solutions which look quite differ

tr, the B; ,-matrices are non-zero only for those time pointsent on separate implementations of the search. However, we

t; that are around,. Due to the reduction in the size of the have found that the spectral estimates resulting from the pe

system, we also reduce computational costs. nalized least squares correction seem to be more stable as

long as the weighj: is chosen to be non-zero. The norm

Nason et al (2000) note that wavelet periodograms exweights\ andu can also be incorporated in the optimiza-

hibit ‘ power leakagefrom fine to coarser scales, also ex- tion search.

hibited in our raw periodograms (see Figure 5). Hence we For time series of increasing length, the number of scales

formulate a set openalizedlinear least squares problems also increases, and so the number of real values to find grows
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across time as well as scaleasncreases. Hence the cor- environmental and medical time series that show the util-
rected spectrum search increases dramatically in computdy of our approach in obtaining local spectral information
tional cost and time. from locally stationary time series which suffer from miss-

We also note that the penalized correction used abovieig data. In both cases we were able to elicit frequencies at
can be applicable to irregular time series generally, by-mapwhich significant power existed and, in the case of the envi-
ping the irregular time structure to the regular time seriesonmental series, agree with the current accepted knowledg
with missing observations framework. in the field.

Theoretically, we showed that the periodogram is not an
unbiased estimator for the evolutionary wavelet spectrum,
5.3 Example and have also explored initial work towards a corrected pe-
riodogram through using a penalized criterion on the spec-
As a demonstration of this method of correction for the protrum. However, our approach is highly computationally in-
posed periodogram from Section 3.2.3, let us consider aleftensive.

spectrum characterized by a fine-level burst (Figure 11). As  For the future, it would be interesting to further investi-

with the example in Section 4, we simulate a LSW procesgate the properties of the corresponding estimator, asasell

from the spectrum, and then remove a number of observgg asymptotic behaviour. Also, to this moment we have not

tions, forming a time series from which we hope to estimat%prred the possible advantages of usingatiaptivelift-

the original spectrum (shown in the top-right of Figure 11). ing of Nunes et al (2006) in our development, which would
The raw periodogram of Section 3.2.3 was obtained byjive our method the potential of not having to choose the

using the algorithm from the flowchart (Figure 2) on the timeyyayelet basis a priori.

series with missing observations, by using= 1000 trajec- An existing challenge is to set up a locally stationary

tories in the NLT. The resulting periodogram (bottom-left) wavelet type model that would directly handle the problem

shows a well-defined power burst (in terms of time) at theOf correcting the periodogram for irregular data.

location of the burst in the original spectrum, but also ex- , ) )
hibits apparent power leakage across the finer scales. Finally we note that the methods and ideas presented in

The penalized spectral search algorithm of Section 5_§1is paper ofusing non_decimated Ii_fti_ngfor_spectral ?‘B'B'y
was then applied to the raw periodogram to form a correcte§@n be readily generalized to multidimensional settings, f

spectrum estimate (bottom-right of Figure 11). The edgelgfx_ample, bfy mod_ifying thed\/_oronoi polygoln- or tree-tr);sed
of the burst are still well-defined, but the penalized criter ifting transforms introduced in Jansen et al (2009). The us

has successfully removed a lot of bias and power Ieakag%f ntl)n?e0|mallt§d I_|ft|ng_techn|que§ S|m|I_ar to th_ose in this
from our raw periodogram. article for mu tlva.rlz.i'Fe time series is an interesting aven
of research and initial work in this area seems promising

(see Sanderson (2010)).

6 Conclusions and further work

In this article we have addressed the problem of spectral es-
timation for a non-stationary process that exhibits migsin Acknowledgments
observations, a problem which so far has not been addressed

in the literature. Non-stationarity was understood helle-as The authors gratefully acknowledge financial support from

cal stationarity, and the wavelet model mtroducgd by Najhe University of Bristol Applied Research project funded
son et al (2000) was adopted. Second generation wavel §/Her Majesty’

2001) WeT%he authors would like to thank P. Fleming, A. Sawczenko

employed, due to their flexipility ofworki.ng with irregulgr and J. Young of the Institute of Child Health, Royal Hospital
spaced data not necessarily of a dyadic length. In this CONr sick Children. Bristol for supplying the ECG data,
text a ‘nondecimated’ lifting transform (Knight and Nason, ’

2009) was used to ensure that a set of empirical wavelet co-
efficients is available at each (observed) time locatiooubh-

out a continuous distribution of scales. Exploiting the iflex

bility behind the continuous nature of scale in second genemn prgofs
ation wavelet approaches, we proposed a ‘raw’ periodogram

for estimating the wavelet spectrum at the (rescaled) Obrhjs appendix gives the proofs of the resuits from SectianBliow-
served locations. We presented two sets of examples froing the notation outlined in the text.
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Fig. 11 Top left: Wavelet spectrum — finest scale on bottom. Top ri§hthulated LSW process of length 64 with 4 observations aeemissing.
Bottom left: (Uncorrected) proposed raw periodogram. &uttight: penalized linear least squares estimatg @fith A = . = 35).

A.1 Proof of Lemma 5.1

For anya, 8 € 1,m, let us denote

Zoz,T
AB,T

var((d* )T |1 = 1,15 = 0, fixed pathy € A n.
cov((d* T, (@) 1 = 1,15 = 0,fixed pathy € .y, .

The variance—covariance matrix of the vectdf”,d% )T ¢
Mon,1 thus takes the form

~((

(@ 1)

(glﬂ’T)T> I =1,15 =0,fixed path% =

(c

iEl,_n)

Ea,T AQ,B,T
Aa,B,T)T BT

) . (18)

Since(@*T)T = R*((Xy, 1) T for a € T,m, it follows

that for anya, 8 € 1, m we have

(i) =
e (01

@*m)r

RO(
RB

(da,T)T

sl ) (e

) I =1,I,5=0,fixed path% =

( ) o

E(T) = var(((Xti,T)ieL—n)T|Iy = l, Ij = Q) = (ijlﬂT)j,kEl,_n

RO‘E(T)(RO‘)T Rox(T) (RB)T
R (D (RT RPX(T)(REYT

where

is the (symmetric) variance-covariance matrix of the olesersignal
(with missing observations), having assumed that the ngspbpints
are deterministic rather than random quantities.

Using relation (18), we obtain

o T }%ozzv(T)(]%oz)T7
Aa,ﬁ,T — RQZ(T)(R*B)T,

Va € 1,m,
Va,B € 1,m.

(20)
(21)

Written explicitly, equation (21) takes the form

cov(d;,T,dfwTuy =1,I = 0,fixed pathy =

n
j=1

n
D orieov(Xe, X, iy = L1g =0 4,
=1

foranya, 8 € 1,m, 4, € 1,n.

A.2 Proof of Proposition 5.2

t’v
If we let zj = _TL

written as

€ (0,1), then the process autocovariance can be

COV(th,T,Xt]./,T\Iy =1,I5=0)=

COV(XszTJ7XszTJ+(tj,—tj)uy =1,I5 =0).
Therefore, we can write

t.
cov(Xe; 1, Xy 1l =L 1p =0) = CT(%J;‘/ —t5), (22)
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wherecr (-, ) is the autocovariance of the LSW procéss r), .o7—1,
introduced in Section 2.2, and we assume the conditionitidpstds.
From the result in Lemma 5.1 and equation (22), we obtain

cov(d?i’T,dfwT\Iy =1,1 =0, fixed pathy =

S Y rtery
i'=1

j=1j

Nason et al (2000) proved that the process autocovariartcean
cal autocovariance functions are linked through the @fati-(z, ) =
c(z,7) + R, for any rescaled time locationand lagr, whereR is
a term of magnitud®(7—1). From the above relation, the following
becomes apparent:

cov(dto‘i’T,dtBi“T\Iy =1,15 =0, fixed path$ =

D D rieChty =)l e+ D0 D ri Ry

j=1j/=1 j=1j/=1
foranya, B € 1,m, i, € 1,n.

Let us denote

n

n n n
p__ a B _ a B
Rt = Rt E E Tty = Rt E T E Ty g
j=1j'=1 =1

j=1

Since matrices associated to a LOCAAT lifting transforméhav
sparse character, for a fixedhe sums of the typd~""_; T only in-
volve a finite number of elements, independent of the madeitfn.
If more data is collected, then there is a chance that the hserea-
tions will be involved in}>7_, ¢, for a fixedi, but the combination
will still be sparse, and sp_7'_, 7' := C* < co.ASRr = O(T™ 1),
it follows that3 &k < co such thaiRy| < kT-1C*CP < oo, SOR7
also has magnitude(7-1).

A.3 Proof of Proposition 5.3

In the LSW model, the sequence of proces§&s 1), 57— IS as-

sumed to have zero mean, (X, 1) =0, V¢t € 0,7 — 1, VT.
Since

E(d§; pdf, ) = cov(df: r,d}, 1) +E(df, 7)EW;, 1)

and from formula (13)

n
E(dg p|ls = 1,1, = 0,fixed path = > e E(Xy, 1),
j=1

we obtain the desired equation.

A.4 Proof of Theorem 5.4

Since fy, r(’) = 7 K.

" a(li)(dtaﬂ){ Vi€ 1,J%, Vk € 1,n, it
follows that

E(fe,,r(I)|1» = 1,15 = 0,fixed pathy =

> Ka(HE((d], 7)1 = 1,1 =0, fixed paths.
a=1

By takinga = g andi = i := kin (14), E(fs, v ()| =
1,1 = 0,fixed path$ can be expressed as

m —1 n n
7 a [ t; P,
D Kal) D0 DD ity —t)Su(F) + Rr
a=1 = o0 j=14/=1
—1 n n m ) "
-5 S S SE it funcs - | s
I=—ooj=1|j/=1 La=1

+RrYy Ka(l'), (23)

a=1
Viel,J*, Vk € 1,n.
1k )
ASay ;" =3 {Z;’;l Ka(l’)r?,jrgj,}%(tj — t;:), the
above equation can be equivalently written as

E(f, v = 1,15 = 0,fixed paths =

_1 . v } m '
> Zaﬁffksl(t%)+RTZKa(lz). (24)
a=1

l=—o0 j=1

Therefore

E(fe,, r(1)» = 1,15 = 0,fixed pathg
—1 ) m
= > (ARST) + Rr Y Kall)
l=—o0 a=1

= Tracg A #ST) + Ry -7, Ka(11).

Observe that in order to obtajr!*-*ST), , for a fixed timet;, and
scalel?, only the terms corresponding to time locatiopst, such that
(t; — t;) does not exceed the support of the autocorrelation wavelet
¥, (-) are contributing to the sum.

Let us denoteR%. = Rr 3™ | Ko (1%). For finitem, R% has
magnitudeO(7—1!) as Ry has magnituded(7—1) from the previous
proposition.
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