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Abstract: There exist many different wavelet methods for classical nonparametric

regression in the statistical literature. However, techniques specifically designed

for binomial intensity estimation are relatively uncommon. In this article, we pro-

pose a new technique for the estimation of the proportion of a binomial process.

This method, called the Haar-NN transformation, transforms the data to be ap-

proximately normal with constant variance. This reduces the binomial proportion

problem to the usual ‘function plus normal noise’ regression model and thus any

wavelet denoising method can be used for the intensity estimation. We demonstrate

that our methodology possesses good Gaussianization and variance-stabilizing prop-

erties through extensive simulations, comparing it to traditional transformations.

Further, we show that cycle-spinning can improve the performance of our technique.

We also explore the efficacy of our method in a real application.
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sequence probability estimation, variance stabilization.

1 Introduction

Wavelet transforms are now widely used as mathematical tools for applications

such as data compression, density estimation and nonparametric regression. In

particular, they can be used to estimate underlying signals from noisy observa-

tions, with many of these shrinkage techniques assuming that the corrupting noise

is Gaussian. For detailed discussions of the mathematical aspects of wavelets,

see Mallat (1989); Daubechies (1992); Nason and Silverman (1994); Vidakovic

(1999); for thorough coverage of wavelet shrinkage estimation, see Donoho and

Johnstone (1994, 1995); Abramovich, Bailey and Sapatinas (2000).

This article investigates the problem of estimating the proportion parameter

associated with a sequence of binomial random variables (a binomial process)
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using a wavelet-based transform. The usual regression model takes the following

form: we observe the data, v = (v0, v1, . . . , vN−1) at equally-spaced timepoints

assumed to be in the unit interval, where N = 2J . Our assumption is that the

N observations {vk} are modelled as a sequence of binomial random variables

Xk, where we assume the variables to be independent: Xk ∼ Bin(nk, pk) for

k ∈ {0, . . . , N − 1}, where nk is assumed known for each k. Our aim is to try

and estimate the unknown proportion vector p = (p0, p1, . . . , pN−1) from the

observations {vk}. We assume pk = P (k/N) for k ∈ {0, . . . , N − 1}, where P

denotes an underlying binomial proportion function.

In practice, this type of problem is difficult since the noise is not Gaussian,

but more importantly the variance of the ‘noise’ depends on the mean, unlike

the Gaussian situation: we have E(Xk) = nkpk and Var(Xk) = nkpkqk (with

qk = 1 − pk) .

One approach is to transform the data so that it is variance-stabilized and ap-

proximately normal; a denoiser suitable for Gaussian noise is then applied and the

data is transformed back to obtain an estimate of the proportion. One such trans-

form is Anscombe’s inverse sine transformation (Anscombe, 1948), reviewed in

the next section. Existing methodology for Haar-Fisz variance stabilization and

Gaussianization has been successful for Poisson data (see for example Fryźlewicz

and Nason (2004); Nason and Bailey (2008)). The Haar-Fisz transform cannot

be used directly on binomial data as the variance is not stabilized. However, we

introduce a modified transform that does.

In our simulations, we will compare the algorithm with Anscombe’s inverse

sine transformation (Anscombe, 1948) and also the Freeman-Tukey averaged in-

verse sine transformation (Freeman and Tukey, 1950) when investigating Gaus-

sianizing and variance-stabilizing properties.

Our method exhibits many benefits, namely:

1. It is shown to possess good Gaussianizing and variance-stabilizing proper-

ties;

2. It outperforms traditional Gaussianizing transformations in difficult cases,

for example, when the binomial size is small or the binomial proportion is

extreme;
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3. It is computationally simple and easy to code;

4. Since it is an effective variance-stabilizing ‘Gaussianizer’, a wide range of

smoothing methods can be used to obtain a proportion estimate.

This article is organized as follows. Section 2 reviews estimation methods

for binomial processes, including a discussion of the Haar-Fisz transform and

its motivation from the Fisz transform (Fisz, 1955). Section 3 proposes a new

Gaussianizing transform called the NN transform for binomially distributed ran-

dom variables. Section 4 adapts our new transform for use on binomial data and

explores its properties. We also propose a technique for proportion estimation

from a binomial sequence in Section 5. Section 6 concludes and outlines ideas

for further work.

2 Review of work on binomial proportion estimation

We now give a brief outline of work in the literature for binomial process pro-

portion estimation problems.

One approach to the binomial problem is to transform the observations so

that the transformed data can be assumed to be (at least approximately) nor-

mally distributed. For the binomial distribution, Anscombe (1948) suggests the

following. If {xi} are realizations from i.i.d. binomial random variables Xi ∼

Bin(n, p), then the transformed data Axi = sin−1
√

(xi + c)/(n + 2c) will be dis-

tributed ‘more normally’. Anscombe states that the value c = 3
8 is optimal for µ

and n− µ large (where µ is the mean of the binomial distribution). The asymp-

totic mean of the transform is approximately Aµ = sin−1
√

(8m+ 3)/(8n + 6),

and the variance will be stabilized at 1
4 (n + 1

2)−1 for this value of c. Though

computationally efficient, Anscombe’s transformations used in conjunction with

such traditional wavelet methods are reported to oversmooth and not perform

well when intensities are low (Antoniadis and Sapatinas, 2001).

Freeman and Tukey (1950) discusses a similar transform, the averaged inverse

sine function Bxi = sin−1
√

xi/(n + 1) + sin−1
√

(xi + 1)/(n + 1), with asymp-

totic mean approximately Bµ. This transform is said to have variance stabiliza-

tion around (n + 1
2 )−1 for almost all cases when the binomial mean is at least

one, though it is difficult to use as a pre- and postprocessor since it does not have
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a unique inverse function.

Nonparametric regression techniques for proportions usually assume that

the underlying proportion function has a certain degree of smoothness. For

example, recent work on generalized linear models (Hastie and Tibshirani, 1990;

Fan and Gijbels, 1995) assume that the proportion function P (x) follows the

relation g(P (x)) = s(x), where g is a monotone smooth function called the

link function, and s(x) is a smooth function which is estimated by methods

suitable for smooth (continuous) regression functions. Different assumptions and

estimation techniques for s(x), and also link function choice are discussed in

Fan and Gijbels (1995); Fan, Heckman and Wand (1995). For a more involved

discussion of generalized linear models, see for example Hastie and Tibshirani

(1990); McCullagh and Nelder (1989).

Kolaczyk and Nowak (2005) presents a multiscale generalized linear model for

the estimation of functions in a general one-dimensional nonparametric regression

setting. Piecewise polynomials defined on recursive partitionings of the unit

interval are used to construct estimators of the regression function, optimizing a

penalized likelihood criterion to choose a piecewise polynomial fit.

Altman and MacGibbon (1998) uses cross-validation for the bandwidth se-

lection in kernel estimators for either fixed or random design binary regression.

The asymptotic risk of the kernel estimators is shown to have good convergence

properties under certain smoothness conditions on the regression function.

Antoniadis and LeBlanc (2000) considers linear wavelet smoothers for the ir-

regular design binary regression situation. A generalized linear model with iden-

tity link function is imposed on the regression function, and via usual wavelet

projection an estimator of the smooth model function s(x) is obtained. A particu-

lar form of empirical wavelet coefficient is proposed to obtain smoother regression

estimators, and the adaptive choice of resolution parameter in resulting wavelet

series expansions is implemented in the binary regression context. The estimator

is then modified to give a suitable estimator of the regression function P (x). The

estimator is shown to have good asymptotic properties and is computationally

faster than traditional local polynomial estimators.

Wavelet shrinkage is used in the modulation estimator methodology by An-

toniadis and Sapatinas (2001), extending the idea to obtain smooth estimates
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for data from exponential families with quadratic variance functions, including

the binomial distribution. An estimator of the risk is formed by assuming the

function estimate to be a diagonal linear shrinker and using a cross-validation

approach. The function estimate is then constructed using a minimizer of the

risk estimate.

Sardy, Antoniadis and Tseng (2004) proposes a generalization of the WaveShrink

wavelet smoother (Donoho and Johnstone, 1994) to include a range of non-

Gaussian distributions such as the binomial and Bernoulli distributions. The

procedure uses interpoint algorithms to find the solution to a penalized log-

likelihood problem based on the l1-norm of the wavelet coefficients in a wavelet

estimator representation.

Fryźlewicz and Nason (2004) introduces the Haar-Fisz transformation, com-

bining the Haar wavelet transform and a result by Fisz (1955), which asserts the

asymptotic normality of a special ratio of Poisson random variables. The result

motivates the authors to propose a method for Poisson intensity estimation, us-

ing the Haar-Fisz technique as a pre- and postprocessing tool for Poisson data.

The algorithm consists of performing the Haar wavelet transform to count data,

and then modifying the wavelet coefficients according to Fisz (1955). Inverting

the Haar wavelet transform after the modification creates a variance stabilizing

transform. The algorithm has been used successfully for its gaussianizing and

variance stabilizing properties.

All of the above methods are suitable for binomial proportion estimation.

However, the methods based on generalized linear models often have the decision

of link choice to make; others assume some degree of regularity of the underlying

proportion function or produce estimates belonging to a certain smoothness class.

The use of interpoint algorithms in Sardy, Antoniadis and Tseng (2004) can be

computationally expensive. The aim of the method presented in this paper is to

take advantage of the computational efficiency and flexibility of transformations

such as Anscombe but improve performance in cases of low intensity.
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3 The NN variance-stabilizing transform

3.1 The transform and its theoretical properties

The Haar-Fisz transform (outlined in Section 2) is motivated by the observation

that applying the Fisz theorem (Fisz, 1955) to pairs of Poisson random variables

results in an asymptotic normal distribution with unit variance.

However, for binomial variables, there is no choice of Fisz exponent which

produces a constant asymptotic variance and so the variance cannot be stabilized

by the usual Fisz transform (even in the limited case of equal trial probabilities

and equal binomial sizes). Hence we propose a different Gaussianizing transform,

similar to the Fisz transform (Fisz, 1955), with which asymptotic normality with

stabilized variance can be obtained. We will then use this result in a similar

way to the Haar-Fisz technique to propose an algorithm for binomial proportion

estimation.

In our new transform, we divide the Haar difference X2−X1 by its standard

error,
√

var(X1) + var(X2). This essentially uses the observations from X1 and

X2 as estimates for the individual binomial means nrp (r = 1, 2) and combines

them in the expression for the standard error. We first state our alternative

theorem to the Fisz theorem (Fisz, 1955), the proof of which can be found in

Appendix A of Nunes and Nason (2008).

Theorem 3.1. Let Xr ∼ Bin(nr, pr), for r = 1, 2 with pr ∈ (0, 1) (fixed). Let

us denote, for r = 1, 2,

mr = E(ξr), σ2
r = Var(ξr), and ψ =

√

σ2
1 + σ2

2. (3.1)

If the random variables X1 and X2 are independent and

lim
n1, n2→∞

m1/m2 = 1, (3.2)

then the random variable defined by

ζB(n1, n2) =
X2 −X1

(

X1+X2

n1+n2

(

n1 + n2 − (X1 +X2)
)

)1/2
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is asymptotically normal N(mB , σ
2
B) when n1, n2 → ∞, where

mB =
m2 −m1

(

m1+m2

n1+n2

(

n1 + n2 − (m1 +m2)
)

)1/2
(3.3)

and

σB =
ψ

(

m1+m2

n1+n2

(

n1 + n2 − (m1 +m2)
)

)1/2
. (3.4)

In the definition of ζB , we assume that the random variable takes the value

zero when both X1 and X2 are zero.

Let us now consider a specific case of this result. Suppose Xr ∼ Bin(nr, p)

for r = 1, 2, i.e. the binomial random variables have equal trial probabilities.

Due to Theorem 3.1, the random variable ζB(X1,X2) will be asymptotically

normal with mean
(

(n2 − n1)/(n1 + n2)
)

(p/q)1/2, but with unit variance when

n1, n2 → ∞. In other words, using the transform ζB(X1,X2) will stabilize the

variance of the asymptotic distribution. Note also, that if in addition we impose

the constraint that the binomial sample sizes are equal (i.e. n1 = n2), the

asymptotic distribution will be N(0,1).

3.2 Gaussianization and variance-stabilization properties of the NN

transform

In this section we demonstrate through simulations how well the transform ζB

can bring binomial data closer to normality, whilst stabilizing the variance of the

data.

In some of the simulations below, we compare properties of our transform

with that of Anscombe’s angular transformation and the Freeman-Tukey trans-

formation outlined in Section 2. We follow a similar approach to these simulations

as Fryźlewicz and Nason (2004). However, since the size of the binomial means

depends on the trial success probability, p, as well as the binomial size, n, the

effect of both of these parameters feature in our simulations.

Let Xr ∼ B(n, pr) for r = 1, 2. For each experiment, we sampled 105 val-

ues of Xr for various binomial sizes and for each probability lattice point (p1, p2),

where pr ranged from 0 to 1 in steps of 0.05. The binomial samples were then used
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to compute 105 values of the random variable ζB(X1,X2), denoted zn(p1, p2). For

the comparisons with the Anscombe and Freeman-Tukey inverse sine transfor-

mations, the values of the binomial variable corresponding to the larger of the

two probabilities pr was used. Since these transformations work better for larger

means, doing this is favourable to Anscombe and Freeman-Tukey.

Simulations of the variance. The sample variance was computed over the

105 samples of ζB arising from the samples of X1 and X2 for each point (p1, p2).

Figure 3.1 gives a series of contour plots of the sample variance for each of the

binomial sizes n = 1, 25, 100, renormalized so that the asymptotic distribution

will have unit variance. The plots show a “flattening” of the surface peaks as the

binomial size increases, with the variance of the peak approaching one. In fact,

this feature happens most near the line p1 = p2. This reflects the observation

that equal binomial probabilities will result in an asymptotic distribution with

unit variance.

p_1

p_
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p_1

p_
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p_1

p_
2

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 3.1: Contour plots showing the

sample variance of ζB across the bino-

mial probability lattice for different bi-

nomial sizes: n = 1 (top left); n = 25

(top right); n = 100 (bottom).
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To further examine the case when the two binomial proportions are equal, we

display this graphically for ζB, Anscombe’s transformation A, and the Freeman-

Tukey transformation B, on the interval p1 = p2 ∈ (0, 1), for increasing n. Fig-

ure 3.2 plots the squared residual of the variance from one against the (equal)

binomial proportion. From this plot, it is more obvious that for small bino-

mial sizes, our transform has variance closer to one for low and high propor-

tions, especially when compared against Anscombe’s transformation, although

the Freeman-Tukey comes quite close to our transform. It is comparable to the

two competitors for the middle half interval (0.25,0.75). For larger n, all three

transforms do well at stabilizing the variance at one.
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Figure 3.2: Plots showing the squared

residual from 1 of the sample variance

of ζB (solid), A (dashed), and B (dot-

dashed) when p1 = p2 for different bino-

mial sizes: n = 1 (top left); n = 5 (top

right); n = 25 (bottom).

Gaussianization simulations. For judging the relative Gaussianizing prop-

erties of the transform ζB , we computed the Kolmogorov-Smirnov statistics for ζB

and for the two competitor transformations over the binomial proportion lattice.

Lower Kolmogorov-Smirnov statistics are representative of samples which are
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more Gaussian. Figure 3.3 shows contour plots of the difference in Kolmogorov-

Smirnov statistics between Anscombe’s transform and ζB . A positive difference

in these plots corresponds to our transform being more Gaussian. The corre-

sponding plot for the difference between the Freeman-Tukey transform and ζB is

very similar.
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Figure 3.3: Contour plots showing

the difference between Kolmogorov-

Smirnov statistics computed on

Anscombe samples with binomial

probability max(p1, p2) for different

binomial sizes: n = 1 (top left);

n = 10 (top right); n = 25 (bottom).

Positive contours indicate that ζB is

closer to Gaussian than Anscombe.

Biggest difference for n = 1 is 0.657 at

(p1, p2)=(0.5,1).

The overall trend is that the difference in Kolmogorov-Smirnov statistics

is positive for small and moderate binomial sizes, irrespective of the binomial

proportions p1 and p2. This demonstrates that our transform has better Gaus-

sianization properties than both Anscombe and the Freeman-Tukey transforma-

tion. As expected, as the binomial size becomes high, the differences between

the Kolmogorov-Smirnov statistics becomes negligible, due to both transforms

having good Gaussianizing properties. However, examining the statistics further,

the means of the statistics for ζB are lower compared to those of its competitors
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(for all values of the binomial size, n). This indicates that the transformed data

using our transform is more Gaussian than those of the Anscombe or Freeman-

Tukey transforms. More graphical evidence for the simulations in Section 3.2 can

be found in Nunes and Nason (2008).

4 The Haar-NN transform for binomial random variables

4.1 The transform

The Haar discrete wavelet transform. The Haar-Fisz transform combines

a Gaussianizing transform with the Haar discrete wavelet transform. The Haar

discrete wavelet transform (DWT) is performed on an input data vector v by

iterating the steps

cj,k = (cj+1,2k + cj+1,2k+1)/2 and dj,k = (cj+1,2k − cj+1,2k+1)/2,

for j = J−1, . . . , 0. The inverse DWT can be expressed in the two equations

cj+1,2k = cj,k + dj,k and cj+1,2k+1 = cj,k − dj,k.

Note that the forward and inverse steps described above translate into using

wavelet filters 1
2 (1, 1) and 1

2(1,−1). This differs from the Haar filters used in many

descriptions of the Haar transform, which make the Haar basis orthonormal.

We now introduce an algorithm similar to the Haar-Fisz transform described

in Section 2, based on the asymptotic result from the preceding section. Suppose

we have an observed vector v=(v0, v1, . . . , vN−1) of length N = 2J , with 0 ≤ vi ≤

nk, for some integers nk. The algorithm is as follows.

1. Perform the Haar DWT on v to obtain the vector (c0,d0,d1,. . . ,dJ−1). As

each level is produced, modify the coefficients by defining

fj,k = dj,k/
√

(

cj,k(nj+1,k−1 + nj+1,k − 2J−1cj,k)
)

/(nj+1,k−1 + nj+1,k)

(4.1)

2. Perform the inverse Haar DWT on the vector (c0,f0,f1,. . . ,fJ−1). Call the

result u.

In the above, nj+1,k−1 and nj+1,k are the recursive pairwise sums of the

binomial sizes as the DWT levels are produced, and fj,k = 0 if the denominator
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in (4.1) is zero. When the binomial sizes are equal, that is, nk = n ∀k, the

modification in step 1 simplifies to

fj,k =







0 if cj,k = 0 or cj,k = n,

dj,k/
√

(

cj,k(n − cj,k)
)

/n otherwise
(4.2)

We denote this transform by u:=FBv. As with the usual Haar-Fisz trans-

form, FB can be inverted by “undoing” the steps 1 and 2.

Let us examine the effect of the modification in step 1 of the above procedure.

For clarity, we will use the simplified modification (4.2). Consider the coefficients

v0 and v1. The modified detail coefficient dJ−1,0 is produced by

fJ−1,0 =
(v1 − v0)/2

(

(

(v0 + v1)
(

n− v0+v1

2

) )

/2n
)1/2

=
(v1 − v0)

(

(

(v0 + v1) (2n− (v0 + v1))
)

/n
)1/2

.

Similarly the next coarsest level coefficient is

fJ−2,0 =
((v0 + v1) − (v3 + v4))

(

(

(v0 + · · · + v3)
(

4n − (v0 + · · · + v3)
))

/n
)1/2

.

This computation is similar for every coefficient within a level, and for each

DWT decomposition level. If the data vector v is representative of observations

from i.i.d. binomial random variables Xk ∼ Bin(n, p), then the modified detail

coefficients can be expressed as fj,k = 2−(J−j)/2ζB(Y1, Y2), where Y1 and Y2

are both sums of 2J−j−1 of the random variables Xk, and thus are binomially

distributed as well. Since the application of the inverse Haar transform is identical

for FBv as for Fv, after performing the transform FBv, the original data can be

expressed as linear combinations of quantities of the form ζB(Y1, Y2) for binomial

random variables Y1 and Y2. This also applies to the more general (4.1). It is

analogous to the Haar-Fisz transform (see Section 2.2 in Fryźlewicz and Nason

(2004)). Thus FBv represents a diagonal transformation of v, that is, there is

one transformed value for each vi.
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4.2 Finite sample Gaussianization and Variance stabilization proper-

ties of the Haar-NN transform

The following investigation compares the Gaussianization and variance-stabilizing

properties of the transform FB introduced in Section 4, with Anscombe’s trans-

formation, the Freeman-Tukey transformation, and the identity transformation.

Again, we follow an approach similar to Fryźlewicz and Nason (2004).

For these simulations, we have chosen a binomial proportion vector, p of

length N = 1024 sampled from a (normalized and stretched) version of the

well-known Blocks test signal of Donoho and Johnstone (1994) (see Figure 5.1).

For each binomial size we will denote by λ := np the mean intensity vector

corresponding to n. It should be noted that although the mean vector depends

on the binomial size, n, this is not included in the notation explicitly, since it

will be obvious from the context which value of n we will use. A sample path

generated from binomial random variables with the mean vector λ will be denoted

by v. As expected, a sample path takes the value 1 more often when p is near

1, and hits zero more frequently when p is near zero.

Gaussianizing simulations. We compared the Gaussianizing properties

of the different transforms by considering the Q-Q plots of v−λ (identity trans-

form), Av−Aλ (Anscombe), Bv−Bλ (Freeman-Tukey) and FBv−FBλ (Haar-

NN), averaged over 100 sample paths, v. These paths were created from the

mean vector λ for various binomial sizes. Figure 4.1 shows this comparison for

the binomial sizes n = 1, 5 and 25.

For the lowest binomial sizes, namely n = 1 and 2, the raw data (marked

in black) is quite “stepped”. This is expected since the data are discrete. The

Anscombe-transformed data and those transformed by Freeman-Tukey transfor-

mation still exhibit this characteristic, whilst for our transform, FB , they have

lost most of this stepped character; the data lies closer to a straight line, showing

that the data is more Gaussian. Moreover, the data is closer to the solid line

(which has a slope of 1), which indicates a variance of one. As n increases, the

Q-Q lines become similar, although it can be said that our transform displays

slightly better Gaussianization (and also variance-stabilization), since the quan-

tile points do not deviate from the (solid) straight line as much as the other

transforms, especially at the tails. For large n, all three transforms do very well
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Figure 4.1: Q-Q plot comparison

for four different transforms, averaged

over 100 paths sampled from binomial

variables with sizes n = 1 (top left),

n = 5 (top right) and n = 25 (bot-

tom) and proportion vector p : v−λ

(black); Av−Aλ (red); Bv−Bλ (blue);

FBv−FBλ (green). Solid line has slope

1, indicating unit variance.

at bringing the data to normality. Furthermore, the variance is very close to one.

However, this is mostly expected due to the high value of n, since at this large

binomial size, the Central Limit Theorem comes into effect.

Variance simulations. To assess how well the transformations A, B and

FB force the data to have variance nearer to one, we plotted the squared residual

|Av−Aλ|2, |Bv−Bλ|2 and |FBv−FBλ|2 for the Anscombe transform, Freeman-

Tukey transform and our transform (respectively), rescaled by their respective

asymptotic variances. The residuals were averaged over 1000 sample paths, which

were generated from the mean intensity vector λ for a range of binomial sizes.

When performance is optimal, the squared residuals stabilize at one when the

proportion is nonzero, since the squared residuals form an estimate of the vari-

ance. Examples of the squared residuals for the three transforms are given in

Figures 4.2 and 4.3 for n = 1 and 25.

When the binomial size is small, the simulations show that our transform

does much better than the competitors, A and B, at stabilizing the sample path
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) Figure 4.2: Squared residuals for dif-

ferent Gaussianizing transforms, aver-

aged over 1000 sample paths from bino-

mial variables with size n = 1 and pro-

portion vector p : |Av−Aλ|2 (top left);

|Bv−Bλ|2 (top right); |FBv−FBλ|2

(bottom). Dashed line shows ideal

(unit) residual where intensity ∈ (0,1).

variances. For example, for n = 1, the Anscombe transform has the squared resid-

ual in the range 0.2 to 0.6, and the Freeman-Tukey transform has the squared

residual in the range 0.4 to 0.9, whereas for our transform, the residual is nearer

1 for most of the sample path range. Further, our transform does relatively

well compared to Anscombe and slightly better than Freeman-Tukey when the

binomial proportion is small, that is in the three non-zero ‘troughs’. However,

there is a degree of erratic behaviour near the discontinuities in the proportion

vector. Moderate binomial sizes have the competitor transformations beginning

to achieve similar stabilization as our transform; when n is large, all three trans-

forms do very well at variance stabilization, though Anscombe can be considered

to do slightly better in performance in this case, due to the occasional downward

spikes in the Haar-NN transform (see Figure 4.3).
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ferent Gaussianizing transforms, aver-

aged over 1000 sample paths from bino-

mial variables with size n = 25 and pro-

portion vector p : |Av−Aλ|2 (top left);

|Bv−Bλ|2 (top right); |FBv−FBλ|2

(right). Dashed line shows ideal (unit)

residual where intensity ∈ (0,1).

5 Binomial proportion estimation

Motivated by these observations about the properties of the transform FB , we

now propose an algorithm for probability curve estimation for a binomial se-

quence.

Suppose v=(v0, . . . , vN−1) is a vector of observations of length N = 2J from

a binomial process with size n and unknown probability vector p.

1. Perform the transform FB on v to produce u=FBv. The vector u should

be approximately normally distributed with constant variance.

2. Use any denoiser suitable for handling Gaussian noise with constant vari-

ance.

3. Invert the Haar-NN transform to obtain the estimate of the binomial prob-

ability vector.
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5.1 Simulation Study

A simulation study was performed to assess the curve estimation procedure

above. Several proportion functions were chosen to be estimated, each exhibiting

different properties. These were the Sinlog function in Antoniadis and LeBlanc

(2000); a scaled and reflected version of the P2 function described in Antoniadis

and LeBlanc (2000) (denoted here by P3) and the modified Blocks proportion

from Section 4.2. These test functions are shown in Figure 5.1. More details of

these functions can be found in Nunes and Nason (2008).
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Figure 5.1: Proportion test functions

used in the simulation study described

in the text. Top left: Sinlog; top right:

P3, bottom: Blocks.

These functions were sampled on regular grids of length N = 128, 256, 512

and 1024. The sampled vectors were then used to create binomial sample paths

using the sample vectors to define the binomial trial probabilities, i.e. pi = Pj(ti)

for i = 1, . . . , n and each proportion function Pj (Sinlog, P3 and Blocks). For each

grid length/binomial size combination, 1000 sample paths were created. These

sample paths were then denoised using the estimation procedure described at the

beginning of this section (transform-denoise-invert) with both FB and A as pre-

and post-processors in steps 1 and 3 of the procedure. In the denoising step, the

DWT was used with Daubechies’ Least Asymmetric wavelet with 8 vanishing
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moments and universal soft thresholding. A comparison was also made to the

wavelet shrinkage method of Antoniadis and Sapatinas (2001),denoted AS. All

methods were optimized over the resolution level.

Cycle-spinning. We also implemented a variant of our method using cycle-

spinning. Since the Haar-NN transform is translation invariant, cycle-spinning

can be used to gain performance improvements (Fryźlewicz and Nason, 2004).

In this case, the binomial vector is shifted before denoising and the estimate

is shifted back afterwards. Estimates from different shifts are then averaged

to obtain an overall estimator of the proportion function. We have used 50

shifts as suggested in Fryźlewicz and Nason (2004). Performing cycle-spinning

with Anscombe’s transformation would not give any performance gain since this

transformation commutes with the shift operator.

For each method, and for different binomial sizes and signal lengths, the aver-

aged mean square error (x 104) between the estimates and the sampled proportion

function were recorded. For the binomial size regimes, we used different fixed bi-

nomial sizes of nk ≡ n ≡ 1, 5, 10, as well as randomly generated binomial sizes; r1

indicates where binomial sizes were uniformly generated from nk ∈ {1, 5, 10} and

r2 denotes random generation of binomial sizes from nk ∈ {2, 4, 6}. For brevity,

only signal lengths N = 256 and N = 1024 are shown.

Table 5.1: AMSE (×104) simulation results for different binomial size regimes and signals

described in the text: signal length N = 256.
Binomial P3 Blocks Sinlog

regime FB A AS FB (CS) FB A AS FB (CS) FB A AS FB (CS)

1 9.3 11.7 5.5 7.6 32.8 33.4 30.8 30.5 12.6 12.9 11.4 11.7

5 2.1 2.3 2.0 1.7 12.4 13.5 20.6 11.7 2.7 3.2 3.0 2.4

10 1.3 1.4 1.3 1.0 7.9 8.3 15.7 7.5 1.4 1.6 1.5 1.2

r1 66.6 54.8 1518.6 54.1 91.8 77.9 1122.7 75.0 96.0 80.4 942.8 75.3

r2 34.1 26.5 105.4 13.9 48.6 39.9 86.2 32.2 47.0 31.1 66.7 15.0

Table 5.2: AMSE (×104) simulation results for different binomial size regimes and signals

described in the text: signal length N = 1024.
Binomial P3 Blocks Sinlog

regime FB A AS FB (CS) FB A AS FB (CS) FB A AS FB (CS)

1 3.3 5.7 2.0 2.9 16.2 16.9 22.8 14.2 3.3 3.6 3.4 3.0

5 0.7 0.9 0.7 0.7 6.7 7.6 15.4 6.0 0.7 1.0 0.9 0.6

10 0.5 0.5 0.5 0.4 4.4 4.7 11.5 4.0 0.4 0.5 0.5 0.3

r1 67.0 55.4 1303.6 54.5 90.2 77.0 1300.4 65.1 95.9 80.5 1053.5 65.4

r2 34.6 26.8 129.7 12.0 45.7 33.4 86.9 18.8 47.1 31.3 68.6 10.1
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The results of the simulation study are very encouraging. When the binomial

size is fixed, our algorithm outperforms the Anscombe across the different signals

all of the time, and beats the Antoniadis and Sapatinas (2001) method in a lot

of cases. For the randomly-generated binomial sizes (regimes r1 and r2), the AS

technique does not perform well, and Anscombe performs better than our regular

method. However, the performance gain from using our method combined with

cycle-spinning for these regimes is clear: there is an improvement over our regular

method and over Anscombe. The relative performance of the Haar-NN transform

seems to increase as the signal length increases. Initial investigation into other

thresholding techniques indicate that there could be further improvements with

our method.

5.2 Application: DNA Isochore detection

There has been substantial work in the field of bioinformatics in recent years, and

the quest to improve existing methods and computational techniques is also of

great importance. In particular, DNA sequencing and gene expression methods

are a couple of the topics in this area. One important problem in these areas is the

modelling and prediction of isochore clusters in DNA sequence data (Bernardi,

2000). In this section we hope to use the Gaussianizing and variance stabilizing

properties of the Haar-NN method for this application.

Biological background to the isochore problem. DNA sequences are

strings (polymers) of nucleotides, chemical compounds which play important bi-

ological rôles. Each nucleotide is characterized by its nitrogen base, represented

by a letter: A (adenine); C (cytosine); G (guanine); and T (thymine). These four

nucleotide bases come from two compound base pair groups, namely purines (ade-

nine and thymine) and pyrimidines (cytosine and guanine), differing in structure.

For a more detailed discussion of the structure of DNA, see any introductory text

on genomics, for example Brown (2002). G+C content can be seen as the ratio

between the number of pyrimidine nucleotides to the total number of nucleotides

in a DNA segment.

A school of thought in bioinformatics accepts an isochore model for DNA,

which asserts that chromosome DNA sequences are mosaics of long DNA seg-

ments of (fairly) homogenous G+C content in adjacent segments (Oliver, Carpena,
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Hackenberg and Bernaola-Galvan, 2004); under this model, the G+C content mo-

saics differs for different organisms, especially between warm- and cold-blooded

vertebrates (Bernardi, 2000), and so prediction is of obvious interest, for example,

in organism classification applications.

IsoFinder: an existing approach to the isochore problem. In Oliver,

Carpena, Hackenberg and Bernaola-Galvan (2004) and Zhang and Chen (2004),

a procedure of sequential hypothesis testing is implemented to attempt to model

the distribution of G+C cluster sizes of a DNA sequence.

The procedure works as follows. The G+C content of the sequence is counted,

and a t-statistic is used to assess the significance of the difference in mean G+C

values on either side of a sliding pointer moving along the DNA sequence. After

heterogeneity is filtered out, the information is used to split the original sequence

into two distinct regions of differing G+C mean value. This is method is then

repeated on successive blocks until the original sequence is divided into a number

of regions with significantly different mean G+C levels. These obtained clusters

are predictions of isochores of the original DNA sequence. This method is known

as the IsoFinder procedure.

Haar-NN transform approach to the isochore problem. Let us con-

sider a DNA sequence. Since we are interested in the sections of the strand

containing G+C content, we can view the DNA section as a binary sequence

with a corresponding sequence of indicator values at each nucleotide site, show-

ing whether or not a particular nucleotide comes from the pyrimidine (G or

C) base pair: for an unseen strand, if we assume each molecule along the se-

quence is from one of the two nucleotide base pairs independently, we can assign

Bernoulli random variables at the nucleotide sites. Suppose we have a DNA

sequence of length n = 2J . Let Xk indicate the type of nucleotide k. Then

Xk ∼Bernoulli(pk), and so P(nucleotide k has G+C content) = P(Xk = 1) = pk

and P(nucleotide k has A+T content) = P(Xk = 0) = 1 − pk = qk. Estimat-

ing equal pk for long consecutive sequences of k indicate regions of equal G+C

content, and is representative of an isochore.

Example. To test the G+C proportion estimation procedure, a chromosome

strand was acquired from the Wellcome Trust Sanger Institute Human Genome

Sequencing Group, namely the chromosome 20 of the human genome (available
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online from the website http://www.sanger.ac.uk/HGP/). To make it feasible

to process this data with our method, the sequence strands were cropped to

221 = 2097152 bases, and then converted into binary sequences indicating G+C

content as outlined above.

In the denoising step of the algorithm in Section 5, we used the Haar DWT

with Sureshrink thresholding (Donoho and Johnstone, 1995), with primary reso-

lution level 3. However, we modified the smoothing procedure. Recall that in the

IsoFinder procedure, there is an in-place heterogeneity filtering. This is usually

applied to filter out isochores of less than 3 kilobases from the resulting iso-

chore maps, so that these map estimates resemble mammalian genomes (Oliver,

Carpena, Hackenberg and Bernaola-Galvan, 2004). To mimic this filtering, in

the denoising step of the procedure, we set the finest 11 detail coefficient levels

to zero (after thresholding) before inverting the discrete wavelet transform. This

has the effect of ensuring that isochore regions of less than 211 = 2048 bases

do not feature in our estimates of G+C content produced after inversion of the

wavelet transform.

As a comparison to our procedure, the IsoFinder method was also applied

to the cropped nucleotide sequence, using the online IsoFinder implementation

(which can be found at http://bioinfo2.ugr.es/IsoF/isofinder.html). Fig-

ure 5.2 was created using this web interface.

Figure 5.2: Isochore map of chromosome 20 of the human genome, as estimated by the

Isofinder procedure (with 3 kilobase filtering).
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Figure 5.3: Isochore map of chromosome 20 of the human genome, as estimated by our

Haar-Fisz Gaussianizing procedure (with 11 finest detail coefficient levels set to zero).

Figures 5.2 and 5.3 give estimates for the (unknown) isochore profile of chro-

mosome 20 for the two procedures. Whilst the estimates produced using our

method are more “spiky” and show shorter isochore regions, the estimates for

both procedures exhibit similar overall features. It should be noted here that our

estimates use SureShrink thresholding, with no consideration for the effect of the

primary resolution level. More complex thresholding procedures could produce

more homogeneous estimates. Also, our method uses a low kilobase filtering

compared to the IsoFinder procedure (due to being constrained to a power of

two) so is more likely to produce estimates which exhibit less homogeneity.

6 Conclusions

This article has proposed a new transform, ζB, that possesses variance-stabilizing

properties for binomial random variables. An asymptotic result was established

about this transform, and simulations for different binomial sizes and probabil-

ities were performed to investigate how well it Gaussianizes and stabilizes the

variance compared to current normalizing transforms. The results indicate that

our transform does very well for smaller binomial sizes, n, and/or for extreme



BINOMIAL PROPORTION ESTIMATION 23

binomial proportions.

Section 4 introduced a new modified Haar transform using our Gaussianiz-

ing transform. This was compared to the Anscombe transform also, and it was

found to again outperform the traditional transformation for smaller binomial

sizes and/or binomial proportions nearer the boundaries of the interval (0,1).

This improvement for small n and extreme proportions is important, since in

practice, large binomial sizes and “nice” success probabilities could be unrealis-

tic. This evidence of good properties lead us to suggest an algorithm for binomial

proportion curve estimation. Investigations show error improvements over com-

petitors, especially when adopting cycle-spinning, with better performance in all

but a few cases. The technique was then applied to isochore prediction.

Software code that implements our Haar-NN transform is freely available at

the CRAN R software archive as an R package. It can also be found at

http://www.stats.bris.ac.uk/ maman/computerstuff/Binfisz.html.
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