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Abstract

Many wavelet shrinkage methods assume that the data are observed on an equally spaced grid of
length of the form 27 for some J. These methods require serious modification or preprocessed data to
cope with irregularly spaced data. The lifting scheme is a recent mathematical innovation that obtains
a multiscale analysis for irregularly spaced data.

A key lifting component is the “predict” step where a prediction of a data point is made. The
residual from the prediction is stored and can be thought of as a wavelet coefficient. This article
exploits the flexibility of lifting by adaptively choosing the kind of prediction according to a criterion.
In this way the smoothness of the underlying ‘wavelet’ can be adapted to the local properties of the
function. Multiple observations at a point can readily be handled by lifting through a suitable choice
of prediction. We adapt existing shrinkage rules to work with our adaptive lifting methods.

We use simulation to demonstrate the improved sparsity of our techniques and improved regres-
sion performance when compared to both wavelet and non-wavelet methods suitable for irregular
data. We also exhibit the benefits of our adaptive lifting on the real inductance plethysmography and
motorcycle data.

Keywords: Curve estimation, lifting, nonparametric regression, wavelets.

1 Introduction

Wavelet shrinkage is used extensively for estimating functions which have been corrupted by noise.
We assume a basic knowledge of wavelet shrinkage but reiterate key points throughout the paper.
Recall that the general idea is to wavelet transform the observed data, for example using the discrete
wavelet transform (DWT), threshold the wavelet coefficients, and then invert the transform to form an
estimate.

This paper proposes adaptive lifting, a wavelet-like decomposition motivated by the aim of adapt-
ing the smoothness of each wavelet basis function to the local features of the given data. We will
demonstrate that our adaptive ‘wavelets’ possess good compression and denoising properties for ir-
regularly spaced data. Many real data sets contain multiple observations at single data points which
our adaptive lifting methodology can readily handle (and which classical wavelet shrinkage usually
cannot).

*Corresponding author: Mat t . Nunes@r i stol . ac. uk



We have found that modified versions of empirical Bayes methods described by Johnstone and
Silverman (2004a,b, 2005) work well for shrinkage on our adaptive lifting transforms. We shall show
through simulations that our two adaptive lifting transforms perform well against other smoothing
methods, such as Locfit (Loader, 1997, 1999), smoothing splines and the wavelet method introduced
by Kovac and Silverman (2000) for irregular data.

Section 2 reviews wavelet shrinkage methods for both regularly and irregularly spaced data and re-
views the lifting scheme in general terms. Section 3 introduces our adaptive versions of the coefficient-
by-coefficient lifting scheme and discusses methods of shrinkage for nonparametric regression. Sec-
tion 4 gives some simulation preliminaries. Section 5 investigates the sparsity of adaptive lifting
coefficient sequences on simulated data and compares it to other wavelet methods. Section 6 presents
a comprehensive simulation study that compares our new methods to other wavelet and non-wavelet
techniques and also illustrates our methods on real data. Section 7 concludes and outlines ideas for
further work.

2 Multiscale methods for regression

Multiscale methods for nonparametric regression have become increasingly popular over the last
decade. See Vidakovic (1999); Abramovich et al. (2000); Percival and Walden (2000) for reviews.
A popular model that dominates the wavelet shrinkage literature is given by

fi = g(z:) + &, 1)

fori = 1,...,n. The goal of wavelet shrinkage is to estimate g from the f; sequence. Most of the
work in this area is univariate and many methods, implicitly or explicitly, cope only with situations
that further assume:

1. The regression ordinates z; are equally spaced. Typically z; = ¢/n for integersi = 1,...,n;
2. n is a power of two;

3. The ¢; are independent and identically distributed and sometimes assumed to be Gaussian;
4. For each i there is one (and only one) f;.

These assumptions are not satisfied by many real data sets: for example, the well-known mcycle
motorcycle data from Silverman (1985). The methods we develop here are designed to work with
irregularly spaced data sets of any length, with the possibility of multiple f; for each 7. We also
consider departures from the above third assumption later in Section 3.3.

2.1 Review of wavelet methods for regular designs

By now wavelet shrinkage with the classical DWT is well known. To help establish our notation for
what comes later we shall briefly outline the procedure.
A multiresolution analysis of a function g(z) € L2(R) is an expansion given by

9(z) =Y G ppon(®) + Y > df (), )
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where v, () = 2//24)(27z — k) and similarly for ¢, x(z). The functions (z) and () are called
the mother wavelet and scaling function respectively. The name wavelet arises from 1 (z) being an



oscillatory function of short extent, ideally of compact support. For certain choices of 1 € L2(R),
the family {1; x(z)}, xez forms an orthonormal wavelet basis of L2(R), in which case {d %k Yikez 1
given by di =<9, Yk > and provides information about g at scale 277 near position 2 Jk

For an equally spaced sequence g = {g(i/n)}?™, for n = 27 the DWT computes discrete (peri-
odic) wavelet coefficients d* = {d £ }j=0,...,J—1;k=0,..,2i —1, Where the d7 , have the same scale and
location interpretation as before, but now about the sequence g rather than the function g(z). Note
that we abuse notation by keeping the same symbols for both the discrete and continuous wavelet
coefficients. It is also possible to decompose the sequence g down to some primary resolution
level, L, so that the discrete wavelet coefficients are d* = {cz,e,d’;,k} fort = 0,...,2 — 1 and
j=L+1,...,J—1andk =0,...,27~L. In other words, the coefficients are divided into scaling
function coefficients c7, , (which carry information about the average of the sequence g at a given
scale L and location 2~ LE) and wavelet coefficients d* (as before). The DWT can be expressed as
a matrix multiplication d* = Wg, where W is an orthogonal matrix derived from the ¢ (z) wavelet.
However, in most implementations the fast DWT of Mallat (1989) is used for computing the DWT.

Applying the DWT to model (1) yields:

d=d"+e, (3)

where d is the DWT of f = {f;}; and e is the DWT of {¢;}7_,. The wavelet shrinkage problem
then becomes how can one estimate d* from the d? For many real signals the wavelet transform of g is
sparse and hence a thresholding approach is often adopted and successful. For further information on
carrying out the DWT and basic thresholding in a statistical context see Nason and Silverman (1994);
for early work on wavelet shrinkage see Donoho and Johnstone (1994, 1995); Donoho et al. (1995);
see the above mentioned references for further reviews.

Here we have only mentioned the most popular orthonormal transform linked to an orthonormal
basis of wavelets. More general and flexible schemes include Riesz bases or bases where there are
biorthogonal analysis and synthesis wavelets.

There are several families of wavelets that one might use. Popular families include the Daubechies
(1992) compactly supported wavelets which offer wavelets with widely varying degrees of smooth-
ness. A common question, not well answered by the existing wavelet shrinkage literature is “which
wavelet should I use?” General advice is to “use a wavelet that matches or exceeds the smoothness
characteristics of g(z)”. Of course, in practice, g(z) is unknown and so the advice is not always of
much help. Some work (e.g. Nason (2002)) suggests using cross-validation to choose the wavelet
smoothness, which can help, but not for functions that possess varying degrees of smoothness in
different locations.

One of the philosophies of our adaptive lifting is that not only do the (effective) smoothing pa-
rameters change over the domain of the data but also the (smoothness) class of the basis functions,
and so the precise choice of wavelet no longer rests with the user.

2.2 Review of wavelet methods for irregular designs

Various methods have been proposed to adapt irregularly spaced data to the “equally-spaced” DWT.
We discuss the advantages and disadvantages of some of these.

Cai and Brown (1998) proposed taking into account the irregularity by using the correspondence
z; = H~1(i/n), where H is a strictly increasing function which usually needs to be estimated. This
allows the mapping of the function ¢ collected on an irregular grid into the function go H ~! collected
on a regular grid, which hence can be estimated. By composing this estimator with H, an estimator



of g can be obtained. Yet this proves not to be a good estimator, especially when g is much smoother
than H. In these conditions, for piecewise Holder functions, an estimator of g is constructed, based
on the wavelet decomposition of Proj,, n= /23" . f; B¢ (). A new threshold is obtained by a
generalization of the Donoho and Johnstone (1994) VisuShrink. The final estimator is proved to enjoy
nice theoretical properties.

Sardy et al. (1999) proposed four ways (comparable in performance) of extending the Haar
wavelet transform to irregularly spaced data, and then adapted VisuShrink to the modified transform.
Out of the proposed transforms, the isometric Haar wavelets are computationally simplest, and the
authors point out that they can be generalized to wavelets of higher order than Haar.

Cai and Brown (1999) show that when the x; are distributed independently on [0,1] the wavelet
method with universal threshold can be applied directly, as if the grid were regular. The motivation is
the use of the approximation x;y ~ E(z(;y) = i/(n + 1), and so the observations (i/(n + 1), f;) are
considered instead of (x;, f;). This estimator is also within a logarithmic factor of the minimax risk
over a range of Holder functions.

Kovac and Silverman (2000) map irregularly spaced data, f, to a regular grid, £, by a linear
interpolation of the original noisy values: f = Rf where the matrix R describes the interpolation.
The usual wavelet shrinkage can be applied to f and, additionally, to permit accurate thresholding,
the variance of the wavelet coefficients can be computed using a fast wavelet algorithm akin to the
2D DWT. To simultaneously handle the choice of wavelet, primary resolution level and threshold for
estimating the true function, Nason (2002) developed a fast cross-validation algorithm, able to work
on irregular grids using the Kovac-Silverman (KS) procedure.

Antoniadis and Fan (2001) formulated a penalized least squares problem in terms of the unknown
wavelet coefficients of g(i/n). Initially assuming a regular grid and » = 27, and under certain con-
ditions on the penalty function, they proved that a solution exists and is unique. They also introduced
a new universal threshold, proved to produce estimators with smaller risk than by using the classical
one. The procedure was extended to irregular data by constructing non-linear regularized Sobolev
interpolators as estimators and then improving them by constructing a regularized one-step estimator.

In Pensky and Vidakovic (2001) the z;’s are endowed with a probability space: X is considered to
be a random variable, with density function say &, to be estimated. The regression function E(f|X =
x) is then estimated by its projection on the space V; of a multiresolution analysis, i.e. >, ¢j @k
where ¢, is an estimator of ¢, based on ¢z and the estimator of k. The final estimator has good
properties, provided that A is reasonably smooth.

All the above methods enable wavelet shrinkage to be carried out for irregularly spaced data.
However, some of them assume models for the grid values that either might not apply (e.g. uniformly
distributed x;), or require the estimation of additional quantities (e.g. the function H or the density
h) that might be unreliable for small sample sizes. For interpolation methods, choices need to be
made, such as location and spacing of the regular grid or interpolation method, which will influence
performance. For some of the other methods, unreasonable assumptions on the smoothness of g are
made which might not hold in practice.

In our simulation study later we also compare our new methods with two non-wavelet methods:
Locfit and smooth.spline(). Locfit is a technique that implements smoothing by using local
regression. A polynomial model is fitted to the data within a sliding window whose bandwidth controls
the smoothness of the fit. The S-Plus function smooth.spline() finds the function u(z) which
minimizes Y, { fi—p(z:)}2 + X [ 1" (z)? dz. The solution to this optimization problem is a piecewise
cubic spline function. The parameter A controls the balance between the fidelity to the data and the
‘wiggliness’ of the curve. A detailed discussion of both these methods is beyond the scope of this
paper so we refer the reader to Loader (1999, 1997) for details on Locfit and Green and Silverman



(1994) for details on smoothing splines.

2.3 Lifting

Recently, a new mathematical technique called lifting was developed, which enabled wavelet-like
multiresolution analyses to be applied to very general data situations. In particular, lifting can be
applied to irregularly spaced data.

We will first provide an informal introduction to the lifting scheme as introduced by Sweldens
(1996, 1997). Lifting a signal consists of three main steps: split, predict (dual lifting) and update
(primal lifting) which we now describe. Split: the points f; are separated into odd- and evenly-indexed
sets. The next task is to predict the odd-indexed f-values by using the information contained in the
evenly-indexed f-values. Of course, good prediction is only possible if the function f possesses some
degree of local smoothness. The prediction error (the difference between the true function values on
the odd positions and the predicted values on the same positions) is then quantified in a vector, called
a detail vector. The final update step consists of updating the f-values on the even positions by using
a linear combination of the (old) evenly-indexed f-values and the detail vector. The purpose of this
update stage is to preserve in the updated values some quantity of the initial signal (such as the mean
value of the signal) over successive repetitions of this procedure. After iterating the split-predict-
update procedure on the updated values, the initial data, f, is replaced by the remaining updated
subsample (which reproduces the coarse scale features of the signal) and the detail coefficients which
accumulate throughout the process. This is similar to the DWT which replaces f by a set of father and
mother wavelet coefficients.

The above construction can be put in a formal biorthogonal multiresolution analysis (MRA)
framework, that parallels the one that introduces the classical wavelets, with a few important dif-
ferences (see Sweldens, 1997). One very important difference, is that the basis functions are no
longer necessarily dilations and translations of the same functions. Also, the lifting construction gen-
erates bases that are not guaranteed to be Riesz, and hence they can exhibit stability problems, which
we investigate for our construction below. (Stability issues with odd/even splits and suggestions for
improvements appear in Simoens and Vandewalle (2003). Also Vanraes et al. (2002) show that in-
creasing grid irregularity can result in stability problems and propose two stabilization schemes).

Delouille et al. (2001) and Delouille et al. (2004) both describe some of the first lifting techniques
for nonparametric regression of irregularly spaced data. The first of these nice papers describe the
unbalanced Haar transform, a way of adapting Haar wavelets to an irregular design. The second
builds on this work and enables smoother ‘wavelets’ using interpolation in the predict step. Both of
these techniques make use of a dyadic-like partitioning of the interval on which they are working.

In more than one dimension it is not possible to use the even/odd split, but there are various
alternatives. In our work, described below, we adopt the ‘one coefficient at a time’ split proposed by
Jansen et al. (2001, 2004), where the current scaling coefficients are split into two groups, but one
group contains only one coefficient that gets predicted by its neighbours from the other group.

The *one coefficient at a time” approach also makes it extremely easy to introduce adaptivity to
the lifting: every time a coefficient gets removed we can make a choice about how we lift it to achieve
the *best” wavelet coefficient at that particular point.



3 Adaptivelifting

We introduce an adaptive lifting algorithm which forms a key component of our nonparametric re-
gression algorithm. The advantages are:

1. The algorithm is highly adaptive. This means that, at each step, a choice of the type of predic-
tion is made: this permits a local choice of vanishing moments (wavelet smoothness). At each
step we try a number of possibilities for prediction and choose the one which gives maximum
compression (measured as the smallest absolute value of the wavelet coefficient).

2. Lifting coefficients resemble wavelet coefficients and so many techniques previously designed
for “denoising’ wavelet coefficients can also be used here.

3. The algorithm is computationally efficient O(n).
4. Itis simple to handle the situation of multiple y values for a given x value.

Like many manifestations of lifting that have gone before, our technique is entirely computational.
However, comprehensive simulations, shown later, demonstrate that adaptive lifting is competitive. Of
course, a statistical theory for its asymptotic or even a mathematical theory for the lifting smoothness
properties would be extremely interesting, but challenging.

3.1 Previous adaptive lifting schemes

The ideal of adaptivity in lifting is clearly appealing. Most adaptive lifting has been used in a 2D
context (mostly for image compression) although some 1D studies exist.

Claypoole et al. (2003) proposed an adaptive lifting scheme for image compression. Their pre-
diction step consists of adaptively choosing from a set of linear predictors (the (1, N') branch of the
Cohen-Daubechies-Feauveau family), in such a way that if an edge is detected in the image, then the
wavelet is chosen such that its support does not overlap the edge. In order not to send information
on the predictor being chosen when applying the algorithm for lossy coding, and to ensure that the
update stage preserves the frequency localization, the update stage is applied first. In this way all the
‘scaling function’ coefficients (down to the coarsest scale) are obtained through updating, and then
quantized. Then the prediction stage is applied to the quantized coefficients, and the detail coeffi-
cients are computed, quantized and transmitted. The “update first” approach originates in the paper
Claypoole et al. (1998), where two adaptive algorithms are proposed: the scale-adapted transform in
which the predictor gets adapted to match the signal structure at each scale, and the space-adapted
transform, which chooses from a family of predictors the one that minimizes each detail value. A
small simulation study on regular grids is provided, which shows that the proposed algorithms give
very similar results, sometimes slightly better than those obtained if using the Daubechies wavelets
on denoising the classical Donoho-Johnstone signals.

Piella and Heijmans (2002) also follow an update first strategy, followed by the prediction step, but
unlike Claypoole et al. (1998) they introduce adaptiveness into the update stage, leaving the predictor
of a fixed form. The algorithm’s behaviour is briefly investigated by denoising a few signals, and only
compared to the results produced by its fixed linear version, no other comparisons being made.

Trappe and Liu (2000) built adaptiveness into the prediction step which has the goal of minimizing
the l2-norm of the signal by using Wiener filtering. This adaptive algorithm was used for decorrelating
the low-pass and high-pass subbands of an AR(2) process, and then for the shrinkage of the same



process, corrupted by Gaussian noise. Boulgouris et al. (2001) develop an adaptive lifting scheme for
the still image lossless compression.

In all the above work the philosophy is to choose the ‘wavelet functions’ locally to represent
the signal in the most efficient way. The above adaptive lifting techniques use the usual odd/even
splitting, whereas we augment the ‘one coefficient at a time” methodology of Jansen et al. (2001) with
adaptiveness. Further, we address the statistically important case of multiple y values for each given
Z.

3.2 Adaptive lifting one coefficient at a time

First we summarize a slightly simplified 1D version of the multivariate lifting ‘one coefficient at a
time” algorithm of Jansen et al. (2001). Then we explain how to make the algorithm adaptive.

3.2.1 Lifting one coefficient at a time

Suppose we have a function f, sampled at n irregularly-spaced points, x;, on the real line. Our
aim is to transform the sampled function values by means of lifting into a set of detail and scaling
coefficients. Since we work in 1D, we can order the z-values and associate intervals to each point. A
simple way of doing this is to construct intervals having the endpoints as the midpoints between the
initial grid points.

In order to express the initial (input) function as a linear combination of scaling functions, we
take the initial scaling functions to be the characteristic functions of the intervals associated with each
point. Hence, we then have the property that ¢y, (z;) = d; %, for k,i € {1,...,n}, and f can be
expressed as

n
f({I,‘) = Ecn,k(Pn,k(x)a (4)
k=1
where f(z;) = > %_1 cnkbik = cn,i- In this way, the function values on the irregular grid are used as
the initial scaling coefficients.

For the first lifting step (say, stage n) a point to be lifted must be chosen. We choose the point to
be lifted, jn, such that [ ¢nj, () dz = mingeqq, . ny [ @nk(z) dz. By using the minimum scaling
function integral, we choose the point with the finest detail. Since we use the interval construction to
represent the scaling function integrals, the smaller integral values correspond to regions where the
function has been densely sampled, and thus removal of a point will only cause small information loss
in the signal. So the first coefficients to be obtained are the ones corresponding to the finest detail,
with further steps eliciting progressively coarser detail.

After choosing the point to be removed, j,, we identify its set of neighbours, I,,. Since there is a
one-to-one correspondence between the point to be removed and its removal stage, we index each set
of neighbours by the stage (here, n). We use the neighbours to predict the value of the function at j,,
using simple regression techniques. Both neighbourhood definition and regression method are crucial
to our installation of adaptivity, and so we defer their description to the next section.

The prediction phase yields an estimate of the form Zieln aj'c, ;, Where o™ are the weights re-
sulting from the regression procedure over I,. If 5, has only one neighbour, 4, then the prediction is
f(=z;). The detail coefficient will be obtained from

d]n = Cnyjn, — Z a"incnyi’ (5)

i€ly



or in the one neighbour case,
d]n = Cn’j’n - C”’i' (6)

The update phase only affects the scaling coefficients associated with the neighbouring points:
Cn—1,i = Cpnyi + b?djn, Vi € In,% # jn. @)

Forany i ¢ I, (i # jy) the scaling coefficients are unaffected, ¢,,—1; := ¢, ;. The aim of the update
stage is to keep D _;c; cni [ ¢n,i(e) dz constant across the scales, where the sum is indexed by the
unlifted coefficients. In other words:

cn,jn/¢n,jn($) dz + ) Cn,i/fﬁn,i(w) dz =) Cn—1,i/¢n—1,i($) dz, (8)

i€l, iel,

and the b™ are obtained using this condition. Further, the integral associated with the removed point
gets redistributed to its neighbours, see Jansen et al. (2001, 2004) for further details on these issues.
At this point, Jansen et al. (2004) state that the signal can be represented as

f@)=dj, i@+ > e vivn 1i(x), ©9)
1€{L,...,n}\{jn}

where 9;, and (pn—1,:); are the analogues of the usual wavelet and scaling functions. To summarize,
we started with representation (4), a point, j,,, is identified, the scaling function ¢,, ;, is destroyed and
a wavelet 1, is created with new coefficient d;,,. All neighbouring scaling function coefficients of
point j, get updated. All this results in representation (9).

However, unlike the usual discrete wavelet case there are no neat analytical formulae for the
scaling and wavelet functions. These functions are recursively constructed as the algorithm proceeds
and depend on the locations of the input points {z;}. It is possible to construct the wavelet functions
by performing a forward transform on a zero function at the locations {z;}, then inserting the value 1
at the location of the wavelet coefficient whose wavelet function you want to construct and applying
the inverse lifting transform. This same method is often used to construct pictures of mother wavelets
in the regular case.

More details on the precise interpretation and construction can be found in Jansen et al. (2001,
2004). Orthogonality of the wavelet and scaling functions is a desirable feature since it would ensure
the stability of the transform, but it does not hold in this context.

After obtaining the predicted and updated values, the grid point 5, is removed, and the process
repeated: a new point is chosen based on the minimum of the updated integrals, a neighbourhood
structure is determined out of the remaining grid points (the ones which have not been removed yet
nor chosen at the current stage), and the prediction and update steps are performed.

As a result, at the end of stage r (after points j,,, jn_1,- .., - have been removed), the signal f
will be represented as a linear combination of the n — r + 1 wavelet functions generated through
the transform and of the remaining (updated) scaling functions, with the corresponding coefficients
consisting of details and “low frequency” coefficients:

flz) = Z dj, Vi, (z) + Z Cr—l,iSDr—l,i(‘T)- (10)

ke{n,n—l,...,r} ie{li-“an}\{jn:jn—la---:jT}



3.2.2 Adding adaptivity

Let us return to the issue of neighbour choice. We can employ prediction based on symmetrical
neighbours: the same number of neighbours on the left and right of the removed point or choose the
closest neighbours to the removed point irrespective of which side they lie. Our software allows for
prediction with any number of neighbours.

For prediction we use regression of up to order three using the neighbours as explanatory variables
(that is linear, quadratic or cubic regression over the specified neighbourhood). In wavelet language
this corresponds to locally using more vanishing moments, which is of great utility when the function
is locally smooth, but not when there are discontinuities present.

We want our transform to adjust itself to the local signal structure. Hence for each lifting step we
permit two sources of adaptiveness: order of the regression and neighbourhood size and configuration.
The two methods we introduce are:

AdaptPred. At each step the order of regression (linear, quadratic, cubic; with or without intercept)
is chosen that generates the smallest detail coefficient in absolute value. The neighbourhood
size and configuration are specified by the user. The ‘wavelet bases’ adapt themselves to the
signal smoothness.

AdaptNeigh. In addition to AdaptPred, a choice is made over several possibilities of neighbourhood
size and configuration, such that the smallest detail coefficient (in absolute value) is obtained.
The considered neighbourhood configurations are symmetric neighbours up to and including a
pre-specified number each side, and of closest neighbours up to twice the specified number.

At this point one might like to refer to Figures 6 and 7 which show two test signals decomposed
with an AdaptNeigh algorithm. The plots show where linear, quadratic and cubic basis functions get
placed.

Let us now make some remarks on the implications of the above constructions.

e InJansen et al. (2001), for each stage r the prediction weights (af);cz, are designed to sum to
one. When regression with an intercept is used the sum is one, and areas where the function is
constant yield exactly zero detail coefficients. When an intercept is not used the weights are not

guaranteed to sum to one.

e A consequence of using closest neighbours is that the prediction weights can take negative
values. This in turn will imply that when updating the corresponding integrals, they will become
smaller rather than larger, contradicting the intuition that since we remove a point, each of the
remaining points should span a larger set to account for the removed point. Hence note that for
this situation, the observation in Jansen et al. (2004) that the scales of the wavelet functions are
a monotonic function of the index, does not hold.

e The number of neighbours to be used in either of the two configurations (closest or symmetrical)
is pre-specified by the user, and the choice can be made based on prior knowledge of the signal.
When the point to be removed is on the boundary, rather than using the requested number of
neighbours (coming from only one side), we use only its closest neighbour to prevent using
artificial boundary neighbours. Also, after reiterating the algorithm several times, the requested
number of neighbours might not be available, and in this case we decrease the number of used
neighbours to the maximum available.



e To ensure a stable transform, non-degenerate regression curves are desired. Yet the higher
the order of prediction we use, the more neighbours we have to request in order to get non-
degenerate curves. For instance, in order to obtain a line with a slope, we need at least two
points (neighbours), but for a parabola we will need at least three, while for a cubic at least
four. At certain steps of the transform we will be in situations of having fewer neighbours
than requested, so we decrease the order of the prediction curve as necessary. Hence the final
transform will be a mixture of regression orders even when requiring a fixed order of prediction
(linear, quadratic or cubic) all way through the lifting scheme, and so the final order of our
MRA will not be exactly 2, 3 or 4, respectively.

e When using the lifting scheme with a fixed prediction strategy (linear, quadratic or cubic), the
prediction and update weights will depend on the grid structure and on the type of prediction,
hence the transform is a linear one. However, when using an adaptive approach, the prediction
weights will be a function of the signal, since we build filters which depend on f. Hence
the signal influences the prediction weights, and it also influences the updated integrals and
the choice of the point to be removed next. As a consequence, the matrix associated to the
transform, W, will be a function of the signal, f, which means that the adaptive transform is
no longer linear. Thus, we cannot simply characterize the stability of our adaptive transform in
terms of matrix condition numbers (see Section 5), although some form of expected condition
number might be of some use.

3.3 Statistical shrinkage for adaptive lifting

We now examine how to denoise signals. We assume the following well-established model for our
observation data ( ;)i ;
fi=gi+ ¢, (11)

fori € {1,...,n}, where g; is the population value to be estimated and ¢; is identically distributed,
independent noise, assumed here to follow a N (0, o2) distribution. This classical problem has been
thoroughly addressed in the statistical literature. With wavelet shrinkage, denoising is achieved by
taking the wavelet transform of (11). Theoretically the wavelet coefficients of g; can be shown to
form a sparse set, and it can be shown that diagonal coefficient shrinkage is an optimal strategy (see,
e.g., Donoho and Johnstone, 1994). We demonstrate computationally (in Section 5) that our adaptive
lifting produces sparse coefficient sets, so it makes sense to adopt recent wavelet shrinkage techniques
for our coefficient processing. A review of wavelet shrinkage appears in Abramovich et al. (2000) and
some more recent techniques are described and compared in Barber and Nason (2004). Our shrinkage
is based on Johnstone and Silverman (2004a,b, 2005), which also contains further detailed references
to related and earlier work in this large body of literature.
After transformation, model (11) is converted to

djk = djj + ejk, (12)

where d;; are the observed wavelet coefficients, d7 , are the true coefficients and e; i, is the DWT of
the noise e, ;. For the classical DWT, e, is itself distributed as independent N (0, o), but for our
lifting which lacks orthogonality, the noise will be correlated and different coefficients have different
variances. This phenomenon is carefully considered below so that a suitable shrinkage algorithm can
be devised.
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3.3.1 The empirical Bayesian wavelet shrinkage approach

First let us review how empirical Bayes wavelet shrinkage works for the DWT and then we shall
describe the modifications necessary for adaptive lifting.

For wide classes of functions we know that their DWT coefficients are sparsely populated (i.e.
most wavelet coefficients are zero and a few are non-zero). Hence a good choice of prior for a DWT
coefficient is:

&y ~ (1 — )8 + 717, (13)

where 7 is the prior probability of a DWT coefficient being non-zero, and conditioned on it being non-
zero it has density function given by . Recent work by Johnstone and Silverman (2004a, 2005) shows
that a heavy-tailed choice of v demonstrates excellent theoretical and practical advantages: here we
use their “quasi-Cauchy” prior. In the DWT it is assumed that wavelet coefficients at the same scale,
7, all have the same prior probability, denoted =, of being non-zero. From the signal plus noise model
in (12) we know that the likelihood of d;.|d}. is given by d;. ~ N(d., o?) independently conditional
on the d7 . The posterior distribution of d7. given d;. can be calculated from the prior and likelihood
in the usual way. The hyperparameters are estimated as follows: =; is estimated using a level-wise
marginal-maximum likelihood (MML) and o is estimated from the median absolute deviation (MAD)
from zero of the finest observed details (as in Donoho and Johnstone, 1994). The “true” wavelet
coefficients can then be estimated by the median of the posterior distribution (this operation acts as a
true thresholding operation on the noisy wavelet coefficients d7.).

3.3.2 Modifications for adaptive lifting

Lack of discrete dyadic scales. In the DWT scale is a discrete dyadic quantity. In ‘one coefficient
at a time’ lifting, scale becomes more of a continuous concept, and we define the scale of the detail
coefficient associated to 4, to be the integral I, ;. Then we mimic the Bayesian model above by
introducing artificial scale levels through partitioning the detail coefficients according to their scale
I, ;.. That is, we find the median, the upper quartile, the 87.5th quantile, etc. so that the “finest scale”
half of the coefficients are put into the finest scale level, the next “finest” half goes into the next finest
level, and so on and ; for each artificial scale level is estimated as before by MML. This definition
of (continuous) scale and artificial levels is borrowed from Jansen et al. (2001, 2004).

Correlation structure.

The structure of the adaptive lifting transform is dependent on the input function, f. Hence the
following results are obtained by, and only valid for, conditioning on the local structure.

The first step of the lifting transform in (5) is: dj, = cn 4, — D ser, @fifcnyi- Since the initial
observations are assumed independent, we have

var(d;,) = o? {1 + Z(a?)Z} . (14)

i€,

The update step in (7) gives, for all ¢ € I,,,% # jn,
var(cn—1,) = var(en,) + (07)* var(dy, ) + 26 cov(en,i, dj,), (15)

where cov(cp i, dj,) = —ala? from (5).
Also, for i, j € In,i # §, 4,§ # jn,

cov(Cn—1,isCn—1,) = (—a?b? — a?b?)o2 + bj' by var(d;,) (16)
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andfori € I,,j ¢ I,, 1,7 # jn We have
COV(Cn_l,Z', Cn—l,j) =0. (17)

Foranyi,j ¢ I, cov(cp—1,,¢n—1,4) = 0.

The above argument shows that the update step induces correlations between the coarser coeffi-
cients as the algorithm proceeds, with the correlations propagating through the collection of coeffi-
cients. If W is the matrix associated with the transform, then the resulting vector of coefficients can
be written as Wf. Hence var(Wf) = W var(f)W* = o2WW'* under model (11).

Following Jansen et al. (2001, 2004) we ignore these correlations in our empirical Bayes pro-
cedure. On the other hand, given the normality assumptions in (11) the detail coefficients will be
normally distributed.

From the above it is also clear that even though each £; has variance o2, the resulting details will
have different variances. To overcome this we apply the empirical Bayes method to the normalized
detail coefficients d, {diag(WW*), } ~/2 which all have the same variance. The final thresholded
coefficients are the medians of the posterior distributions of the normalized details, multiplied by
{diag(WW™),}1/2. The thresholded coefficients are then inverted to obtain the denoised signal.

We have also developed procedures to take into account situations when the initial signal obser-
vations are subject to heteroscedastic noise. Assuming the initial observations variances are known
up to proportionality, we get var(f;) = o2+2, where -; is the known proportionality factor and o2
is unknown. After applying the lifting transform (in one of its linear variants), the variances of the
detail coefficients are described by var(d;) = 0 Y icqy .3 YW/, Where Wy is the (j,4)th entry
in W. To estimate o we normalize the wavelet coefficients by dividing by \/Zie{l,...,n} 71-21/7/]-2’2- and
then use the MAD of the normalized details belonging to the first artificial level. After normalizing,
thresholding and “un-normalizing”, we can invert the transform to form an estimate.

If the variance is heteroscedastic without any structural knowledge (like known up to a constant),
then we estimate the variance o; associated with the detail coefficient d; as suggested by Kovac and
Silverman (2000). First identify any other detail coefficients within a window centered on the z; in
the data domain. Then we estimate o; by the MAD of the identified coefficients lying in the finest
artificial level. Then we can threshold and invert the transform.

Multiple observations at a single gridpoint. For example, section 6.2 uses the famous motorcy-
cle data described by Silverman (1985) which contains such multiple observations. There are several
issues with multiple observations that arise in our lifting algorithm:

Problems with no modifications. If nothing in our algorithm is changed to take account of multiple
observations then we obtain the situation where some points receive zero integrals (since the
“distance” from one multiple point to another is zero). Hence, the points that get removed first
are the multiple ones. This is clearly a degenerate situation and so multiple points are considered
as having one z value, not many.

Removed point’s neighbours have multiple values. In this situation, the prediction regression curve
will be estimated using all of the extra information contained in the repeated observations at
neighbouring points. Since the regressions we use are simply polynomial ones this is easy to
do.

In the update step, all multiple neighbours get updated in the same way by the function of the
detail coefficient. So, if a neighbour point is multiple before the update step, it remains so
afterwards.

12



Removed point is itself multiple. In this situation there are many possibilities. Each of the repeated
observations can form individual distinct detail coefficients (just the difference between the
datum and the prediction curve). To form just one detail coefficient we take the mean of the
distinct individual detail coefficients (although other quantities such as the minimum might be
an interesting alternative).

Multiple points after all lifting steps. If any of the scaling coefficients are multiple after all lifting
steps, then their mean is used in the inverse transform.

4 Simulation techniques

In Sections 5 and 6, we compare our lifting algorithms to several other methods. In these sections we
refer to these techniques using the following abbreviations:

e KS - the Kovac-Silverman method Kovac and Silverman (2000);
e Locfit — the local polynomial fitting method by Loader (1997, 1999);

e SSCV -the S-Plus function smooth . spl 1ne() with a cross-validatory choice of the smooth-
ing parameter.

In our plots and tables we also abbreviate the names of our methods with a two-letter code. So
LP=Linear Prediction, QP=Quadratic Prediction, CP=Cubic Prediction, AN=AdaptNeigh (above) and
AP=AdaptPred (above). Then this code is followed by a number, N, which indicates the number of
neighbours used in the prediction step. Finally, except for AN where both nearest and symmetric
neighbours are considered, a single letter, N or S indicates that either the nearest neighbours were
used or neighbours were obtained symmetrically either side of the point to predict (note that when the
code is S then the actual number of neighbours is twice N).

5 Sparsity demonstration

A successful classical wavelet shrinkage algorithm relies on how efficient the transform is at sparsely
representing functions. This section examines the sparsity of our adaptive lifting transforms and
compares it to established methods. Our tests will be performed on the Doppler, Bumps, Blocks
and HeaviSine functions devised by Donoho and Johnstone (1994), and on the piecewise polynomial
(Ppoly) from Nason and Silverman (1994). We will investigate sparsity both on regular grids (to
facilitate comparison with classical Daubechies wavelets) and irregular (jittered) grids with varying
degrees of regularity.

Jittered grids. Start with a regular division of the interval [0,1] consisting of n points, where n
is the number of observations of the function f. The irregularity will be generated by shifting each
point around its location with a random value generated from a uniform distribution on the interval
(—=d/(n —1),d/(n — 1)). We use d to denote the degree of jitter. Three possible values were used,
dy = 0.01,de = 0.1 and d3 = 1. The reason for using jittered grids over, say, complete uniformly
distributed points in the interval is that for very small jitter, d, we can compare results with classical
wavelets on regular grids, and then we can see how our techniques perform as we progressively move
towards more random locations. When the jitter value d3 is chosen the data locations look uniform
and have lost all semblance of regularity.
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We perform simulations with data sets containing n = 256 points. For each jitter value we
measure the average performance of our transforms over 50 generated sets.

Sparsity plot construction. We shall construct a diagnostic tool called a sparsity plot, as follows.
We decompose the test signal on its irregular locations down to two scaling coefficients (all the rest are
detail coefficients). We then arrange the detail coefficients in ascending order of their absolute value.
Then, one by one, starting from the smallest, we replace each detail coefficient by zero, inverting
the transform each time. The number of detail coefficients which remain at each step (the ones not
transformed into zeroes) is plotted on the abscissa, and on the vertical axis we compute (at each step)
the integrated squared error after performing the transform inverse, ISE(z) = . (f; —fj(z’))Q. Here

i indexes the number of non-zero detail coefficients and £;(i) denotes the reconstructed value of £;
based on these details and the scaling coefficients. So 7 = 0 means that we perform the reconstruction
containing only the scaling coefficients. Then as 7 increases with each step we bring in one more
detail, starting from the largest one, in decreasing order of their absolute size. The 50 ISE curves are
then averaged to form the sparsity plot.

Stability. Unlike classical wavelets, adding an extra coefficient does not necessarily reduce the
ISE. Our adaptive lifting transforms do not even satisfy the conditions required of a Riesz basis: the
set (&) of L2(R) is a Riesz basis if, Vf € L*(R), 3 (cg), such that f(z) = Y ek (z) and

mllell, < Nfllz> < Mllell,,

where m, M are finite and depend only on the wavelet basis. The ratio & = Mm ™! is called the
condition number of the basis. For an orthonormal basis & = 1, whereas large values of k& indicate
potential problems.

We have numerically evaluated the condition number of our adaptive lifting transforms. Of course
one needs to take care because the precise form of the transform depends both on the exact type of
irregularity in the data set locations, and also on the characteristics of the test function. However,
some general conclusions emerge: (i) when larger neighbourhoods in the prediction step occur the
condition number is higher; (ii) higher orders of the prediction error curve also tend to give rise to
high condition numbers.

Sparsity plot discussion. LP (fixed linear prediction) with 2 neighbours gives the best compres-
sion out of all the linear algorithms, and it is also associated with small condition numbers across the
different data set locations. An interesting feature is that increasing irregularity did not seem to de-
crease sparsity or unduly increase the condition number. Over our simulations we found that AP2N,
AP1S and AN1 have small condition numbers (all of them in the same range across the grids), in-
dicating stability. All adaptive transforms give better compression than the non-adaptive ones, and
increasing the adaptiveness increases the sparsity of the wavelet coefficients. However, because of
potential stability issues, we would recommend using AN1, as it provides a good balance between
sparsity and stability, followed by AP2N and AP1S. These general conclusions were valid for all our
test signals although with HeaviSine there was not a lot of difference between AP2N, AN1 and LP2S.
As the irregularity of our input data x; increases (jitter increases) we have not noticed any major
differences in sparsity, see, for example, Figure 1.

When faced with not having enough neighbours to completely determine the required curve (e.g.
at the boundary), we tried another type of prediction step: the highest possible order curve forced
through the origin. However, we found that there was a tendency for this type of prediction step to
cause instability, though asymmetric neighbour selection did not adversely affect stability as long as
there were enough neighbours.

Figure 2 shows the sparsity plot for the Blocks signal that compares two of our new methods
(AP1S and AN1), with a similar construction for the KS algorithm and also sparsity plots constructed
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Figure 1: Blowup of sparsity plot for Doppler signal using AN1 over the three different jitter values:
dy (dotted); dy (dot-dashed); ds (dashed).

for Daubechies’ Extremal Phase wavelets (Haar and D7) on a regular grid. Figure 3 shows a blowup
of Figure 2 in the region where few non-zero coefficients are inserted. Our AN1 method seems
competitive with the regular wavelet methods (remember the curves for the irregular methods are
average curves, not a single ISE' curve which occur for the methods that work on a regular grid).
The KS method suffers from the problem that it can only estimate an interpolated version of the true
signal. If the interpolation of the ‘true’ signal is not a good approximation to the sampled signal on
the KS equally spaced grid then the ISE of KS will not tend to zero. Figures 4 and 5 present the same
plots as Figures 2 and 3 but for Doppler.

Figures 6 and 7 show which kind of basis function is chosen at each point that gets removed for
the Blocks and Bumps signal. For the Blocks signal, an efficient linear fit is used for nearly every point.
For the Bumps signal, the type of basis function is much more varied and more quadratic and cubic
functions are used at certain points of the signal.

6 Real dataexamplesand simulations

6.1 Inductance plethysmography data

Figure 8 shows the inductance plethysmography data introduced by Nason (1996). In this experiment
the plethysmograph is arranged around the chest and abdomen of a set of patients and is used to
measure the flow of air during breathing. The study in Nason (1996) commented on how well the
wavelet methods (for the data on a regular grid) preserved the peaks whilst removing the noise. Here
a similar phenomenon is observed.

All of the methods in Figure 8 do a good job as following the peaks and removing the noise.
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Figure 2: Sparsity plot for Blocks signal using different algorithms. Jitter was ds = 1 for irregular
methods: AP1S (solid); AN1 (dashed); KS using Haar wavelets (3 dots dash). Regular grid for
Daubechies’ Extremal Phase wavelets: best sparsity was Haar wavelets (dots); worst sparsity was D7
wavelet (dot dash).
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Figure 3: Blowup of Figure 2.
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Figure 4: Sparsity plot for Doppler signal using different algorithms. Jitter was d3 = 1 for irreg-
ular methods: AP1S (solid); AN1 (dashed); KS using D4 wavelets (3 dots dash). Regular grid for
Daubechies’ Extremal Phase wavelets: best sparsity was D4 wavelets (dots); worst sparsity was Haar
wavelets (dot dash).
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Figure 5: Blowup of Figure 4. Initially D4 wavelets and KS do well for up to 7 coefficients but then
the adaptive methods do better.
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Figure 6: Plot showing choice of prediction scheme for the Blocks test signal decomposed with AN2
on an irregular grid (d=1). Horizontal placement of symbol indicates location of following kinds of
prediction: linear ((J); quadratic (A); cubic (+); scaling functions (o).
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Figure 7: Plot showing choice of prediction scheme for the Bumps test signal decomposed with AN2
on an irregular grid (d=1). Horizontal placement of symbol indicates location of following kinds of
prediction: linear (OJ); quadratic (A); cubic (+); scaling functions (o).
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However, we would suggest that our adaptive lifting gives sharper peaks than the smoothing spline
and KS and it also removes noise a bit better than the KS method e.g. the “double peak” at around
1257 on the KS plot. Our method also seems to be able to “select” between rounded and sharp peaks
(e.g. the first 6 peaks in our method are sharp, the 7th is more rounded).

6.2 Motorcycle data (example of multiple observations at a point)

Figure 9 shows the motorcycle data analyzed by Silverman (1985). The data contains 133 samples
(at 94 time points) of head acceleration in simulated motorcycle crashes versus time in an experiment
to determine the efficacy of crash helmets. No recipe is supplied in Kovac and Silverman (2000) for
handling multiple observations at one time point, so we supplied KS with the mean of the multiple
observations at those points.

The KS estimate in Figure 9 is very noisy. However, this particular KS estimate uses the basic
algorithm, no allowance has been made for the changing variance. It should be noted that Kovac
(1998) uses a further procedure to remove outliers and gets a much better looking estimate. Our
adaptive lifting estimate seems quite similar to the smoothing spline one except for (a) ours looks less
smooth, this is due to the basis functions being linear (b) our “main peak” after the dip occurs later
than the one in the smoothing spline, but this “lateness” has also been observed in, e.g. some of the
plots in Kovac (1998) (c) our estimate has a “glitch’ near the bottom of the dip which we think is
unlikely to be a true feature.

We believe that the true motorcycle curve is actually most likely to be smooth and as such the
smoothing spline is maybe the best estimate here. The wavelet methods (KS and ours) really come
into their own on irregular sets (e.g. with sharp peaks, or jumps). However, it is pleasing that our
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Figure 9: Motorcycle crash data and denoised es-
timates. Small circles=data; solid line=estimate.
Top left: smoothing spline with cross-validated
smoothing parameter; Top right: KS estimate,
multiple y-values are averaged resulting in 94
points input to KS, D6 Daubechies’ wavelet, pri-
mary resolution of 3 and SureShrink threshold- &
ing; Right: adaptive lifting using AP1S with
heteroscedastic variance computation (see text), . - - - -
EbayesThresh posterior median thresholding. Time (ms)
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lifting estimate in Figure 9 does a reasonable job in this case.

6.3 Further examples

Several further examples of our methodology outperforming existing wavelet methods can be found in
Knight and Nason (2004). In the task of predicting transmembrane protein segments, improvements
of up to 13% appear through the use of adaptively constructed wavelets over the classical Daubechies
wavelets.

6.4 Simulation results

This section compares our adaptive lifting methodology with Locfit (Loader, 1999, 1997), the smooth-
ing spline function in S-Plus, smooth.spline() and the wavelet algorithm for irregular data in-
troduced by KS.

Tables 1, 2 and 3 show our simulation results for signal-to-noise ratios of 3, 5 and 7, where this
ratio is given by SN R = y/var(g)/o using the notation of model (11). Each simulation is carried out
on the jittered grid described in the previous section with three jitter values d; = 0.01,ds = 0.1,d3 =
1. For each simulation, ¥k = 1,..., K = 100, we obtain an irregularly spaced set of n = 256 data
points, evaluate the test function, g*, at these points and add zero mean normal noise of an appropriate
variance to achieve the correct SNR for . We then denoise f* to obtain our estimate §* and compare
this to the truth, g¥. A measure of the overall accuracy of the estimates is the average mean square
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Table 1: AMSE (x103) simulation results for test signals with SNR=3 with three levels of jitter, d,,
for various denoising methods described in the text.
Blocks Bumps HeaviSine Doppler Ppoly
Method | di dy dj dy do d3 |di do d3|di dy d3|di dy ds
LP1S |72 71 68| 8 8 7320 20 21|54 53 52|16 16 18
LP2N |70 73 67| 84 83 7320 20 22|55 56 51 (16 16 17
AP1S |72 68 59| 77 77T 62|20 20 23|52 50 48 |16 17 18
AP2N |69 70 59| 78 75 64|21 21 22|53 52 48 (15 16 17
AP3N |69 68 68| 76 74 73|46 44 41|64 65 61 |42 39 36
AN1 |55 54 52| 66 67 61|36 39 37|61 61 59|38 33 32
Locfit | 73 72 64 | 110 108 101 |11 11 11 |58 58 54 |21 20 19
SSCV | 74 74 67 | 307 315 250 |12 11 12 |61 60 53 |20 20 19
KS|79 78 87 |179 181 259 |13 12 15|51 52 57|18 17 18

Table 2: AMSE (x103) simulation results for test signals with SNR=5 with three levels of jitter, d,,

for various denoising methods described in the text.

Blocks Bumps HeaviSine Doppler Ppoly

Method di do d3 dq do d3 di do d3 di do d3 di  do d3

LP1S |24 25 22| 31 28 27|10 10 10|23 23 23| 6 6 7

LP2N (23 23 22| 30 30 27|10 10 11|23 23 22| 6 6 6
7
7

AP1S |22 23 20| 30 29 23|10 10 10|22 22 21| 6 6

AP2N |23 23 20| 30 29 23|10 10 11|22 21 21| 6 6

AP3N |27 27 26| 30 30 29|18 18 16 |26 26 26|16 15 14
AN1 |19 20 18| 26 26 24|15 16 16 |25 24 24|13 13 12

Locfit | 35 35 34| 40 40 39 T 7T 7|25 26 25|12 12 11
SSCV | 51 51 46 | 277 285 227 7 7 7|37 37 30 (11 12 11
KS|52 52 59130 134 213 | 8 7 8|29 28 33| 9 9 10
error defined by
K n
AMSE = (nK) ' > (gF — gF)%. (18)
k=11i=1

We tested several linear, quadratic, cubic and adaptive lifting methods as well as Locfit and
smooth.spline with cross-validation (SSCV) and KS. We always chose to use EBayesThresh
with posterior median shrinkage for our adaptive lifting methods. We also report the AMSE values
obtained by using the KS algorithm (although these values are computed on the regular grid that KS
provides estimates on, and so they are only approximately comparable to the ones in (18) which are
computed at the data points).

With KS, as with all classical wavelet-based transforms, a decomposing wavelet has to be chosen.
For a comprehensive study, we used all combinations of the Daubechies’ Extremal Phase wavelet
family with vanishing moments ranging from 1 to 10 (D1,. .., D10), all primary resolution levels and
thresholding techniques SureShrink and EbayesThresh. However, we only report the results corre-
sponding to the combination (wavelet, primary level, threshold method) that yields the best estimate
— Blocks: (D1, 2, SureShrink); Bumps: (D2, 0, EbayesThresh); HeaviSine: (D4, 4, SureShrink);
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Table 3: AMSE (x103) simulation results for test signals with SNR=7 with three levels of jitter, d,,
for various denoising methods described in the text.

Blocks Bumps HeaviSine Doppler Ppoly
Method | d; dy dj dy do d3 |di doy d3|di dy d3|dy dy d3
LP1S | 11 11 11 15 15 14| 6 6 612 12 13| 3 3 3
LP2ZN (11 11 10| 16 15 13| 6 6 6|13 12 12| 3 3 3
AP1S | 10 10 10 15 14 12 6 6 612 12 11 3 3 4
AP2N | 11 10 10 15 14 12 6 6 612 12 12| 3 3 4
AP3N |14 14 14| 16 16 16|10 10 10|14 14 14| 8 8 7
AN1 |10 10 9| 14 14 13, 9 9 8|14 14 13| 7 7 6
Locfit {20 20 19| 21 20 20| 5 5 5|13 13 16| 9 9 8
SSCV |44 44 39269 273 220 5 5 5|30 30 23| 8 8 8
KS |45 45 52119 122 195| 6 6 5|22 22 25| 5 5 6

Doppler: (D4, 5, SureShrink); Ppoly: (D5, 4, SureShrink). Note that, in practice, the best combination
would not be known and so, in general, KS’s performance would be much worse than described here.

For our adaptive methods it is not necessary to choose a wavelet. However, there is a choice to be
made, akin to the usual primary resolution, in how many points get removed in the lifting algorithm.
Simulations in Nunes and Nason (2005) have shown that the exact choice of resolution level in the
adaptive lifting algorithms is not crucial as long as the level is low. Hence with the adaptive algorithms,
a full decomposition is made, and only the thresholding technique is subject to choice.

The standard quadratic and cubic methods and AdaptNeigh with neighbourhoods larger than 2 did
not work so well so our tables do not include these results.

Overall, our adaptive lifting methods perform very well. Examination of the simulation results
shows that, in particular, AN1 works extremely well on the Blocks and Bumps functions, outperform-
ing the three competitors. AP methods with two neighbours are suitable on smoother signals such as
the test functions HeaviSine, Doppler and Ppoly. On HeaviSine our method is outperformed by all
competitors when SNR=3 and 5, while on SNR=7 the methods have similar denoising capability. On
Doppler with SNR=3, the KS algorithm is the only competitor that approaches our results, whereas
with SNR=5, 7 our method outperforms all the other procedures, with the closest one being Locfit.
On Ppoly, our method is better than the competitors, with the closest being KS.

Modified HeaviSine comparison. As an extra comparison we compared our AN1 method to the
results obtained in Delouille et al. (2004). In their study the true function was the HeaviSine function
modified so that the jumps were 4 in size rather than 2, the {z; }, 1155 are distributed as N (0.5, (0.2)2)
and 500 simulations were performed. The other methods listed are ANTO/FAN which is Antoniadis
and Fan (2001) and SUPSMO is the “super smoother” of Friedman (1984). Table 4 shows that our
AN1 method appears to give a slight improvement over their method. However, from the simulations
reported above remember that our method performed worst overall on HeaviSine. At this point one
may wonder why our adaptive lifting methods work well compared to KS in Table 4 on HeaviSine
but not well in Tables 1 to 2. The reason appears to be that the HeaviSine function in Delouille et
al. (2004) is a modified version of the original HeaviSine. The modification makes the jumps twice
as extreme, and although the SNR is roughly the same, the increased jumps will make the associated
wavelet coefficients relatively much bigger. Hence, the relative signal around the important locations
(the points of discontinuity) is much higher and it is as if we locally are in a higher SNR regime which
is where our methods become more competitive for HeaviSine.
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Table 4: Results of the Simulation Study, n = 100, SNR=4. ANL1 result computed here, all other
results as computed by Delouille et al. (2004). First row: square root of median MSE value; Second
row: interval shows square root of 1st and 3rd quartiles of the MSE results over 500 simulations. All
results x103.

Delouille et al.
AN1 With Update | No update | ANTO/FAN KS SUPSMO
588 610 792 819 775 706
[617,654] | [526,675] | [661,989] | [759,875] | [688,856] | [629,807]

7 Conclusions and further work

This article has introduced two nonparametric regression methods based on introducing adaptivity into
‘one coefficient at a time” lifting. Simulation results show that these new methods perform extremely
well when compared to other existing regression techniques. The technique can report what kind of
basis was used in different areas of the signal, giving information on the local character of the signal.
Real data applications show that our adaptive lifting transforms exhibit the benefits of classical wavelet
algorithms, but can do so on irregularly spaced data. Our techniques are designed to handle the case
where multiple observations exist at given z points. All of these factors point to adaptive lifting being
a useful new tool in the regression toolkit.

There are several aspects that could be studied in further work. These include: considering how
to shrink in the face of coefficient correlations, thinking about fast computation of multiple predict
step competitors and alternative ways of handling multiple data points. A significant challenge would
be to devise an appropriate and useful theoretical framework from which to further study lifting and
adaptive lifting.

8 Appendix and Acknowledgements

Software that implements our adaptive lifting techniques is freely available at the CRAN R software
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