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Abstract

This article proposes a test of stationarity for random fields on a regular lattice
motivated by a problem arising from texture analysis. Our approach is founded on the
locally stationary two-dimensional wavelet (LS2W) process model for lattice processes
which has previously been used for standard texture analysis tasks such as texture
discrimination and classification. We propose two variants of our stationarity test,
both of which can be performed on a single realisation – a feature of particular prac-
tical importance within texture analysis. We illustrate our approach with pilled fabric
data, demonstrating that the test is capable of identifying visually-subtle changes in
stationarity. Supplementary material for this article is available online.
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1 Introduction

This article is motivated by an application emerging from the analysis of textured images.

When one thinks about texture, a typical example that comes to mind is that of a woven

material, straw or a brick wall. More formally, image texture is the visual property of an

image region with some degree of regularity or pattern: it describes the variation in the data

at smaller scales than the current perspective (Petrou and Sevilla, 2006). Texture structure

can be thus considered to exist on several different scales of an image. Moreover it is well-

documented that image processing within the mammalian visual system is performed in

such a manner to preserve local and global information, see for example Daugman (1990) or

Field (1999). It is therefore desirable that texture analysis tools reflect these two important

properties of texture, namely that (i) it has a location-dependent structure and (ii) it is

multiscale in nature.

The image set which we consider (Figure 1) arises from work with an industrial collabo-

rator. It comprises six fabrics buffed to varying degrees in an attempt to simulate different

levels of garment wear. The effect of this abrasive process is to induce pilling – a build up

of fibrous clusters on the surface of the material. By its very nature pill is a localised (short

memory) phenomenon with the amount of pill in any region dependent on the amount of

wear in that particular area (see Chan and Pang (2000) and Palmer et al. (2011) for further

details). It is therefore of considerable interest to be able to accurately assess the pill level,

for example by means of classification against a reference set of data.

Within the field of texture analysis researchers are typically interested in three broad

activities, namely texture discrimination, classification and segmentation. As such, appro-

priate and efficient modelling of the second-order properties of an image can often be an

important consideration. Many established techniques for texture analysis have an underly-

ing assumption of (second-order) stationarity, see for example Gonzalez and Woods (2001).

In other words, the process has a constant mean, but the covariance between two spatial

locations is a function of the vector difference between them: cov(Xr1
, Xr2

) = γ(r1 − r2).

Conversely, to account for the inherent multiscale structure of such images, others have

proposed the use of wavelet-based approaches, see for example Laine and Fan (1993), Unser

(1995) or Eckley et al. (2010). In particular the approach proposed by Eckley et al. (2010)
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provides a mechanism for modelling and estimating the non-stationary structure of textured

images.

Wavelets are a form of localised basis function which provide a scale based decomposition

of an image’s structure (Vidakovic, 1999; Nason, 2008). Recent research by Eckley et al.

(2010) indicated that when a textured image appeared visually to be stationary then, as

one might anticipate, Fourier-based classification approaches provide improved classification

performance when compared against their wavelet counterparts. Conversely when an image

is non-stationary, a wavelet based approach is more appropriate.

In practice one will not generally know a priori whether or not the images being analysed

are (second-order) stationary. It is therefore difficult to identify whether a multiscale or

stationary approach should be adopted to analyse a given set of images. One way of resolving

this issue would be to develop a test of (second-order) stationarity for such short memory

processes based on a single realisation of each image. This is the question which we address in

this paper, developing a new test of stationarity for random fields, highlighting its application

with textured images.

Existing tests of spatial stationarity. Several tests of stationarity for spatial processes

have been proposed in the literature in recent years, with contributions coming from statis-

tics, geology and the environmental sciences. We now consider the suitability of these to

the texture analysis application described above. In particular we seek to identify an ap-

proach capable of using single process realisations and, ideally, which takes into account the

scale-based nature of images.

Ephraty and collaborators have suggested a number of tests of spatial stationarity. Initial

work, described in Ephraty et al. (1996), proposed a test statistic for stationarity calculated

using the l2 norm of the off-diagonal elements of the second-order cumulant spectrum (the

Fourier transform of the image cross-correlation function). Under the null hypothesis of sta-

tionarity, only the diagonal elements of the matrix should be zero. A relatively large sample

size is needed to ensure the accuracy of the method. Further work introduced by Ephraty

et al. (2001) introduced a likelihood-based test and also a test using spectral estimation

methods under the assumption of a low degree of stationarity. However, unfortunately this

approach also requires multiple realisations of the process – a requirement that is often not
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Figure 1: A sequence of six pilled fabric images. The amount of pilling increases across the

images from (a) (lowest pill) to (f) (highest pill). The first five images clearly show a high

degree of stationarity across the pills; due to the increased pilling, the sixth image shows

small areas of uneven bobbling.

possible in texture analysis and remote sensing settings.

Bose and Steinhardt (2002) formulate a hypothesis test using the generalised likelihood

ratio statistic under the assumption of a centrosymmetric form of the spatial covariance. The

covariance of stationary processes is known to have this property. This in turn means that

subspaces spanned by particular eigenvectors can be inspected for orthogonality under the

null hypothesis. However, the test also assumes multiple realisations of the spatial process

and, as noted by Fuentes (2005), the proposed test is likely to be sensitive to the form of

covariance.

A hierarchical Bayesian approach is proposed by Fuentes (2005) who models the contin-

uous spatial process using a parametric form for the covariance structure and estimating the

spectral density of a process via weight functions evaluated on windows. The author tests for
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stationarity by extending the ‘analysis of variance’ approach of Priestley and Rao (1969) to

spatial processes. The dependence of the approach on the choice of window (weight function

bandwidth) is an obvious computational drawback. Additionally we seek a discrete-spatial

approach which can encapsulate the scale-based nature inherent within textured images.

Finally, Blanc et al. (2008) investigate the large sample behaviour of the empirical mean

and variance statistics over a class of spatial processes for which the theoretical asymptotic

behaviour is known. The rates of convergence of the statistics for an observed spatial process

are estimated by image subsampling and then fitting a nonparametric estimator. Non-

stationarity of the mean or variance is detected by looking for ‘anomalies’ in the behaviour

of the empirical statistics compared with theoretical rates. Evaluating the large sample trend

of the statistics is obviously computationally intensive. In addition, there is no clear measure

of a sufficiently convergent trend and thus automatic implementation of the method is not

considered. Hence, detection of non-stationarity is achieved through visual inspection. This

approach is therefore not suitable for use with textured images where typically one may have

a large number of candidate textures which need to be (automatically) analysed to identify

whether they are stationary.

A wavelet-based approach? Each of the above methods suffer various disadvantages

for the application under consideration. The two tests of stationarity which we propose in

Section 3 adopt the recently proposed wavelet-based model of Eckley et al. (2010). Specif-

ically, the locally stationary framework of Eckley et al. (2010) provides the flexibility to

accommodate realistic non-stationary behaviour whilst also being able to model the inher-

ent multiscale structure of texture. It is therefore natural to consider whether this framework

can be used to develop a test of stationarity for short memory random fields, such as the

pill images, particularly since the wavelet-based framework permits estimation of the local

spectrum with a single realisation of the spatial process. As such our proposed tests do not

suffer from the limitation of other tests of stationarity in requiring multiple process reali-

sations. Moreover we find that they are able to detect quite subtle locally non-stationary

behaviour of the spatial process and demonstrate how this can be applied in the texture

context. The first test of stationarity we introduce extends the work of Cardinali and Nason

(2011) from univariate time series to the spatial setting, examining average spectral variation
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to assess the stationarity of an image. Since, in the one-dimensional setting, this approach

has been observed to be conservative in nature, we also consider a reformulation of the test

as a multiple hypothesis test.

The article is organised as follows. We begin, in Section 2, by providing a brief introduc-

tion to wavelets and two-dimensional locally stationary wavelet processes. We then propose

our two tests of stationarity in Section 3, providing assessments of their performance through

simulation in Section 4. Our tests are then applied to several texture examples provided by

an industrial collaborator (Sections 4.2 and 4.3).

2 Wavelets and 2D locally stationary wavelet (LS2W)

processes

Briefly, wavelets are oscillatory basis functions which provide efficient (sparse) multiscale

representations of signals. For example, for a function f ∈ L2(R), we have the expression

f(x) =
∑

k∈Z c0,kφ0,k(x)+
∑

j≤J

∑
k∈Z dj,kψj,k(x), where the wavelet ψj,k(x) = 2−j/2ψ(2−jx−

k) is a dilated and translated version of a (mother) wavelet ψ and similarly for the father

wavelet φ(x). The coefficients dj,k at location k and scale j represent the oscillatory behaviour

of the signal f at a particular frequency, whereas the coefficients cj,k give information about

the mean behaviour of the signal at different scales j.

Wavelets have received considerable attention within the statistics community during

the last 20 years, not least because of their ability to provide an efficient location-scale

decomposition of signals (see Vidakovic (1999), Percival and Walden (2006) or Nason (2008)

for accessible introductions to this area). Below we provide a brief overview of the pertinent

theory associated with locally stationary two-dimensional wavelet processes.

2.1 Discrete wavelets

We begin by providing a formal definition of the key building blocks within the LS2W

framework, namely discrete wavelets.

Let ψ be a (compactly supported) wavelet, such as those introduced by Daubechies

(1992), and denote by {hk, gk} the low- / high-pass filter pair associated with ψ. Furthermore,
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let Nh denote the number of non-zero coefficients of {hk}, and define Lj = (2j−1)(Nh−1)+1.

The one-dimensional discrete wavelets at a given scale j ∈ Z
+ as introduced by Nason

et al. (2000) are defined to be the vectors ψj =
(
ψj,0, . . . , ψj,Lj−1

)
, with ψ−1n =

∑
k gn−2kδ0k =

gn and ψ(j−1)n =
∑

k hn−2kψjk for n = 0, . . . , Lj−1− 1, where δ0k is the Kronecker delta. The

discrete father wavelet is defined similarly using the associated low-pass filter {hk}. As

Eckley et al. (2010) note, this construction can easily be extended to two dimensions as

follows:

Definition 1. Let k = (k1, k2) where k1, k2 ∈ Z. The 2D discrete wavelet filters, {ψl
j}, are

defined as the finite square matrices (of dimension Lj × Lj):

ψl
j =




ψl
j,(0,0) · · · ψl

j,(0,Lj−1)
...

...
...

ψl
j,(Lj−1,0)

· · · ψl
j,(Lj−1,Lj−1)


 ,

for horizontal, vertical or diagonal directions l = h, v and d, where the elements of the

wavelets are the tensor products of the corresponding 1D discrete wavelets: ψh
j,k = φj,k1ψj,k2;

ψv
j,k = ψj,k1φj,k2 and ψd

j,k = ψj,k1ψj,k2.

Discrete father wavelets φj,k can be defined similarly in two dimensions by taking the tensor

product of 1D discrete father wavelets.

Finally, a family of nondecimated discrete wavelets is formed via translations in Z
2 as

ψl
j,u (r) = ψl

j,u−r
for every scale j, direction l and locations u, r ∈ Z

2. It is these which we

use in the spatial process model introduced in the next section.

2.2 The LS2W spatial model

The test of stationarity which we introduce in Section 3 extends ideas presented in a time

series context by Cardinali and Nason (2011) to a spatial setting. To achieve this, we adopt

the locally stationary spatial modelling framework introduced by Eckley et al. (2010). This

introduced a new class of multiscale lattice processes with a location-dependent second-order

structure. Instead of assuming a stationary process behaviour, these processes are assumed

to have a locally stationary character. In other words, the covariance is assumed to vary

across (pixel) locations of an image, as typically seen in many everyday examples of texture,

e.g. wear on a garment made from woven fabric. Eckley et al. (2010) refer to spatial processes
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constructed under such a model as locally stationary wavelet fields (LS2W). We now provide

a brief introduction to the main elements of the LS2W modelling approach.

The locally stationary two-dimensional wavelet process model introduced by Eckley et al.

(2010) is defined as

Xr;R =
∑

l

∞∑

j=1

∑

u

wl
j,uψ

l
j,u(r)ξ

l
j,u, (1)

for horizontal, vertical and diagonal directions l = h, v or d and spatial locations r = (r, s) ∈
{0, . . . , R − 1} × {0, . . . , S − 1} = R, where R = 2m, S = 2n ≥ 1, with n,m ∈ N and we

denote the lowest common scale as J(R, S) ≡ log2{min(R, S)}. In (1),

(i) {ξlj,u} is a zero-mean random orthonormal increment sequence;

(ii) {ψl
j,u} are a set of discrete nondecimated wavelets (see Definition 1);

(iii) {wl
j,u} are a collection of amplitudes;

(iv) and the rate of evolution of the second-order properties of the image are controlled by

smoothness constraints (see Eckley et al. (2010) for further details).

Note that the locally stationary wavelet process has a dependence on the dimension of the

image, R = (R, S). However, for notational convenience we drop this explicit dependence

and denote such a process as Xr, though the dependence should be assumed.

Analogous to Fourier-based spectral theory, one can define the local wavelet spectrum

(LWS) associated with an LS2W process. The LWS for a given location z ∈ (0, 1)2, at scale

j in direction l is Sl
j(z) ≈ wl

j(u/R)2, where z = u/R := (u/R, v/S). As such the LWS

quantifies the contribution to the process variance at rescaled spatial locations z ∈ (0, 1)2,

decomposition directions l, and scales, j (see Eckley et al. (2010) for a discussion of why we

use rescaled spatial locations).

To assess the stationarity, or otherwise, of a textured image, the tests proposed in Section

3 use an estimate of the LWS. Drawing parallels with estimation theory associated with the

Fourier spectral density, Eckley et al. (2010) propose the following estimator for the LWS:

I lj,u = |dlj,u|2 =
(
∑

r

Xrψ
l
j,u(r)

)2

, (2)
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where dlj,u =
∑

r
Xrψ

l
j,u(r) denotes the empirical wavelet coefficients of the LS2W process,

Xr, at a particular location, scale and direction. Defining z = u/R as above, the array

I(z) = {I lj,u} for j = 1, . . . , J , l ∈ {h, v, d}, and locations u ∈ R in (2) is referred to as

the local wavelet periodogram (LWP). It is biased as an estimator for the LWS. However

Eckley et al. (2010) established that the periodogram estimator can be bias-corrected using

the inverse of the inner product matrix of discrete autocorrelation wavelets, i.e.

Ŝ(z) = L(z) = A−1
J I(z), (3)

where AJ is the two-dimensional discrete autocorrelation wavelet matrix (see Eckley and

Nason (2005) for further details). It is this bias-corrected version of the LWP which we

incorporate within our tests of stationarity, introduced in the next section.

3 Testing for stationarity in LS2W processes

We now introduce our tests of stationarity for textured images. The tests take the form

of a hypothesis test for which a particular statistic is used to measure the degree of non-

stationarity under the null hypothesis of stationarity. In particular, Section 3.1.1 introduces

a test based on a statistic of average spectral variation; in Section 3.1.2 we consider a multiple

testing framework using spectral test statistics specific to each scale-direction pair.

To formalise the hypothesis test we note that a (spatial) process is stationary if and only

if its spectrum is constant across locations for all scale-direction pairs. In other words, we can

test a process spectrum for constancy in order to determine whether the process is stationary.

Thus given an observed process, Xr, with associated wavelet spectrum S = {Sl
j(z)}j,l, our

hypothesis test is

H0 : S
l
j(z) is a constant function of z for all j > 0 and l ∈ {h, v, d}

HA : S
l
j(z) is not a constant function of z for some scale j and direction l.

In view of the above observation, the null hypothesis corresponds to an assumption of sta-

tionarity of a spatial process. We therefore look for departures from constancy within each

scale and direction of the local wavelet spectrum to indicate non-stationarity. Note that this
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departure from constancy for a fixed scale-direction pair can be measured by:

T{Sl
j(z)} =

∫
{Sl

j(z)− S̄l
j}2 dz with z ∈ (0, 1)2. (4)

Here S̄l
j =

∫
Sl
j(z) dz for a particular direction l ∈ {h, v, d} and scale level j = 1, . . . , J .

The hypothesis test above can thus be performed by examining the spectrum for departures

from constancy in any scale-direction pair.

Similarly, the average variation in the wavelet spectrum can be quantified using the

average measure:

Tave{S(z)} = (3J)−1
∑

l

J∑

j=1

∫
{Sl

j(z)− S̄l
j}2 dz with z ∈ (0, 1)2. (5)

Note that the quantity in (5) is zero if, and only if, the spectrum Sl
j(z) is constant across

locations for each scale-direction pair.

Since the spectrum S(z) is unknown, in practice it is replaced by an estimator, Ŝ(z), for

example the corrected LWS L(z) described in Section 2.2. Note that, for a given realisation,

Ŝl
j(z) can be denoted Ŝl

j,u. In addition, the integral S̄l
j can be estimated by

S̃l
j = (RS)−1

∑

u∈R

Ŝl
j,u. (6)

Taking Ŝl
j,u = Ll

j,u (the corrected LWP) in (6) results in a consistent estimator for the

spectrum under the assumption of stationarity (see supplementary material for a proof which

establishes this property).

We can also estimate the integral in (4) and (5) using the empirical variance (across

locations) for a scale-direction spectrum pair. Hence our test statistic for a fixed scale-

direction pair can be calculated as follows

T{Ŝl
j(z)} = varu(Ŝ

l
j,u), (7)

where the variance is taken over the latticeR. The alternative average variation test statistic

(5) can also be calculated as

Tave{Ŝ(z)} = (3J)−1
∑

l

J∑

j=1

varu(Ŝ
l
j,u). (8)

The test statistic in (8) can be seen as the mean empirical variance of the spectrum estimate,

where the average is taken over all scale-direction pairs.
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3.1 Two bootstrap tests of stationarity

To perform the above hypothesis test we require knowledge of the distribution of the test

statistic T(·){Ŝl
j(z)}, under the null hypothesis. Unfortunately, in most practical cases this

distribution will in general be unknown. However, the spectrum S determines the distribu-

tion of the observed random field (assuming stationarity). We therefore perform (parametric)

bootstrap resampling on the model innovations {ξlj,u} together with the assumed stationary

spectral structure to establish the distribution of the test statistic under H0.

As noted in Cardinali and Nason (2011), the estimator Ŝl
j(z) in Section 3 needs to

be a consistent estimator for the stationary spectrum (under the null hypothesis) for the

parametric bootstrap implementation to be valid. To this end, we establish the consistency

of our estimator L̄ = (RS)−1
∑

u∈R
Lu in the supplementary material accompanying this

article. This result holds for both bootstrap implementations outlined below.

3.1.1 Testing for stationarity using average spectral variation

We now outline how our test of stationarity is performed using the test statistic Tave in (8).

Our approach extends earlier work by Cardinali and Nason (2011) from a time series to a

two-dimensional setting. The bootstrap test works by first computing the spectral estimate

L for the observed image and then calculating the test statistic tobsave (using (8)). We then

obtain simulated realisations by the following procedure (Algorithm 1). In essence we simply

simulate the underlying innovations {ξlj,u} (see Remark 1) and feed these into our process

model under the null hypothesis, inverting to obtain a realisation in the spatial domain. For

each simulated stationary process, we compute the test statistic (8). The significance of

the test statistic for the observed image can then be assessed by appealing to Monte Carlo

arguments (see Davison and Hinkley (1997) for more details). Our bootstrap approach,

which we call BootstatLS2W, is summarised in Algorithm 1.

The BootstatLS2W test can be interpreted as evaluating how unlikely the value of tobsave

is compared to realistic (bootstrap) values of Tave assuming a stationary spectral structure

based on the observed process. Thus the p-value of the test can be seen as a measure of how

non-stationary the observed process is.
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BootstatLS2W:

1. Compute the estimate of the LWS for the observed image, Ŝl
j(z).

2. Evaluate Tave on Ŝ(z) (using (8)), call this value tobsave.

3. Compute the pixel average stationary spectrum S̃l
j by taking the average of spectrum values for each

scale and direction.

4. Iterate for i in 1 to B bootstraps

(a) Simulate X
(i)
r from the stationary LS2W model using squared amplitudes given by S̃l

j and

Gaussian process innovations.

(b) Compute the test statistic Tave on the simulated realisation, call this value t
(i)
ave.

5. Compute the p-value for the test as p =
1+#{ tobs

ave
≤ t(i)

ave }
B+1

.

Algorithm 1: The bootstrap algorithm for testing the stationarity of locally stationary im-

ages.

3.1.2 Testing for stationarity using a multiple testing framework

In the one-dimensional setting, the bootstrap procedure outlined in Section 3.1.1 can be

conservative in some cases (Cardinali and Nason, 2011). In the time series setting, multiple

testing approaches have recently been shown to ameliorate conservative stationarity tests

(Nason, 2013). As an alternative to using the average variation statistic (8), the test of

stationarity can also be formulated in a multiple hypothesis framework and thus we explore

the potential of this approach to testing spatial stationarity. We base our approach to this

multiple testing problem on the BootstatLS2W bootstrap test in Section 3.1.1.

Recall from Section 3 that we can test each scale-direction spectral plane for constancy.

We wish to reject the null hypothesis of stationarity if there is a significant departure from

constancy in any of the scale-direction planes of the local wavelet spectrum. In other words,
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for each given direction-scale pair, (j, l), we must test to see whether

H0 : S
l
j(z) is a constant function of z

HA : S
l
j(z) is not a constant function of z.

This test must then be repeated for all possible scale-direction pairs. In other words

we are in a multiple hypothesis testing scenario, and draw on the the work of Davison

and Hinkley (1997, Chapter 4.4) for multiple testing in a bootstrapping context. Let

η = η(j, l) ∈ {1, . . . , 3J} represent an index over all scale-direction pairs. To account for

possible differences in the distribution of the statistics Tη(j,l) := T{Sj
l (z)} (see (7)), as well

as possible dependence between them, Davison and Hinkley (1997) suggest examining the

quantity

Q = min {P1, · · · , P3J} , (9)

where Pη denotes the true tail probability associated to the test statistic Tη for a fixed scale-

direction spectral plane. In other words, to test the stationarity or otherwise of an observed

image, we regard Q as the test statistic associated to the null hypothesis.

The algorithm for assessing the significance of Q is described in Algorithm 2. We denote

this multiple hypothesis testing procedure as Bootstatmh
LS2W

.

Remark 1. Within both the bootstrap procedures described above, the realisations of the

LS2W process under the null hypothesis are simulated by assuming the innovations of the

process take a given distributional form. In particular we have assumed that the innovations

are Gaussian; however, other distributions can be used in the model representation (1).

4 Examples

We now consider the performance of the two proposed tests of stationarity proposed in

Section 3.1, focussing in particular on data generated from an industrial application. The

analyses were performed using the LS2W spectral estimation implementation in the R pack-

age LS2W (Eckley and Nason, 2011). For simulating the Gaussian random fields in the study

below, we used the RandomFields R package (Schlather, 2012); the spatial moving average

13



Bootstat
mh
LS2W

:

1. Compute the estimate of the LWS for the observed image, Ŝl
j(z).

2. Evaluate Tη on the observed image for all j and l (using (7)) , call these values tobsη , η = 1, . . . , 3J .

3. Compute S̃l
j , j = 1, . . . , J for each of the decomposition directions for the observed image using (6).

4. Iterate for i in 1 to B bootstraps

(a) Simulate X
(i)
r from the stationary LS2W model using squared amplitudes given by S̃l

j and

Gaussian process innovations (see Section 3.1).

(b) Compute the test statistics Tη on the simulated realisation, for all j and l, call these values t
(i)
η .

(c) Compute S̃(i), for the simulated realisation image X
(i)
r using (6).

(d) Iterate for k in 1 to M (secondary) bootstraps

i. Simulate X
(i)(k)
r from the LS2W model using squared amplitudes given by S̃(i).

ii. Compute the test statistics Tη on the second-level simulated realisation, for all j and l, call

these values t
(i)(k)
η .

(e) Compute the test statistic q(i) = min

{
1+#

{

t
(i)
1 ≤ t

(i)(k)
1

}

M+1
, · · · ,

1+#
{

t
(i)
3J ≤ t

(i)(k)
3J

}

M+1

}
.

5. Compute the observed test statistic qobs = min

{
1+#

{

tobs1 ≤ t
(i)
1

}

B+1
, · · · ,

1+#
{

tobs3J ≤ t
(i)
3J

}

B+1

}

6. Compute the p-value for the test as p =
1+#{ qobs ≤ q(i) }

B+1
.

Algorithm 2: The multiple testing bootstrap algorithm for testing the stationarity of locally

stationary images.

processes were simulated with the R package spdep (Bivand, 2012) using modifications to

code featured in Anselin (2007).

4.1 Simulated performance of the LS2W tests of stationarity

In order to investigate the performance of our tests of stationarity proposed in Section 3.1,

we performed a simulation experiment focussing in particular on size and power properties.
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Size assessment. To explore the empirical size of the stationarity tests, we chose a number

of different process types. Each process represents a different form of second order stationary

structure. S1 is a two-dimensional white noise process, i.e Xr ∼ N(0, 1). S2 is a spatial

moving average process with parameter ρ = 0.9, i.e.

X(u) = 0.9Wε+ ε,

where ε is a random component with variance σ2, W is a spatial weight matrix associated

to a chosen neighbour structure. A realisation of this process is shown in Figure 2(b). We

also consider an isotropic Gaussian random Field with a Matérn covariance (Matérn, 1960)

with shape parameter ν = 1, specified by

C(u, v) = σ2
√
2‖u− v‖K1

(√
2‖u− v‖

)
, (10)

where K1(·) denotes the modified Bessel function of order 1. See for example Stein (1999)

for more details of this covariance function. We denote this process by S3 (see Figure 2(c)).

The fourth stationary process, S4, is an exponential covariance with range parameter

φ = 2 :

C(u, v) = σ2 exp

{−‖u− v‖
2

}
. (11)

This process is similar to that considered for continuous spatial processes in Fuentes (2005).

A realisation of this process is shown in Figure 2(d).

For the processes considered, we simulated K = 1000 spatial realisations for different

square image sizes R = S = 2J , with J = 6, . . . , 9. We then examined each realisation with

each test of stationarity as follows. We evaluated the Monte Carlo significance test in Section

3.1 using B = 250 bootstrap simulations, each time treating the realisation as observed. In

other words, we perform the BootstatLS2W (respectively Bootstat
mh
LS2W

) hypothesis test and

record whether the realisation is stationary or not at a 5% significance level. For each

process, we then note the number of simulated realisations which resulted in rejecting the

null hypothesis of stationarity. We then compare the proportion of those rejecting the null

with the nominal size.

Table 1 explores the size properties of the BootstatLS2W and Bootstat
mh
LS2W

tests on the

stationary specifications expressed as a percentage of the K = 1000 images rejecting sta-

tionarity, for σ = 1. We observed similar results for all values of the standard deviation, σ;

these more detailed results can be found in tabular form in the supplementary material.
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(a) (b)

(c) (d)

Figure 2: Process realisations from the stationary models for the simulations in Section 4.1

with R = 29 × 29. (a) S1. A two-dimensional Gaussian field; (b) S2. A moving average

process; (c) S3. Matérn Gaussian random field with covariance specified by (10); (d) S4. An

exponential Gaussian random field with covariance (11).

Focussing first on results of the BootstatLS2W test of stationarity: for all model types,

the percentage of images rejecting the null hypothesis of stationarity (i.e. judged as non-

stationary) was well below the nominal size of 5%. These results mirror those obtained by

Cardinali and Nason (2011) for the time series setting – namely that this test approach is

conservative. Conversely, the multiple testing bootstrap procedure, Bootstatmh
LS2W

achieves

results much nearer the nominal size of 5%, particularly for large image dimensions. This

is a desirable feature of the nested bootstrap approach, though this comes at a considerable

added computational cost.

Next we explore the power of our test to identify whether power is lost or maintained as
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Table 1: Results from a simulation experiment to assess the empirical size of the LS2W test

of stationarity. The table indicates the size (rounded to the nearest 0.1%) using a 2D white

noise stationary process (S1); a spatial moving average process (S2); a Gaussian random

field with Matérn covariance (S3); an exponential Gaussian random field (S4). See text for

details of the process used.

BootstatLS2W Bootstat
mh
LS2W

Image dimension Image dimension

Model 64 128 256 512 64 128 256 512

S1 0.1 0.3 0.3 0.4 2.4 2.8 5.2 4.8

S2 1.0 1.3 0.4 2.3 2.8 3.2 2.4 3.6

S3 1.1 0.4 1.4 2.1 0.8 0.4 2.0 2.1

S4 0.4 0.3 0.2 0.2 0.3 0.4 0.8 1.2

a result of this conservativeness in the tests.

Power assessment. To evaluate the power of the BootstatLS2W and Bootstat
mh
LS2W

station-

arity tests, we consider three contrasting processes which exhibit different non-stationary

behaviour. In particular, we consider the following forms. NS1 describes a piecewise white

noise spatial process, in which the left half-plane has unit variance, whereas the second (ver-

tical) half-plane has variance σ2. In other words, we simulate K images, each constructed

from 2(n−1) × 2n i.i.d. N(0, 1) samples for z ∈ (0, 1/2)× (0, 1) concatenated with 2(n−1) × 2n

values sampled independently from N(0, σ2) for z ∈ (1/2, 1)× (0, 1). Similarly we also con-

sider a process in which the left half-plane is a unit variance white noise process, with the

second half being a realisation from the process S3 with a Matérn covariance (NS2). NS3

represents an image which is a montage of four stationary processes in the four quadrants of

the image (see Figure 3(b)); this is an LS2W process with spectral structure given by

wd
j,[2Jz] =






σ if j = 1 and z ∈ (0, 1/2) x (0, 1/2);

σ if j = 2 and z ∈ (1/2, 1) x (0, 1/2);

σ if j = 3 and z ∈ (0, 1/2) x (1/2, 1);

σ if j = 4 and z ∈ (1/2, 1) x (1/2, 1);

0 otherwise.

(12)
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In particular, the process is a montage of four diagonal Haar moving average processes with

different orders (Eckley et al., 2010).

The specification of σ in realisations of NS1 and NS3 controls the degree of non-stationarity

in the simulated images: for low values of σ, the processes describe behaviour which is ap-

proximately stationary (i.e. the values are closer to unit variance across the whole image);

for higher variance values the boundaries are more marked. For this study, we investigate

the performance of the stationarity test with values in the range σ = {1.2, . . . , 1.6}.
To investigate more subtle changes in second order structure we also define a fourth

process, specified in the spatial domain by Xr(z) ∼ N(0, σ2
a;τ ;δ(z)), where σa;τ ;δ(z) is con-

structed such that it varies spatially across an image. For the simulations below we use

a particular choice of the standard deviation function which changes across the horizontal

coordinate of the image according to the parameters a, τ and δ in the following way:

σa;τ ;δ(z) = τ +
δ − τ

1 + exp(−10a(2z1 − 1))
for z1 ∈ (0, 1). (13)

In other words, the standard deviation of the stochastic process varies smoothly from τ to

δ (see Figure 3(c)). Changing the parameter a has the effect of changing the shape of the

deviation curve with lower values of a giving a more subtle behaviour across the x-axis.

We note that if τ = 1 in (13), as a increases the second order structure of NS4 process

realisations will resemble that of realisations from model NS1. A realisation of NS4 can be

seen in Figure 3(d).

A similar analysis to the size assessment was performed using 1000 realisations from the

non-stationary processes NS1 – NS4 described above. In each case, the 1000 realisations

were assessed for stationarity and the number which rejected the null recorded.

Table 2 shows the statistical power results (expressed as a percentage) for the two tests

of stationarity when applied to simulated images from processes NS1 – NS3. The results

illustrate that both tests are unable to distinguish between the two noise variances in NS1

for the lowest values of σ when the image dimension is small, especially when implementing

the BootstatLS2W stationarity test. However the results improve dramatically for both tests

for larger image sizes. This is not particularly surprising since, for low values of σ, the non-

stationary behaviour is more difficult to detect because the boundary in the simulated images

will appear blurred. However, for intermediate and high values of σ and moderate image
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Figure 3: Process realisations from the non-stationary models for the simulations in Section

4.1 with R = 29 × 29. (a) NS1. The image consists of two Gaussian half planes; (b) NS3

(see (12)). Each quadrant of the image is a 28 × 28 subimage sampled from a different

diagonal Haar MA process. The texture ranges from finest detail (bottom-left) to coarsest

(top-right); (c) A two-dimensional representation of the second order structure of the process

NS4 specified in the spatial domain; (d) A realisation of the model NS4 (see (13)). The power

displayed in the image varies smoothly across the horizontal plane according to Figure 3(c).

sizes, both tests attain good performance, rejecting the null hypothesis of stationarity for the

majority ofK = 1000 images (Table 2). The uniformity across σ values for processes NS2 and

NS3 is reassuring, indicating that the tests are insensitive to the severity of boundary non-

stationarities, even for small variances. Finally we turn to consider NS4. Again the power

19



Table 2: Results from a simulation experiment to assess the empirical power of the LS2W

test of stationarity. The table indicates the power (rounded to the nearest 0.1%) under

different non-stationary spectral specifications: piecewise Normal plane (NS1); Gaussian-

Matérn process (NS2); Haar Montage (NS3). See text for details of the processes used.

BootstatLS2W Bootstat
mh
LS2W

Image dimension Image dimension

Model 64 128 256 512 64 128 256 512

NS1 σ=1.2 1.3 23.7 98.9 100 17.6 48.4 100 100

σ=1.3 20.2 97.5 100 100 40.8 100 100 100

σ=1.5 97.0 100 100 100 99.6 100 100 100

σ=1.6 100 100 100 100 100 100 100 100

NS2 σ=1.2 50.2 99.6 100 100 43.9 98.2 100 100

σ=1.3 99.5 100 100 100 100 100 100 100

σ=1.5 100 100 100 100 100 100 100 100

σ=1.6 100 100 100 100 100 100 100 100

NS3 σ=1.2 100 100 100 100 100 100 100 100

σ=1.5 100 100 100 100 100 100 100 100

Table 3: Empirical power assessment of the LS2W test of stationarity for process NS4. The

table indicates the power (rounded to the nearest 0.1%) under different location-dependent

variance structures given by (13).

BootstatLS2W Bootstat
mh
LS2W

Image dimension Image dimension

(a, τ, δ) 64 128 256 512 64 128 256 512

(0.25,1,1.5) 7.6 77.3 100 100 27.2 85.2 100 100

(0.5,1,1.5) 57.7 100 100 100 68.4 100 100 100

(1,1,1.5) 85.7 100 100 100 98.4 100 100 100

results here mirror those of NS1–NS3. In particular, as observed for NS1, the percentage

of correctly classified images improves dramatically as the size of the image under analysis
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increases for all scenarios, even for the quite subtle change in structure for NS4 described

by low a values in σa;τ ;δ(z) (see Table 3). These results are consistent with the findings of

Table 2 for NS1 and σ = 1.5, which can be seen as an extreme case of the process NS4.

These simulations suggest that for the non-stationary processes considered, both the

BootstatLS2W and the Bootstatmh
LS2W

tests achieve good statistical power for image dimensions

greater than n = 128. It is reassuring that power is maintained despite the conservative

nature of the tests observed in our exploration of empirical size. These results are consistent

with those of other recently published tests of stationarity in the time series literature (see

Cardinali and Nason (2011) and Dwivedi and Subba Rao (2011)). In other words, for a

stationary process, each of these procedures (including our own) will not reject the null

hypothesis to indicate non-stationarity, i.e. report a false positive. However for a non-

stationary process they would reject in favour of the alternative. Of our two proposed tests,

Bootstat
mh
LS2W

demonstrates a more reasonable empirical size but at significantly increased

computational cost.

4.2 Analysis of pilled fabric images

We now apply the tests of stationarity proposed in Section 3.1 to a number of real examples

of textured images. In particular, we use the tests of stationarity on a series of images of

garment material which have been artificially buffed until the fabric displayed increasing

degrees of pilling (build up of clumped fibres). A similar set of images, taken under slightly

different lighting conditions, were previously analysed by Eckley et al. (2010) in the context

of texture classification. The fabrics are illustrated in Figure 1. Note that visually, all the

images appear to be spatially stationary. However, it is arguable that the most heavily-pilled

image (Figure 1(f)) displays a degree of non-stationarity due to more increased and irregular

“bobbling” of the fabric.

As described in Section 1, our interest is to examine whether the images are indeed

assessed as stationary by our stationarity tests introduced in Section 3.1. Prior to performing

the tests, as outlined in Section 3, the six images were examined to verify that their spatial

structure did not have a significant amount of long-range dependence. In addition, a median

polish was applied to each image to remove any non-zero trend (so that the images met the

zero-mean assumption of an LS2W process). The BootstatLS2W and Bootstat
mh
LS2W

stationarity
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tests were then applied to each of the six individual images. In each case B = 250 bootstrap

simulations were made. The p-value associated with each test was then recorded for each

fabric image. Note that the size of images analysed in this industrial application is typically

large, and so we expect both tests to be reliable in view of Section 4.1.

As one would perhaps anticipate, the BootstatLS2W test judges the first five images as

stationary (with p-values in the range (0.21,0.95)). This concurs with our visual perception

of the images. The sixth image is judged as non-stationary, with a p-value of 0.03. The

multiple testing procedure Bootstat
mh
LS2W

also assesses the pilled images as stationary apart

from the last image, with p-values between 0.11 and 0.97. The sixth image has a p-value

of 0.04. This reflects what we might visually assess, namely that the sixth fabric has less

regular texture structure than the other fabrics. Indeed, one could argue that this image

contains regions of heavier and lighter pill.

The tests have also been applied to other textured images, such as a sequence of images

of differing hair types and examples taken from reference texture libraries. In all cases we

obtained similar statistical results – namely that mono-textures appear to be stationary. For

reasons of brevity we do not report these results here.

4.3 Analysis of texture mosaics

We now turn to consider the application of our test of stationarity for a more realistic

situation in fabric analysis. In many settings it is useful to be able to detect differing fabric

structure, for example to identify whether there is an area of uneven wear within a sample

of material. To avoid the subjectivity of human inspection of materials it is thus desirable

to develop an automatic detection method for uneven wear.

We begin by noting that regions which contain uneven wear consist of multiple texture

types – the majority of one pill level, with some patches of another pill level. In other

words, an image of a fabric which contains uneven wear could be considered to be non-

stationary. Consequently a test of stationarity could be used as an automated proxy to

detect whether such an area exists within a fabric sample. To examine how our proposed

testing methods handle this type of textural non-stationarity, we performed an experiment

to mimic the situation described above. More specifically, we constructed some pilled fabric

mosaics for analysis with the two bootstrap tests. A texture mosaic comprises two or more
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different texture subimages combined into one image for analysis. Two such mosaics were

constructed by inserting sections of a texture image from Section 4.2 into another texture.

Firstly a subimage of the pilled fabric in Figure 1(c) was inserted as the central part of that

in Figure 1(a) (Mosaic A); Mosaic B contains a section of the fabrics in Figure 1(b) as well

as Figure 1(c) within the lightest pilled fabric (Figure 1(a)). The mosaics can be seen in

Figure 4. The inserted subimages are indicated within the figures.

(a) (b)

Figure 4: Examples of texture mosaics of different pilled fabrics. (a) Mosaic A: a portion

of Pill 3 inside Pill 1; (b) Mosaic B: a portion of Pills 2 and 3 inside Pill 1. The images

display localised changes in texture. They can therefore be considered to be non-stationary,

though this structure can be difficult to detect visually. On each image, the arrows show the

subimages which were inserted to create the multitextured mosaics.

In both cases, application of the BootstatLS2W and Bootstat
mh
LS2W

stationarity tests on

the texture mosaics indicated non-stationarity with p-values less than 1%. This is to be

expected since the images display different textural properties across the images, but is

reassuring nevertheless since the texture boundaries are difficult to pick out visually. We

also note that both tests were also able to detect non-stationarity when applied to examples

of reference texture mosaics taken from several texture libraries.
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5 Concluding remarks

As discussed in Section 1, recent work by Eckley et al. (2010) has indicated that, as a

precursor to conducting a texture analytic task such as classification, it advisable to verify

the stationarity (or otherwise) of candidate images. The work presented in this paper has

addressed this issue by developing two different bootstrap-based tests of stationarity using

the LS2W framework. The first test extends the work of Cardinali and Nason (2011) to two

dimensions, whilst the second employs a multiple testing bootstrapping framework to assess

stationarity. A benefit of these approaches is that they permit the testing of the hypothesis

using a single realisation.

When analysing simulated images, the proposed approaches demonstrated good size and

power performance for images of reasonable size (i.e. images of at least 128x128), high-

lighting the insensitivity of the test to image size and localised image variance, including

slowly-varying second order structure. Of the two proposed tests, the nested bootstrapping

procedure achieved better results on simulated data, but at additional computational cost.

We also applied the test procedures to images encountered by an industrial collaborator.

The results from these tests are consistent with our visual assessment of the images, namely

that these textures are stationary, with heavy pilling introducing non-stationarity. In ad-

dition when analysing quite subtle texture mosaics, the tests were correctly able to detect

non-stationarity. As such, these approaches could be used to detect, for example, regions of

uneven wear within a material.

It is perhaps a little surprising that no local Fourier equivalent of this spatial test currently

exists. Hence, we note that the development of a spatial analogue of local Fourier time series

tests, such as Dwivedi and Subba Rao (2011) would be an interesting avenue for future

research. The implementation of such a test could be similar to the BootstatLS2W test, using

bootstrapping in the Fourier domain.

Supplementary Materials

Properties of spectrum estimator: This document contains a proof that the pixel av-

erage estimator introduced in (3) is unbiased and consistent as an estimator of the

24



stationary spectrum. (consistency.pdf)

Size simulations: This document contains tables describing statistical size simulations in

Section 4.1 for different values of the standard deviation, σ. (simulations.pdf)

Computer code: R code for performing the hypothesis tests described in the article. It

contains a “readme” file describing the details of each function. (rcode.zip)

All of the supplementary material files are contained in a single archive and can be

obtained via a single download. (supplementarymaterial.zip)
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