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1. Function decomposition with classical wavelets

In classical Fourier analysis, functions can be decomposed as the limit of a linear superposition of sine
and cosine waves. However, waves at many frequencies are needed to represent functions which display a non-
smooth behaviour. Bases of wavelet functions also allow the decomposition of a function, but in a location-
scale environment. It all starts with a mother wavelet, a function ψ ∈ L2(R) with oscillatory behaviour
(
∫∞
−∞ ψ(x) dx = 0). The wavelet ψ can be translated and rescaled, ψj,k(x) := 2j/2ψ(2jx − k). The index j

refers to the scale of the wavelet function, and the index k to its location. For certain choices of ψ, the wavelet
family {ψj,k}j,k∈Z is a (orthonormal) basis for the space L2(R). Hence a function, f , can be represented as

(1) f(x) =
∑

k

cj0,kϕj0,k(x) +
∑

j≥j0

∑

k

dj,kψj,k(x).

In the above formulae, ϕj0,k are rescaled and translated versions of the scaling function ϕ (at scale 2j0

and location 2−j0k), the component
∑

k cj0,kϕj0,k(x) represents a coarse (“zoomed out”) approximation of the
function f , while the term

∑
j≥j0

∑
k dj,kψj,k(x) contributes the detail lost by the approximation.

The coefficients cj0,k =< f, ϕj0,k > (respectively dj,k =< f, ψj,k >) are known as the scaling (re-
spectively wavelet) coefficients. The function f can now be regarded as being converted into a (sparse) set of
coefficients, useful for compression applications.

The computation of the scaling and wavelet coefficients is set up under the Discrete Wavelet Transform
(DWT). For an equally spaced sequence f = {f(i/n)}n

i=1 with n = 2J , the DWT computes discrete (periodic)
wavelet coefficients d = {dj,k}j=0,...,J−1;k=0,...,2j−1. Note that we abuse notation by keeping the same symbols
for both the discrete and continuous wavelet coefficients.

In most implementations the fast DWT of Mallat (1989) is used for computing the scaling and wavelet
coefficients.

2. Second generation wavelets

Motivation. As seen above, data is assumed to be equally spaced and of length n = 2J for some
J ∈ N. Many approaches have been proposed in the literature in case one of these assumptions is broken,
e.g. interpolation (Kovac and Silverman, 2000). However, these methods are based on strong assumptions
and/or subjective choices. For instance, in interpolation methods, choices need to be made, such as location
and spacing of the regular grid or interpolation method, which will influence performance. In obtaining an
efficient function representation (few wavelet coefficients), an appropriate choice of the decomposing wavelet
is crucial, therefore posing the common question “Which wavelet should I use?” Some work (e.g. Nason (2002))
suggests using cross-validation to choose the wavelet smoothness, which can help, but not for functions that



possess varying degrees of smoothness in different locations. The methods we propose efficiently address these
limitations.

In the mid-nineties, Sweldens (1996, 1997) proposed a new wavelet construction which enabled wavelet
decompositions to be applied to very general data situations, in particular to data with irregular design, irre-
spective of its length. These wavelets are known in the literature as second generation wavelets and can be
designed through the lifting algorithm.

Lifting a discrete data vector f essentially consists of three steps, split, predict and update:

• Split the signal into two mutually exclusive subsets, say f I and fJ .

• Predict one subsample, fJ , using the other one, f I , and encode the difference in dJ . Of course, good
prediction is only possible if the function f possesses some degree of local smoothness.

• Update f I by using the information contained in the wavelet coefficients. The purpose of this stage is to
preserve in the updated signal some scalar quantity that characterizes the initial signal.

• Repeat the previous steps on the updated subsample until the end of the decomposition.

The signal f is replaced by a set of scaling and detail coefficients, which is similar to the DWT. The
signal can be easily reconstructed by inverting the previous steps (undo update, undo predict, then merge).

Behind the scenes, the lifting scheme induces a recursive construction of (primal and dual) second gen-
eration wavelet functions. However, these functions are no longer translations and dilations of a single mother
wavelet. Also, the wavelet bases generated as such are no longer guaranteed to be Riesz, and therefore may
exhibit stability problems as investigated by Simoens and Vandewalle (2003), Vanraes et al. (2002).

Variations on the split-predict-update stages exist in the literature. Sweldens (1996, 1997) proposes
splitting the data into odd and even indices, while Jansen et al. (2001, 2004) propose generating just one
wavelet coefficient at each step. Simple wavelet bases constructed via the lifting scheme with an odd/even split
and their properties have been described by Delouille et al. (2001, 2004). The prediction step can also be done
in various ways: predicting each odd by the following even or neighbouring evens, or, when removing one
coefficient at a time, by regression over the neighbours. Claypoole et al. (1998, 2003), Piella and Heijmans
(2002) use a split-update-predict algorithm in order to allow for adaptively built wavelets.

Extensions of the lifting scheme to more than one dimension are not straightforward using the even/odd
split, but there are various alternatives. In our work we adopt the ‘one coefficient at a time’ split proposed by
Jansen et al. (2001, 2004), which we will next describe and then explain how we embed adaptiveness in the
algorithm.

3. Lifting one coefficient at a time

Suppose we have a function f , sampled at n irregularly-spaced points x = {xi}n
i=1. Our aim is to

transform the sampled function values by means of lifting into a set of detail and scaling coefficients.
Take the initial scaling functions to be the characteristic functions of the cells associated with each point.

So ϕn,k(xi) = δi,k, for k, i ∈ {1, . . . , n}, and f can be expressed as f(x) =
∑n

k=1 cn,kϕn,k(x), where
f(xi) = cn,i (hence the function values on the irregular grid are used as the initial scaling coefficients).

For the first lifting step (say, stage n) a point to be lifted must be chosen. Jansen et al. (2004) propose
to choose the point to be lifted, jn, such that

∫
ϕn,jn(x) dx = mink∈{1,...,n}

∫
ϕn,k(x) dx. Denote In,k =∫

ϕn,k(x) dx. The first coefficients to be obtained are the ones corresponding to the finest detail, with further
steps eliciting progressively coarser detail.

After choosing the point to be removed, jn, we identify its set of neighbours, In. We use the neighbours
to predict the value of the function at jn using simple regression techniques. The prediction phase yields an
estimate of the form

∑
i∈In

an
i cn,i, where an are the weights resulting from the regression procedure over In.



If jn has only one neighbour, i, then the prediction is f(xi). The detail coefficient will be obtained from

(2) djn := cn,jn −
∑

i∈In

an
i cn,i,

or in the one neighbour case,

(3) djn := cn,jn − cn,i.

The update phase only affects the scaling coefficients associated with the neighbouring points:

(4) cn−1,i := cn,i + bn
i djn , ∀i ∈ In, i 6= jn.

The aim of the update stage is to keep
∑

i∈In
cn,i In,i constant across the scales, and the bn are obtained using

this condition. Further, the integral associated with the removed point gets redistributed to its neighbours, see
Jansen et al. (2001, 2004) for further details on these issues.

At this point, Jansen et al. (2004) state that the signal can be represented as

(5) f(x) = djnψjn(x) +
∑

i∈{1,...,n}\{jn}
cn−1,iϕn−1,i(x),

where ψjn and (ϕn−1,i)i are the analogues of the usual wavelet and scaling functions.
To summarize, a point, jn, is identified, the scaling function φn,jn is destroyed and a wavelet ψjn is

created with new coefficient djn . All neighbouring scaling function coefficients of point jn get updated. All
this results in representation (5), and the process is then repeated.

However, unlike the usual discrete wavelet case there are no neat analytical formulae for the scaling and
wavelet functions. These functions are recursively constructed as the algorithm proceeds and depend on the
locations of the input points x. More details on the precise interpretation and construction can be found in
Jansen et al. (2001, 2004). Orthogonality of the wavelet and scaling functions is a desirable feature since it
would ensure the stability of the transform, but it does not hold in this context.

4. Adaptive lifting

Different adaptive lifting constructions appear in the literature, mostly in a 2D context (Claypoole et
al., 1998, 2003; Boulgouris et al., 2001) although some 1D studies exist (Piella and Heijmans, 2002; Trappe
and Liu, 2000). Only small studies on the performance of the proposed methods are provided, with little
comparison to alternative competitors. In all this work the philosophy is to choose the ‘wavelet functions’
locally to represent the signal in the most efficient way. The above adaptive lifting techniques use the usual
odd/even splitting, whereas we augment with adaptiveness the ‘one coefficient at a time’ methodology of Jansen
et al. (2001). Further, we shall address the statistically important case of multiple f -values for each given x.

Possible sources of adaptiveness are:

1. At each step, different configurations of the neighbours can be chosen: the closest neighbours to the
removed point might be a choice, or its symmetrical neighbours.

2. The number of neighbours to use at each step is also subject to choice.

3. The prediction method can be linear, quadratic or cubic regression over the specified neighbourhood. In
wavelet language this corresponds to locally using more vanishing moments, which is of great utility
when the function is locally smooth, but not when there are discontinuities present.

We embed this flexibility in the following two adaptive lifting algorithms:



AdaptPred. At each step, the algorithm chooses the type of regression (linear, quadratic or cubic, with or
without an intercept) which generates the smallest detail in absolute value.

This method surpasses the choice of regression order, and the wavelet bases adapt themselves to the
signal smoothness.

AdaptNeigh. We introduce even more flexibility by allowing the neighbourhood size and configuration to
change at each step. Essentially, AdaptNeigh performs the AdaptPred procedure for different neighbour-
hood choices, and minimizes the detail coefficient from all implementations of AdaptPred.

This second construction completely frees the user from making any choice except for the neighbourhood
size. The considered neighbourhood configurations are symmetric neighbours up to and including a pre-
specified number each side, and of closest neighbours up to twice the specified number.

At this point one might like to refer to Figure 1 which shows the HeaviSine test signal decomposed with
an AdaptNeigh algorithm. The plots show where linear, quadratic and cubic basis functions get placed.
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Figure 1: Plot showing choice of prediction scheme for the HeaviSine test signal decomposed with AN2 on an irregular grid. Horizontal placement
of symbol indicates location of following kinds of prediction: linear (¤); quadratic (4); cubic (+); scaling functions (¦).

We shall now discuss some properties of the proposed methods.

Choosing the neighbourhood. In both adaptive algorithms the neighbourhood size has to be specified by the
user, and a choice can be made based on the prior knowledge of the signal. We do however advise against
using large neighbourhoods, as this increases the chances of using points that do not belong to the same scale.
In our algorithm, when at a particular stage the point to be removed happens to be on the boundary, rather
than using the requested number of neighbours (which would then come only from one side), we only use its
closest neighbour to prevent against using ‘artificial’ neighbours. Our investigations have shown that using
asymmetrical neighbours does not seem to have an impact on our transforms, as long as we make use of the
appropriate number of neighbours.
Regression order. Unstable transforms are generated using curves of higher order than the available number
of neighbours would allow (i.e. curves of the highest possible order, forced through the origin). Hence we use
each type of prediction with its appropriate number of neighbours. At certain steps of the transform we will be
in the situation of not having enough neighbours, hence the order of prediction needs to be decreased, while for
boundary points we will always predict using step functions. In consequence, we need to be aware that in fact
we will obtain a mixture of regression orders (although we required a fixed order).
Nonlinearity of adaptive algorithms. Recall that for prediction schemes which use least squares regression,
the prediction weights are computed using the grid values only, so the transform is linear. However, when we



introduce adaptivity into the transform design, the type of prediction used adapts to the local signal structure.
This in turn induces dependence of the prediction weights, function integrals, update weights and the next point
chosen for removal on the signal f . The transform operator associated to the adaptive transforms is therefore
not linear, and is a function of the signal.
Update weights. The update weights are also responsible for instability of the transform, and in our algorithm
we used br

i = Ir,jrIr−1,i/
∑

k∈Ir
I2
r−1,k, as suggested by Jansen et al. (2001). This choice ensures that the

obtained weights have minimum norm, which prevents the new wavelet and scaling functions at each stage
(here r) from being too close to each other.
Multiple observations at x-values. Many real situations are encountered where we have several values fi at
the same location xi. The prediction step uses a linear least squares approach to estimate the unknown param-
eters of the regression curve to be fit to the data, which can naturally cope with multiple observations. In the
update step, all multiple neighbours get updated using the corresponding detail obtained in the prediction stage.
So neighbour points that were multiple remain multiple after the update step. If the point to be removed is itself
multiple, we have chosen to produce one detail coefficient by taking the mean of the distinct individual detail
coefficients, although other quantities, such as the minimum, can be interesting alternatives. Finally, when the
coarsest level for decomposition has been reached, if some of the scaling points are multiple, we replace them
by their means, and then invert the lifting transform.

To conclude, adaptiveness in our algorithm brings some important advantages: wavelet functions are tuned to
the local features of the signal, therefore the usually difficult question of which wavelet to use is waived; better
wavelet coefficient sparsity and denoising capacity are achieved; the algorithm is computationally efficient
O(n); it is simple to handle the situation of multiple f -values for a given x-value.

5. Performance and applications in nonparametric regression

A thorough simulation study was performed in order to evaluate the denoising performance of our pro-
posed methods. The problem we addressed with the study is the classical nonparametric regression model, i.e.
model the observations as fi = g(xi)+εi, where the vector f denotes noise-contaminated observations at irreg-
ularly spaced points x, g is the true unknown function to be estimated, and ε is Gaussian noise. The approach
we take is to apply wavelet shrinkage (Donoho and Johnstone, 1994, 1995) with adaptive lifting instead of the
DWT, and an adapted version of the empirical Bayes thresholding (Johnstone and Silverman, 2004a,b; Nunes
et al., 2006).

The study was performed on the five test signals Doppler, Bumps, Blocks, HeaviSine (Donoho and John-
stone, 1994), and Ppoly (Nason and Silverman, 1994), over irregular grids with varying levels of irregularity
and different additive noise levels.

Several different variants of our linear and adaptive lifting schemes were compared against wavelet and
non-wavelet function estimators— the local polynomial fitting estimator Locfit Loader (1997, 1999); the S-
Plus function smooth.spline() with cross-validation, which fits smoothing splines to the data (SSCV);
the Comte and Rozenholc (2004) (CR) method, a denoiser based on adaptive polynomial basis selection; and
the irregular interpolation wavelet algorithm by Kovac and Silverman (2000) (KS) .

The overall accuracy of the estimates is measured by the average mean square error, defined by AMSE =
(nK)−1

∑K
k=1

∑n
i=1(g

k
i − ĝk

i )2, where K = 100 is the number of simulations and ĝk is the estimate of the
true signal gk on the kth repetition.

Overall, our methods are very competitive (see Table 1), with AdaptNeigh with neighbourhoods of size
up to two being significantly better on the signals with discontinuities over all grid irregularities and noise levels.
For smoother signals, AdaptPred with two neighbours worked best, outperforming the other smoothers over all
degrees of grid jitters and noise level, apart from one of the signals, where the Kovac-Silverman algorithm was
best.



Table 1: AMSE (×103) simulation results for test signals of length n = 256 with SNR=3 on grids with three levels of irregularity, d`, for various
denoising methods described in the text: LP (LinearPred), AP (AdaptPred), AN (AdaptNeigh). S denotes symmetrical neighbours, while N denotes
closest neighbours.

Blocks Bumps HeaviSine Doppler Ppoly
Method d1 d2 d3 d1 d2 d3 d1 d2 d3 d1 d2 d3 d1 d2 d3

LP1S 72 71 68 81 80 73 20 20 21 54 53 52 16 16 18
AP2N 69 70 59 78 75 64 21 21 22 53 52 48 15 16 17

AN1 55 54 52 66 67 61 36 39 37 61 61 59 38 33 32
Locfit 73 72 64 110 108 101 11 11 11 58 58 54 21 20 19
SSCV 74 74 67 307 315 250 12 11 12 61 60 53 20 20 19

KS 79 78 87 179 181 259 13 12 15 51 52 57 18 17 18
CR 119 119 133 332 313 284 25 25 25 155 155 148 13 13 13

6. Real data application

We shall now give a real data example which addresses the problem of predicting hydrophobic segments
along the sequence of a transmembrane protein, when no information on the protein is available, other than its
primary structure. For details of the method see Knight and Nason (2006).

For a protein, its hydropathy profile can be constructed by using a measure of hydrophobicity for each
amino acid in its chain. We obtain a signal which on the horizontal axis has the residues in their order of
appearance in the protein primary structure, and on the vertical axis their corresponding values from the hy-
drophobicity index (we use the Kyte and Doolittle (1982) hydrophobicity scale). The 3D information contained
in proteins similar to the protein of interest will be used to estimate the residue locations. Figure 2 gives an
example of such a signal, corresponding to the protein undecaprenyl-phosphate galactosephosphotransferase
(UniProt entry ‘rfbp-salty’).
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Figure 2: Example of a hydropathy profile.

Since transmembrane helices are sequences of predominantly hydrophobic residues, our purpose is to detect
the points at which sharp changes occur in the hydrophobicity signal. This amounts to modelling the profile as
noise-contaminated, and estimating the underlying signal.
We shall address the statistical problem of denoising the above hydropathy signal by using our adaptive wavelet
methodology, specifically AdaptNeigh with at most two neighbours and empirical Bayes shrinkage using the
posterior mean (AN1 mean).
We will now examine the results for ‘rfbp-salty’. Starting from its primary structure of 476 residues, one protein
with known 3D structure has been aligned to it and used in the computation of inter-residue distances.



Experimentally determined data is available for the transmembrane segments, which are thought to be 15-35,
52-72, 93-113, 115-135, 283-303. After employing our method (AN1 mean), we obtain the following predicted
segments 15-40, 60-72, 94-107, 116-135, 284-301, while through the usage of classical wavelets Daubechies
S8 with empirical Bayes shrinkage using the posterior mean (Daub mean) we obtain 12-40, 55-72, 89-110,
116-139, 170-186, 240-260, 279-304, 459-475, corresponding to Figure 3.
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Figure 3: True and predicted segments for ‘rfbp-salty’: horizontally filled rectangles=True, diagonally filled rectangles=AN1 mean, vertically filled
rectangles=Daub mean.

Our method does not predict extra segments, and it correctly identifies the true segments. The classical method
falsely predicts as transmembranar three segments which would be difficult to eliminate through a further
(chemical) filtering step.
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