
Creating and building R packages: course notes

Matt Nunes

19th April 2010

Why build R packages?

• Convenient code storage and version control

• “Open source” ideology: allows others to reproduce your work

• Facilitates easier code development on collaborative projects

• Con: Sometimes the building process can be tedious and frustrating!

1 Package structure

Package structure

An R package consists of the following components:

DESCRIPTION file with package information (e.g. name, version, dependen-

cies etc)

R directory containing the R code for functions in the package

man directory containing help files for objects in the package

1

data (optional) directory containing any datasets/dataframes

src (optional) directory containing any external compiled code (e.g. C or

Fortran code)

1.1 DESCRIPTION file

DESCRIPTION file fields

Package the name of the package

Title A single line package title description

Version Version of the package (formats are e.g. 0.1 or 1.1-2)

Description A more detailed single paragraph description of what the package

does

Author As many names as required, plus email addresses

Maintainer a name and an email address

License what licence you want to distribute the package under, e.g. “GPL-2”

or “Unlimited” (see share/licenses in R home directory)

Optional fields

Date the current build date, e.g. 2010-03-03 or 19/04/10

Depends list of dependent packages required to run your package.

Suggests Similar to Depends, e.g. those packages used for some function ex-

amples

LazyLoad If yes, builds package so that functions are loaded when required

(more efficient).

• There are other optional fields. See R documentation for more informa-

tion.

2

Example DESCRIPTION file

Package: mypackage

Version: 0.1-1

Title: A package for doing something

Date: 19/04/10

Depends: R (<=2.9), anotherpackage (>=0.1.2)

Author: Fred Bloggs <f.bloggs@lancaster.ac.uk>

Maintainer: Fred Bloggs <f.bloggs@lancaster.ac.uk>

Description: Does some really cool stuff

License: GPL

1.2 Code and datasets

Code and datasets

• R code can be put into mypackage/R as one file containing all code, or

individual files. Format is the same as output from dump(), must have

the extension .R or .r

• There is usually a “processing function” (traditionally called zzz.R) with

tasks to be performed when the package is loaded, such as loading libraries

and compiled code (using library.dynam) .

• Datasets usually have the extension .rda, and can be output from R using

save().

Example R function:zzz.R

.First.lib <-function(lib,pkg){

ver <- read.dcf(file.path(lib, pkg, "DESCRIPTION"),

"Version")

ver <- as.character(ver)

library.dynam("mypackage",pkg,lib)

cat("mypackage", ver, "loaded\n")

}

3

1.3 Help files

Help files

• .Rd files are used to generate HTML, pdf and LateX help files for the

package itself and any R objects in the package

• Use LaTex-like entries to describe functions and datasets

• prompt and promptPackage will create empty help files to be filled in

(similar to package.skeleton later)

• There are many different optional fields that can be used – see R extensions

documentation for details

.Rd file fields

name the name of the function

alias a “topic” with which multiple functions can be grouped together if nec-

essary

Title a one line description of the function. Must start with a capital letter,

no full stop at end

description a description of the function.

usage the call syntax to the R function

arguments A list environment describing each argument to the function

author similar to the author field in the DESCRIPTION file

value a list environment describing what the function returns

examples R code giving an example of use. Must be able to be run without

errors in R

4

keywords one or two entries from an allowed list in the R home /doc directory.

The list can also be seen using file.show(file.path(R.home("doc"),"KEYWORDS"))

from R

details (optional) More details on how the function works, e.g. the algo-

rithm/technique used.

seealso (optional) links to other R objects related to the function. Format:

\code{\link{...}}.

note (optional) Any warnings or comments for the user

references (optional) Any references to articles in the literature. Format:

\url{...}.

docType (for datasets, package) either data or package

format (for datasets only) a description of the format of the data

source (for datasets only) where the data came from (e.g. url).

Example .Rd file

\name{fifthroot}

\alias{fifthroot}

\title{Compute the Fifth Root}

\description{

Compute the Fifth Root of a Real Number

}

\usage{

fifthroot(x)

}

\arguments{

\item{x}{a real number.}

}

\seealso{

\code{\link{sqrt},\link{cuberoot},\link{fourthroot}}

}

\examples{

fifth root of 32

fifthroot(32)

}

\keyword{math}

5

1.4 Making life a bit easier...

Shortcut: package.skeleton

Some of the work of creating a package (especially for help files) can be done

from within R using package.skeleton. This function creates

• package structure

• DESCRIPTION file

• skeleton help files

• a few README files to give hints

The files can then be edited using for the specific package using any text

editor.

Example package.skeleton call:

package.skeleton(name = "myfirstpackage", list=ls(),path = ".")

Some package.skeleton arguments:

name the name of the package

list a character vector of R objects to include in the package

path where to create the package

code files a character vector of names of any R code files to base the package

around

2 An example R session: building your first pack-

age

In this section we will build a small example R package from scratch. The sub-

sections act as a step-by-step guide to building packages in general.

6

Note: in this section,

matt:/home$ represents the Linux command prompt

> represents the R prompt

� represents instructions/commands to do in R or Linux.

Getting the course files

� You can cp the course files from my home directory, and then uncompress

them using:

tar -xvf coursefiles.tar.gz

2.1 Environment setup

It is useful to create a directory in your workspace to contain built packages,

and also a directory where packages are installed (locally). This can be done

using the command mkdir e.g.

matt:/home$ mkdir myrpackages

matt:/home$ mkdir myrlibrary

matt:/home$ ls

myrlibrary

myrpackages

2.1.1 .Rprofile

To let R know where your locally installed packages are, you need to put the file

.Rprofile in your home directory, containing the path to your chosen directory,

using the line: .libPaths("/home/matt/myrlibrary") . This file can be done

7

using a text editor (e.g. pico or vi). For example, using pico:

matt:/home$ pico .Rprofile

The file is saved by cntrl-x followed by y (yes).

If your package has dependencies, R will need to know where locally in-

stalled dependent packages are during the package build. This is because during

the build (and checking process), R is run as --vanilla. In this case, the

environment variable R LIBS might need to be set. One way to do this is to

set the R LIBS environment variable within ∼/.bashrc, adding the line : export

R LIBS=$R LIBS:∼/myrlibrary. If you do use edit ∼/.bashrc, you need to load

the changes by source ∼/.bashrc.

2.2 creating a package using package.skeleton

� Start R, and then source the functions for the roots package.

8

> source(‘‘Rcode-roots.R’’)

If you do a ls() command, there should be a number of functions to com-

pute numerical roots of functions. In particular, the functions fifthroot and

fourthroot use exernal compiled code.

� Use package.skeleton to create a package named roots using the functions

in the workspace.

· · · ? ? ? · · ·

Your R console should say spurt out something like this:

Creating directories ...

Creating DESCRIPTION ...

Creating Read-and-delete-me ...

Saving functions and data ...

Making help files ...

Done.

Further steps are described in ’./roots/Read-and-delete-me’.

� Quit R and have a look at some of the skeleton package files that have been

created. For example:

matt:/home$ cd roots

matt:/home$ cat DESCRIPTION

should show

Package: roots

9

Type: Package

Title: What the package does (short line)

Version: 1.0

Date: 2010-04-19

Author: Who wrote it

Maintainer: Who to complain to <yourfault@somewhere.net>

Description: More about what it does (maybe more than one line)

License: What license is it under?

LazyLoad: yes

? It is important to have a look at the layout of the .Rd files in roots/man since

they are a potential source of build problems later.

2.3 File preparation

� The next step in building the roots package is to edit the DESCRIPTION,

.Rd files (in roots/man) with a text editor, e.g. pico. To save files, use cntrl-x

followed by y (yes).

? This is the tedious bit. To help you out, I have done a couple for you. You

can copy (cp) or move (mv) them across from the coursefiles directory.

matt:/home$ cp coursefiles/man/* /roots/man

· · · ? ? ? · · ·

� If necessary, you need to create the file zzz.R and put it in the roots/R

directory.

2.4 Compiled code

� Next we put any compiled code in the package, by creating the roots/src

directory and moving code files to the directory. Again, these are contained in

10

the coursefiles directory.

matt:/home$ cp coursefiles/src/* /roots/src

If you want to, you can have a look at the source code using e.g. pico, cat or

more.

· · · ? ? ? · · ·

2.5 After all the hard work...

Building and checking your package

• To build your package use R CMD build path to packdir, e.g. R CMD

build roots

• You now have a useable package!!

• The built package can be checked for errors using R CMD check [-l path to local libdir]

mypkg.tar.gz. The -l path to local libdir flag is optional, but is nec-

essary on some systems when $R LIBS is not set in ∼/.bashrc.

• This should be done (especially before submitting to CRAN). A proper

package should pass all checks!

Installing and using your package

• To install your package, use the command:

R CMD INSTALL -l path to local libdir mypkg.tar.gz For example:

R CMD INSTALL -l /home/matt/myrlibrary roots 0.1-1.tar.gz

• After installation, your package can be used by calling it as you would any

other package: library(roots)

11

3 Further examples and debugging

Possible R CMD check errors and warnings

Below are a few common problems with passing the R CMD check and pos-

sible solutions (useful for debugging more complicated packages).

T/F warnings. R CMD check does not like shorthand for boolean values. Use

explicit TRUE/FALSE in R code instead.

S3 method inconsistency. There are probably two S3 methods which have

different arguments in their usage calls/arguments lists.

undefined global variables. This is often a result of package dependence not

working properly, or using a variable within R code that doesn’t exist.

compiler warnings. This is obviously to do with your compiled code (inde-

pendent) from R. Any errors should be fixed (or ignored if you know what

you are doing).

examples code not executable. The example given in a help file does not

run independently. Try copy and pasting the offending example code from

the .Rd file to see where it fails and correct it.

code/documentation mismatches. The usage section of an .Rd file does

not match the argument list of the corresponding .R file.

undocumented code. Is there a .Rd file missing? Check the R functions list

against the man directory.

package dependency error. Has the required dependent package been INSTALLed

and does R know where to find it? Check .Renviron/.bashrc for correct

path to local/global library.

12

4 R sesson II: building a more complex package

In this section, the task is to successfully build and debug a more complicated

package, resembling a more realistic situation. The package is named mattpkg

and is in the coursefiles directory.

Task description

The package mattpkg uses a C routine to perform variable manipulation for a

certain technique, and depends on the packages roots and secondpkg (found here:

coursefiles/secondpkg 1.2.tar.gz). The task will be to create and install

a fully functional package mattpkg (passing all R CMD check tests). There are

intentional errors in some package files which need to be debugged. In other

words, you will need to:

• install any necessary packages (locally)

• make sure all files in the mattpkg directory are ok

• build the package

• check the package for errors

• install the clean package

? You can test the package within R by sourceing the file coursefiles/mattpkg-script.R.

· · · ? ? ? · · ·

13

5 And lastly...

Credits

• Notes and files from this course will be available from:

http://nunes.homelinux.com/~matt/mathstuff/Rhelp.html

• For more information about building R packages, see the R extensions manual:

cran.r-project.org/doc/manuals/R-exts.pdf

It has lots of information in it, especially about including compiled code in packages,

syntax etc (though it’s not always the clearest document for beginners).

• Alternatively, you can always email me...

anotheremail@inbox.com

14

