

One-Dimensional Model for Faraday Wave-Droplet Dynamics

Eileen Russell Supervisors Prof. Paul Milewski & Prof. Tim Rogers July 1, 2022

SAMBa University of Bath

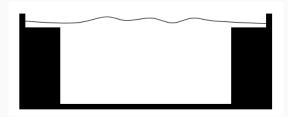


Figure 1: Bath of Vibrating Fluid

Dimensionless Forcing Acceleration $\Gamma = \frac{A\omega_0^2}{g} \label{eq:Gamma}$

Faraday Threshold

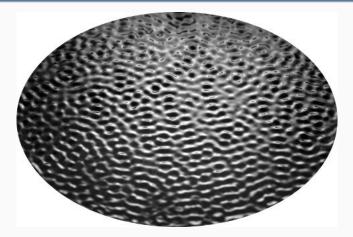
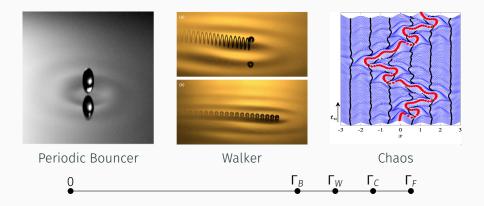


Figure 2: Faraday Waves

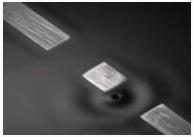
Faraday Threshold

Subcritical Phenomena

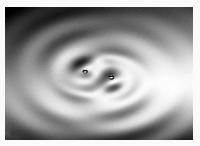


Quantum Analogies

- \cdot Diffraction
- Interference
- Quantised Orbits
- Tunneling
- Wave-like Statistics



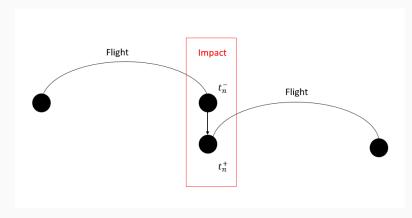
Double Slit Experiment



Quanitised Orbiting Droplets

A Discrete Time One-Dimensional Model

- Each time step correlates with droplet's impact on the surface
- On Impact, wavefield and droplet are subjected to jump conditions
- Method aids us in preforming simulations



System of Equations

$$\eta(x,t) = \sum_{k=k_1}^{k_k} a(k,t) \cos(kx) + b(k,t) \sin(kx)$$

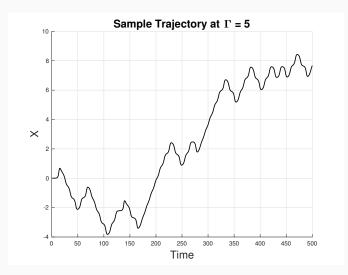
$$X_{N+1} = X_N + \dot{X}_N$$

$$\mathbf{u}_{N+1} = M(k, \Gamma)\mathbf{u}_N + \mathbf{J}(X)$$

$$\dot{X}_{N+1} = \dot{X}_N + F(\eta_x(X_{N+1}, t = N + 1))$$

- Bouncer (stable until Γ_W)
- Walker (stable between $\Gamma_W \& \Gamma_C$)
- Periodic Orbiter (highly unstable)

In the Chaotic regime, the droplet's motion alternates between a periodic orbiter and a walker.



Steady State Analysis - Periodic Orbiters

Discrete-time periodic orbiter correlates with specific Γ values.

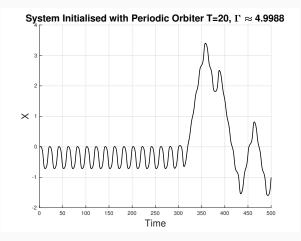


Figure 5: Periodic Orbiter is highly unstable

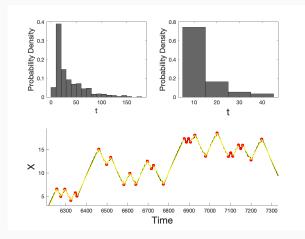
Steady State Analysis - Periodic Orbiters

Т	Г	Memory
19	5.0538	44.6
20	4.9988	26.18
21	4.9490	18.51
22	4.9055	14.99
23	4.8693	12.59
24	4.8385	11.24
25	4.8123	10.15
26	4.7905	9.527
27	4.7725	8.979

Memory

$$|\Lambda(\Gamma)|^{\text{Mem}} = \frac{1}{e},$$

A Run & Tumble Model



- 1. Red dots marked at each turning point
- 2. Red dot denotes a "tumble" of duration half a period
- 3. Run connects turning points

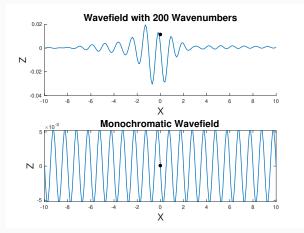
What have we done so far?

- 1. 1D
- 2. Discrete Time

What more can we do?

- 1. A monochromatic Wavefield $k = k_F = 2\pi$
- 2. Further Reduction by approximating the Floquet Matrix M.

A Monochromatic wavefield



 $\eta(x,t) = a\cos(k_F x) + b\sin(k_F x)$

Approximation to the Floquet Matrix

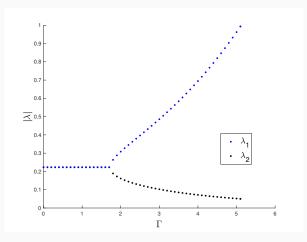


Figure 6: Eigenvalues of the Floquet Matrix M

$$M = \mathbf{w}_1^{\mathsf{T}} \lambda_1 \mathbf{v}_1 + \mathbf{w}_2^{\mathsf{T}} \lambda_2 \mathbf{v}_2$$

$$a_{N+1} = -\alpha\lambda_1 \cos(k_F \dot{X}_N) + \lambda_1 \cos(k_F \dot{X}_N) a_N + \lambda_1 \sin(k_F \dot{X}_N) b_N, \quad (1)$$

$$b_{N+1} = \alpha\lambda_1 \sin(k_F \dot{X}_N) + \lambda_1 \cos(k_F \dot{X}_N) b_N - \lambda_1 \sin(k_F \dot{X}_N) a_N, \quad (2)$$

$$\dot{X}_{N+1} = \dot{X}_N - \mu \left(\varphi k_F b_{N+1} + \dot{X}_N\right). \quad (3)$$

Bifurcation Curves

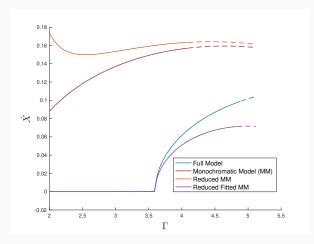


Figure 7: Bifurcation Curve of the Reduced Models

Periodic Orbiters in the Reduced Monochromatic Model

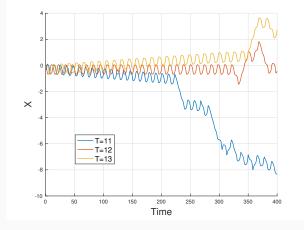


Figure 8: Periodic Orbiters

Drift in Periodic Orbiters

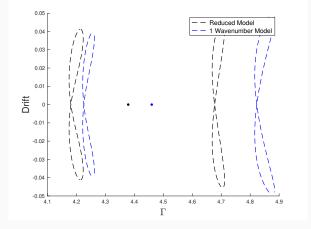


Figure 9: Many orbiters exists with different drifts

Any Questions ?