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Set Up

Figure 1: Bath of Vibrating Fluid

Dimensionless Forcing Acceleration

Γ =
Aω20
g
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Faraday Threshold

Figure 2: Faraday Waves

Faraday Threshold
Γ = ΓF 2



Subcritical Phenomena

Periodic Bouncer Walker Chaos
ΓB0 ΓW ΓC ΓF
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Quantum Analogies

• Diffraction
• Interference
• Quantised Orbits
• Tunneling
• Wave-like Statistics

Double Slit Experiment Quanitised Orbiting Droplets
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A Discrete Time One-Dimensional Model

• Each time step correlates with droplet’s impact on the surface
• On Impact, wavefield and droplet are subjected to jump
conditions

• Method aids us in preforming simulations

Figure 3: Discrete Time Model
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System of Equations

η(x, t) =
kK∑
k=k1

a(k, t) cos(kx) + b(k, t) sin(kx)

XN+1 = XN + ẊN

uN+1 = M(k, Γ)uN + J(X)

ẊN+1 = ẊN + F(ηx(XN+1, t = N+ 1))
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Steady State Analysis

• Bouncer (stable until ΓW)
• Walker (stable between ΓW & ΓC)
• Periodic Orbiter (highly unstable)

ΓB0 ΓW ΓC ΓF
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Steady State Analysis

In the Chaotic regime, the droplet’s motion alternates between a
periodic orbiter and a walker.
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Figure 4: Caption
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Steady State Analysis - Periodic Orbiters

Discrete-time periodic orbiter correlates with specific Γ values.
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Figure 5: Periodic Orbiter is highly unstable
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Steady State Analysis - Periodic Orbiters

T Γ Memory
19 5.0538 44.6
20 4.9988 26.18
21 4.9490 18.51
22 4.9055 14.99
23 4.8693 12.59

24 4.8385 11.24

25 4.8123 10.15

26 4.7905 9.527

27 4.7725 8.979

Memory
|Λ(Γ)|Mem =

1
e ,
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A Run & Tumble Model

1. Red dots marked at each turning point
2. Red dot denotes a “tumble” of duration half a period
3. Run connects turning points
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Reduced Modelling

What have we done so far?
1. 1D
2. Discrete Time

What more can we do?
1. A monochromatic Wavefield k = kF = 2π
2. Further Reduction by approximating the Floquet Matrix M.
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A Monochromatic wavefield
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η(x, t) = a cos(kFx) + b sin(kFx)
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Approximation to the Floquet Matrix
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Figure 6: Eigenvalues of the Floquet Matrix M

M = wT1λ1v1 + wT2λ2v2 14



From 5 Variables to 3

aN+1 = −αλ1 cos(kFẊN) + λ1 cos(kFẊN)aN + λ1 sin(kFẊN)bN, (1)

bN+1 = αλ1 sin(kFẊN) + λ1 cos(kFẊN)bN − λ1 sin(kFẊN)aN, (2)

ẊN+1 = ẊN − µ
(
φkFbN+1 + ẊN

)
. (3)
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Bifurcation Curves
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Figure 7: Bifurcation Curve of the Reduced Models
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Periodic Orbiters in the Reduced Monochromatic Model
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Figure 8: Periodic Orbiters
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Drift in Periodic Orbiters
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Figure 9: Many orbiters exists with different drifts
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Thank you

Any Questions ?
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