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Introduction to Pólya urns

U(0) = (2, 1, 1)

R =

 1 0 0
0 1 0
0 0 1



U(1) = (3, 1, 1)
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Introduction to Pólya urns

A d-colour generalized Pólya urn process (U(n))n≥0 is a Markov process
which depends on two parameters:

The initial composition U(0) ∈ Zd
≥0.

The non-negative integer-valued replacement matrix R.

The process evolves from step n to n + 1 as follows:

1 Select a ball u.a.r. from the urn.

2 If a ball of colour i is chosen, place the ball back into the urn along
with Rij balls of colour j .

This is a fixed initial composition urn!
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Asymptotic behaviour: Two canonical cases

A typical question when studying Pólya urns is how the urn behaves as
the number of draws n tends to infinity.

What does the colour composition U(n)/
∑d

i=1 U(n)i converge to?

What are the size, scale, and shape of the urns fluctuations around
its asymptotic colour composition?

This question can be answered for most replacement matrices by solving
the following two canonical cases:

Identity replacement matrix: Take R = SI , S ∈ Z≥1.

Irreducible replacement matrix: For all 1 ≤ i , j ≤ d , if U(0) = e i

there exists n(i , j) ≥ 0, such that U(n(i , j))j > 0 has positive
probability, e.g.

R =

(
0 1
1 0

)
.
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Asymptotic behaviour: Irreducible replacement matrix

(Athreya & Karlin, 1968) Let U have an irreducible replacement matrix
R. Let λ1 denote the Perron-Frobenius eigenvalue of R. Then, a.s.

lim
n→∞

U(n)∑d
i=1 U(n)i

= v1,

where v 1 is the left eigenvector of λ1.

Figure: Simulations of a two colour urn with R =

(
1 3
2 1

)
and

v1 ≈ (0.45, 0.55).
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Asymptotic behaviour: Irreducible replacement matrix

(Janson, 2004) Assume R is diagonalizable with real eigenvalues. Let λ1

be the Perron-Frobenius eigenvalue and λ2 the second largest eigenvalue.

Fluctuations of the irreducible urn around v 1 as n → ∞:

Small urns: If λ2 < λ1/2, then the fluctuations converge to an
Ornstein-Uhlenbeck process of size n1/2 and scale nt.

Critical urns: If λ2 = λ1/2, then the fluctuations converge to a
Brownian motion of size n1/2 log(n)1/2 and scale nt .

Large urns: If λ2 > λ1/2, then the fluctuations converge to a
non-Gaussian random variable of size nλ2/λ1 and scale nt that
depends on U(0).
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Growing initial composition urns

Let (Un)n≥1 be a sequence of urns with identical replacement matrix,

and set N(n) :=
∑d

i=1 Un(0)i to be the number of initial balls in the urn.

Recently, (Dimitris & Dimitra, 2019, Borovkov, 2019) categorised the
asymptotic behaviour of Un(n) when the replacement matrix was the
identity as n,N → ∞.

Let (Un)n≥1 have irreducible replacement matrix, we assume that:

Fixed initial colour composition - There is a vector µ such that

µn := N−1Un(0) = µ, n ≥ 1.

Balanced replacement matrix - We add S ≥ 1 balls to the urn at
each time step a.s.

Growing initial composition - There are three regimes as n → ∞:

Initial Ball Dominant - n = o(N).
Transitional Regime - n/N → 1 (w.l.o.g.).
Time Step Dominant - N = o(n).
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Sub-urn representation

Let U be an urn with N initial balls. We have

U(n)
d
=

d∑
i=1

U(0)i∑
j=1

U ij(Dij(n)), n ≥ 0.

U ij - Pólya urns with initial conditions e i and identical replacement
matrix to U .
Dij(n) - The number of times the urn U ij has been drawn from by
time step n of U .

U(0) = (2, 1, 1)

R =

 0 0 1
1 0 0
0 1 0



If the urn is balanced, conditionally on the Dij(n), the U ij(Dij(n)) are
independent.
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Initial ball dominant regime n = o(N)

Let the sequence (Un)n≥1 have a balanced irreducible replacement
matrix and initial colour composition µ. Let ℓ1(n, t) = log(1 + Snt/N).

Initial Ball Dominant: As n → ∞

n−1/2(Un(⌊nt⌋)− NeR
′S−1ℓ1(n,t)µ)

d→ W1(t) in D[0,∞),

N−1Un(⌊nt⌋)
p→ µ in D[0,∞).

Asymptotic colour composition µ - Initial colour composition
dominates the asymptotic colour composition.

Brownian fluctuations W 1 - The draws of the urn are close to a
random walk with jump probabilities given by µ and jumps given by
R.
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Transitional regime n ∼ N

Let the sequence (Un)n≥1 have a balanced irreducible replacement
matrix and initial colour composition µ. Let ℓ1(n, t) = log(1 + Snt/N).

Transitional regime: As n → ∞

n−1/2(Un(⌊nt⌋)− NeR
′S−1ℓ1(n,t)µ)

d→ W2(t) in D[0,∞),

N−1Un(⌊nt⌋)
p→ eR

′S−1 log(1+St)µ in D[0,∞).

Asymptotic colour composition eR
′S−1 log(1+St)µ (normalized) -

Can be seen as the “expected” composition of an urn with initial
colour composition µ number of initial balls 1 and number of draws
t.

Gaussian fluctuations W2 - The shape of the fluctuations depend
on the fluctuations (variance) of the urn with a finite number of
draws.
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Transitional regime n ∼ N
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Time step dominant regime N = o(n)

Time Step Dominant: Assume R is diagonalizable with real
eigenvalues. S is the Perron-Frobenius eigenvalue, and let λ2 be the
second largest eigenvalue. Then, as n → ∞

Un(⌊N(n/N)t⌋)
SN(n/N)t

p→ v 1 in D(0,∞).

Small Urns: Let ℓ1(n, t) = log(1+Snt/N). If λ2 < S/2, then as n → ∞

n−1/2(Un(⌊nt⌋)− NeR
′S−1ℓ1(n,t)µ)

d→ t1/2W s(log(t)) in D(0,∞).

Critical Urns: Let ℓ2(n, t) = log(1 + S(n/N)t). If λ2 = S/2, then as
n → ∞

Un(⌊N(n/N)t⌋)− NeR
′S−1ℓ2(n,t)µ

N1/2(n/N)t/2 log(n/N)1/2
d→ W c(t) in D(0,∞).

Large Urns: If λ2 > S/2, then as n → ∞

Un(⌊N(n/N)t⌋)− NeR
′S−1ℓ2(n,t)µ

N1/2(n/N)λ2t/S

d→ V ℓ in D(0,∞).
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