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Introduction



The biased RWRC (1)

Bond randomness (RWRC)
Define a family tcx “ cptx , x ` 1uquxPZ of i.i.d. positive random
variables associated with the edges of Z, then deterministically tilt
them and denote: cλx “ eλxcx for λ ą 0. It is natural to define a
family of jump probabilities

ωx :“
cλx

cλx´1 ` cλx
.

x x+ 1x− 1 cxcx−1

Consider the Markov chain with those jump probabilities

Pω rXt`1 “ y |Xt “ xs “

$

’

’

&

’

’

%

ωx y “ x ` 1,

1 ´ ωx y “ x ´ 1,

0 otherwise.
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The biased RWRC (2)

Remark
There is an “old” (Tavaré, Zeitouni 2004) theorem that guarantees
that, for almost every realisation of the environment, the random
walk is such that

lim
nÑ8

Xn “ `8, Pω-almost surely.

We want to enforce
Xn

n
Ñ 0.

Hypothesis on the conductances
We assume that, for α P p0, 1q

Prc´1
0 ą ts „ const. t´α or Prc0 ą ts „ const. t´α.
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Heuristics

0 n
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Previous result and a question

Annealed law
The annealed law P b Pωr¨s can be attained by averaging out the
randomness of the environment, that is

P b Pωr¨s :“

ż

Ω

Pωr¨sPrdωs.

Let Tn be the hitting time of distance n

Tn “ inftk : Xk “ nu.

Theorem (Berger, Salvi 2020)
Under P b Pωr¨s

Tn

n1{α
Ñ const. ˆ Sα.

Where Sα is some known (α-stable) distribution.
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Some results



Results (1)

Theorem
There exists a random subsequence of the space xm, depending
just on the environment, such that P-a.s.

lim
mÑ8

Pω

«

Txm ´ Eω rTxm s
a

VarωpTxmq
ď y

ff

“ Φpyq.

Where Φp¨q is the c.d.f. of a standard Gaussian.
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Where Ψp¨q is the c.d.f. of a standard Exponential random variable.
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Results (2)

Thanks to the two previous theorems we have ruled out the
possibility of a fully quenched result, can we still do a bit better than
the annealed limit?

Theorem
In the metric space of probability measures on R with finite first
moment, endowed with a proper distance

L

ˆ

Tn

n1{α

∣∣∣∣ω˙

dist
Ñ L

˜

ÿ

pě1

pωpep

∣∣∣∣ppωpqpě1

¸

inP-law,

where pω :“ tpωpup is a Poisson point process (p.p.p.) with intensity
α const. pω´p1`αqdpω, tepup are i.i.d. exponential random variables
with parameter 1.
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Conclusions

Let us recap what we did:

• Proved that a quenched limit is impossible.
• Characterised two very different sub-sequential regimes that

make the quenched limit false.
• Proved a second-best “weakly-quenched” result that precisely

characterises the process.

Next (current) steps:

• Without bias?
• Dimension d ě 2?
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Questions?

Thank You!
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