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Microscopic to Macroscopic description

Microscopic description
System of N particles

of diameter ε

Mesoscopic description
Kinetic theory

e.g. Boltzmann equation

Macroscopic description
Continuous equations

e.g. Navier-Stokes, Heat equation

Nεd−1 � 1,
Nεd � 1

Boltzmann-Grad limit
N � 1,Nεd−1 = α

Hydrodynamic limit
α� 1



Microscopic to Mesoscopic

N particle system

Boltzmann equation

Boltzmann-Grad limit
N � 1,Nεd−1 = α

I N hard spheres particle system obey the Newton laws

dxi (t)

dt
= vi ,

dvi (t)

dt
= 0, unless collision

I The Boltzmann equation

∂t f (t, x , v) + v · ∇x f (t, x , v) = Q(f , f )(t, x , v)

I This convergence is known for small time interval, of the order
of 1

α . O. E. Lanford ’74



Mesoscopic to Macroscopic

Kinetic theory

Continuous equations

Hydrodynamic limit
α� 1

It is known in some situations, i.e.

I The renormalised solutions fα of a scaled Boltzmann equation

1

α
∂t f + v · ∇x f = αQ(f , f )

converges as α goes to infinity to g(v , u), where u satisfies
the incompressible Navier-Stokes equations{

∂tu + (u · ∇)u − ν∆u = −∇p,
div u = 0 .

F. Golse and L. Saint-Raymond ’04



The full derivation

N particle system
of diameter ε

Kinetic theory

Continuous equations

Nεd−1 � 1,
Nεd � 1

Boltzmann-Grad limit
N � 1,Nεd−1 = α

Hydrodynamic limit
α� 1

I The distribution of a tagged particle in a background at
equilibrium satisfies a heat equation

∂tu − κβ∆xu = 0

at the limit N →∞, using the linear Boltzmann equation as
an intermediate step with α = Nεd−1 going slowly to infinity
with N.

T. Bodineau, I. Gallagher and L. Saint-Raymond ’16



Description of the problem

Microscopic description
Rayleigh gas particle system

Mesoscopic description
Linear Boltzmann equations

Macroscopic description
Fractional diffusion equations

Nεd−1 � 1,
Nεd � 1

Boltzmann-Grad limit
N � 1,Nεd−1 = α

Hydrodynamic limit
α� 1



Particle model (Microscopic description)

I Short range potential: The particles carry a force that affects
only nearby particles.
The Hamiltonian equations of motions are given by

dxi (t)

dt
= vi ,

dvi (t)

dt
= −

∑
j 6=i

∇Φ(xi − xj),

where Φ : R3 → R is the interaction potential, radial,
supported in the ball of R3 of radius R, class C 2 in
{x ∈ R3, 0 < |x | < R} and goes to zero at |x | = R.

I Conservation of momentum and kinetic energy:

vi + vj = v ′i + v ′j ,

|vi |2 + |vj |2 = |v ′i |2 + |v ′j |2.

I Rayleigh gas: The background particles are of equal mass with
the tagged particle and the background particles interact only
with the tagged particle and not with each other.



Linear Boltzmann equation (Mesoscopic description)

I The linear Boltzmann equation

∂t f + v · ∇x f = Q(f ) , x ∈ T3, v ∈ R3, t ≥ 0

I f = f (t, x , v): probability density in T3 ×R3

I Q(f ): linear Boltzmann collision operator, local in (t, x),
describes the interactions of the particles with the surrounding
medium

Q(f )(v) =

∫
R3

∫
S2

(f (v ′)g(v ′1)− f (v)g(v1)) B(v − v1, ω) dω dv1

I g : distribution of the background particles

I B is the collision kernel

I v ′ = v + ω · (v − v1)ω, v ′1 = v1 − ω · (v − v1)ω



Fractional diffusion limit (Macroscopic description)

The fractional diffusion equation of order γ < 2:

∂tρ+ κ(−∆x)
γ
2 ρ = 0 in (0,∞)×R3,

ρ(0, ·) = ρ0 on R3,

where κ is given by

κ =
κ0ν0
1− β

∫
R3

w2
1

ν20 + w2
1

1

|w |3+γ
dw .

I ρ = ρ(t, x) : the density
∫
R3 f (v)dv

I The fractional operator: (−∆x)
γ
2 ρ := F−1(|k |γF(ρ)(k)),

with F the Fourier transform in the space variable

I Difference with Laplace operator: It is nonlocal for 0 < γ < 2

See, e.g., Fractional Diffusion Equations and Anomalous Diffusion,
L. R. Evangelista and E. K. Lenzi ’18



Microscopic to Mesoscopic

Rayleigh gas
particle system

Linear Boltzmann
equations

Boltzmann-Grad limit
N � 1,Nεd−1 = α

Sketch of the proof: Follow the steps for the hard sphere case:

I Consider the Empirical equation: It is connected to the
particle dynamics

I Consider the Idealised equation: It is equivalent of the linear
Boltzmann equation but on the set of collision histories

I Estimate of the probability of the set of not well controlled
histories

I Estimate of the difference between the empirical distribution
on collision histories P̂t and the solution Pt of the idealized
equation



Mesoscopic to Macroscopic

Linear Boltzmann
equations

Fractional diffusion
equations

Hydrodynamic limit
α� 1

Plan: Follow techniques of Mellet, Mischler, Mouhot ’11

I Convergence of the solution f of the rescaled linear
Boltzmann equation, to ρ(t, x)F (v) with ρ the solution of a
fractional diffusion equation in the L∞(0,T ; L2(R3 ×R3))

I F is the equilibrium distribution of the linear Boltzmann
equation, i.e. Q(F ) = 0

I Use radial, fat-tailed background distribution g



Conclusion

Microscopic description
Rayleigh gas particle system

Mesoscopic description
Linear Boltzmann equations

Macroscopic description
Fractional diffusion equations

Nεd−1 � 1,
Nεd � 1

Boltzmann-Grad limit
N � 1,Nεd−1 = α

Hydrodynamic limit
α� 1



Thank you

Thank you!


