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Definition

Interacting particle system - definition

”Countable system of locally interacting Markov processes”

The state space of the system

I Lattice Countable space Λ with some notion of distance.

I Local states Usually a finite set S .

I State space of the system E = SΛ

Each point of the lattice is in one of the local states.

Example: Λ = Zd ,S = {0, 1},E = {0, 1}Zd

Interacting particle system

Change the local state at one point (finitely many points) in the
lattice with a rate that depends on the surrounding local states.

General references: Liggett (’85, ’99), Swart (’15)
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Definition

Interacting particle system - Short review

I Interacting particle systems are toy models for stochastic
systems with a spatial structure and simple local rules.

I They lead to surprisingly realistic and interesting behavior on
a large space time scale: macroscopic behavior.

I Universality classes: Often, it turns out that more detailed
and realistic local rules lead to the same kind of macroscopic
behavior.

Central questions: Longtime and macroscopic behavior, phase
transitions, behavior at the phase transitions ...

Applications: Population dynamics, spread of disease or rainwater
particle motion, ferromagnetism, traffic flow, social network
dynamics...
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Classical examples

Interacting particle system - classical examples

Contact process on Zd :
I Continuous time Markov process with E = {0, 1}Zd

.
I Interpretation: ”1” as particle and ”0” as an empty site.
I At some rate q(|i − j |) a

particle at site i produces a particle at site j (if empty).
I Each particle dies at rate 1.

Figure : Directed percolation model: Analogous model in discrete
time. Simulation on 100 sites by Allhoff and Eckhardt for different
nearest neighbor birth rates.
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Classical examples

Contact process on Zd : X x = (X x
t )t≥0 with X x

0 = x

I Spatial version of a binary branching process
with local carrying capacity.

I Longtime behavior: Survival For |x | :=
∑

i∈Zd x(i) <∞

θ = θx = P
[
X x
t 6= 0 ∀t ≥ 0

]
> 0?

I Longtime behavior: Complete convergence

L(X x
t )⇒ θx ν̄ + (1− θx)δ0

I The upper invariant law ν̄ is the limit for x = 1.
Nontrivial if ν̄ 6= δ0.

Figure : Phase transition for survival in a one dimensional nearest
neighbour contact process with branch rate λ and |x | = 1.
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Classical examples

Interacting particle system - dualities

Duality: E
[
1{|X x

t ·y |=0}
]

= E
[
1{|x ·Y y

t |=0}
]
, t ≥ 0

|x · y | =
∑

i x(i)y(i).

For the contact process X ∼ Y (self-dual).

The above duality relates survival θδiX > 0 with nontriviality of ν̄Y :

E
[
1{|X x

t ·1|=0}
]

= E
[
1{|x ·Y 1

t |=0}
]

⇔ P
[
|X x

t · 1| 6= 0
]

= P
[
|x · Y 1

t | 6= 0
]

⇔ P
[
X x
t 6= 0

]
= P

[
|x · Y 1

t | 6= 0
]

With t →∞ and x = δi

θδiX = P
[
Y 1
∞(i) 6= 0

]
=

∫
νY (dy)1{y(i)=1}.
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Classical examples

Voter model on Zd :

I Continuous time Markov process with E = {0, 1}Zd
.

I Interpretation: Particle at each site of type either 0 or 1.

I At some rate q(|i − j |) site i adopts the local state of site j .

Figure : Sequential snapshots of the nearest neighbour voter model
produced with an online simulator by Bryan Gillespie (Berkeley) on a
100x100 grid.
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Classical examples

Voter model on Zd :

I Continuous time Markov process with E = {0, 1}Zd
.

I Interpretation: Particle at each site of type either 0 or 1.

I At some rate q(|i − j |) site i adopts the local state of site j .

Figure : Sequential snapshots of the nearest neighbour voter model
produced with an online simulator by Bryan Gillespie (Berkeley) on a
100x100 grid. Clustering occurs! Longtime coexistence?
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The model

Cooperative branching coalescent (CBC)

Sturm and Swart: Annals of Applied Probability 2014

I Continuous time Markov process with state space {0, 1}Z:

X = (Xt)t≥0

I ”1” represents a particle, ”0” an unoccupied site.

I Symmetric random walk with coalescence:
particles on adjacent sites merge at rate 1.

I Adjacent pairs of particles produce a new particle:
particle is placed on a (randomly chosen) neighbouring site at
cooperative branching rate λ.
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The model

Motivation

As a model in the biological context:

1 Pair reproduction with migration and competition:
”1” is a site occupied by an individual, ”0” is an empty site.
Cooperative branching: pairs of individuals reproduce.
Coalescing random walk: death due to competition.

2 Interface model of a multi type voter model:
”1” is an interface between different ”types”.
Cooperative branching: singletons give birth to a new type.
Coalescing random walk: voter dynamics and disappearance
of types.

As a mathematical toy model:
Tractable one dimensional model with interesting properties.
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The model

The graphical representation

0 0 1 1 0 1 0

0 0 1 1 1 0 0

t

Z

t ∈ →ω(i)

cooperative branching

t ∈ →ω(i − 1
2 )

coalescing jump

For i ∈ Z
→
ω(i),

←
ω(i) as well as

→
ω(i − 1

2 ),
←
ω(i − 1

2 )

are Poisson processes with rate 1
2λ and 1

2 .
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The model

Useful basic properties

The graphical representation provides a ”coupling” of processes
with different initial states and parameters.

I Monotonicity
If x ≤ y (componentwise) then the processes can be coupled
such that

X x
t ≤ X y

t for all t ≥ 0.

⇒ Monotoniciy in the initial states.

We also have monotonicity in λ.
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The model

Simulation of the model

Simulation of a near-critical cooperative branching-coalescent with
λ = 2 1

3 on a lattice of 700 sites with periodic boundary conditions,
started from the fully occupied initial state.



Classical interacting particle systems Cooperative branching coalescent

Phase transitions

Long time behavior

I From monotonicity

P
[
X

1
t ∈ ·

]
=⇒
t→∞

ν,

where ν is the upper invariant law.
Probability under ν of finding a particle in the origin:

θ(λ) :=

∫
νλ(dx)1{x(0)=1}

νλ is nontrivial if θ(λ) > 0.

I Survival probability of pairs - ”staying active”:

θ(λ) := P
[
|X δ0+δ1

t | ≥ 2 ∀t ≥ 0
]

The process survives if θ(λ) > 0.
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Phase transitions

Existence of phase transitions

There exist phase transitions for the triviality/nontriviality of the
upper invariant law as well for survival/extinction.

Theorem:
Phase transitions for upper invariant law and survival

(a) There exists a 1 ≤ λc <∞ such that
νλ = δ0 for λ < λc but νλ is nontrivial for λ > λc.

(b) There exists a 1 ≤ λ′c <∞ such that
the process dies out for λ < λ′c and survives for λ > λ′c.
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Phase transitions

Existence of phase transitions

λ

θ(λ)
θ(λ)

1 2 3 4 5 6 7

0.2

0.4

0.6

0.8

1

Simulation of the density θ(λ) of the upper invariant law and
survival probability θ(λ) (plotted in black and red, respectively)
rate suggesting

λc ≈ λ′c ≈ 2.47± 0.02,
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Phase transitions

Proof ideas: Existence of phase transitions

Monotonicity implies the existence of λc and λ′c if we can show

(a) ν = δ0 for λ ≤ 1 and ν 6= δ0 for large λ.

(b) The process dies out for λ ≤ 1 and survives for large λ.
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Phase transitions

Proof ideas: Existence of phase transitions

Triviality of the upper invariant law for λ ≤ 1: ν = δ∅

If λ > 0 and the process is started translation invariant let
pt(1) = P(Xt(i) = 1), pt(11) = P(Xt(i) = 1,Xt(i + 1) = 1), . . . .

∂
∂t pt(1) =−pt(1) + 1

2pt(10) + 1
2pt(01) + 1

2λpt(110) + 1
2λpt(011)

=−pt(11) + λ
(
pt(11)− pt(111)

)
= (λ− 1)pt(11)− λpt(111),

If the process is furthermore started from an invariant law

0 = ∂
∂t pt(1) ≤ −λpt(111)⇒ pt(111) = 0.

As pt(1) > 0 would imply pt(111) > 0 we are done.
(Case λ = 0 similar.)
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Phase transitions

Proof ideas: Existence of phase transitions

Extinction for λ ≤ 1: P
[
∃T <∞ s.t. |X x

t | = 1 ∀t ≥ T
]

= 1.

With similar calculations

∂
∂tE
[
|X x

t |
]

= (λ− 1)
∑
i∈Z

P[X x
t (i) = X x

t (i + 1) = 1]

−λ
∑
i∈Z

P[X x
t (i) = X x

t (i + 1) = X x
t (i + 2) = 1]

So |X x
t | is a supermartingale for λ ≤ 1: |X x

t | −→t→∞
N a.s.

⇒ N = 1 a.s.
since if there were more particles left they would meet (a.s. due to
recurrence) and interact (through branching or coalescence).
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Phase transitions

Proof ideas: Existence of phase transitions

Nontrivial upper invariant law and survival for large λ :
”Coupling” with another process: Pairs of adjacent particles are
coupled with a contact process variant.

The contact process with double deaths Y = (Yt)t≥0

I Sites infect any neighbor at rate 1
2λ.

I Any particles on two neighboring sites die at rate 1.

Graphical representation with Poisson processes:

←
π(i − 1

2
),
→
π(i − 1

2
), and π∗(i − 1

2
), i ∈ Z.
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Phase transitions

Proof ideas: Existence of phase transitions

Nontrivial upper invariant law and survival for large λ :

Comparison of X with the contact process with double deaths Y

Let
X

(2)
t (i) := 1⇔ X x

t (i) = X x
t (i + 1) = 1 t ≥ 0

denotes the locations of pairs of neighbouring particles in Xt . Then

(X
(2)
t )t≥0 and (Yt)t≥0 can be coupled such that

Y0 ≤ X
(2)
0 implies Yt ≤ X

(2)
t t ≥ 0.

Coupling:

←
π(i−1

2
) :=

←
ω(i),

→
π(i−1

2
) :=

→
ω(i), π∗(i−1

2
) :=

←
ω(i−1

2
)∪→ω(i+

1

2
)
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Phase transitions

Proof ideas: Existence of phase transitions

Comparison with oriented percolation

I By considering large times blocks we can can bound the
contact process with double deaths from below by oriented
percolation with arbitrarily large p for large enough λ.

I For large enough p the oriented percolation process has a
nontrivial upper invariant law and survives completing the
proof.
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Particle density and survival probability

Decay rate in the subcritical regime

Theorem:
Decay rates of the survival probability and the density

(a) There exists a constant c > 0 such that for all λ ≥ 0,

P
[
|X δ0+δ1

t | ≥ 2
]
≥ ct−1/2 and P[X

1
t (0) = 1] ≥ ct−1/2 t ≥ 0.

(b) Moreover, there exists a constant C <∞ such that
for each 0 ≤ λ ≤ 1

2 ,

P
[
|X δ0+δ1

t | ≥ 2
]
≤ Ct−1/2 and P[X

1
t (0) = 1] ≤ Ct−1/2 t ≥ 0.

Note: 1
2 ≤ λc , λ

′
c (subcritical regime)

Proof technique: Pathwise (super-)duality
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Particle density and survival probability

Proof ideas: Decay of the survival probability and density

Lower bound Suffices to consider λ = 0 : coalescing random walk
Consider coalescing random walk ξ following reversed arrows in
reversed time:

Z

t I1 I2

I ′1 I ′2
No particles in I1 if and only if no particles in I ′1.

Pathwise duality to coalescing random walks:

j− 1
2∑

k=i+ 1
2

X x
t (k) = 0 if and only if

ξ
(j,t)
0 − 1

2∑
k=ξ

(i,t)
0 + 1

2

x(k) = 0 a.s.
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Particle density and survival probability

Proof ideas: Decay of the survival probability and density

Upper bound A pathwise superdual for λ > 0 (similar to Gray ’86)

Z

t I1 I2

I ′1 I ′2

Superduality: If there are particles in either I1 or I2 then there
must exist a ”backward 3-path” as drawn such that there are
particles in either I ′1 or I ′2. We can bound the expected number
of 3-paths over time t ”started” in adjacent sites.
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Particle density and survival probability

Extensions of the model

Work in progress with Jan Swart and Tibor Mach:

I Include natural deaths.
Exponential decay of particle density and survival

I Consider different graphs: Zd , trees, complete graph.
Dual process for the mean field model

I Consider different sexes:
Offspring only produced when parents are of opposite sex.
Convergence to well mixed sexes and
similar behavior to one sex model.

Thank you for your attention!
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