Long time behaviour of cooperatively branching and coalescing particle systems

Anja Sturm

Universität Göttingen Institut für Mathematische Stochastik

Joint work with Jan Swart (UTIA Prague) and Tibor Mach (Uni Göttingen)

University of Bath June 21, 2017

Outline

Classical interacting particle systems

- Definition
- Classical examples

2 Cooperative branching coalescent

- The model
- Phase transitions
- Particle density and survival probability

Outline

Classical interacting particle systems

- Definition
- Classical examples

- The model
- Phase transitions
- Particle density and survival probability

Cooperative branching coalescent

Definition

Interacting particle system - definition

"Countable system of locally interacting Markov processes"

The state space of the system

- Lattice Countable space Λ with some notion of distance.
- Local states Usually a finite set S.
- State space of the system E = S^Λ
 Each point of the lattice is in one of the local states.

Example: $\Lambda = \mathbb{Z}^d, S = \{0, 1\}, E = \{0, 1\}^{\mathbb{Z}^d}$

Interacting particle system

Change the local state at one point (finitely many points) in the lattice with a rate that depends on the surrounding local states.

General references: Liggett ('85, '99), Swart ('15)

Classical interacting particle systems $0 \bullet 0000$

Cooperative branching coalescent

Definition

Interacting particle system - Short review

- Interacting particle systems are toy models for stochastic systems with a spatial structure and simple local rules.
- They lead to surprisingly realistic and interesting behavior on a large space time scale: macroscopic behavior.
- Universality classes: Often, it turns out that more detailed and realistic local rules lead to the same kind of macroscopic behavior.

Central questions: Longtime and macroscopic behavior, phase transitions, behavior at the phase transitions ...

Applications: Population dynamics, spread of disease or rainwater particle motion, ferromagnetism, traffic flow, social network dynamics...

Classical examples

Interacting particle system - classical examples

Contact process on \mathbb{Z}^d :

- Continuous time Markov process with $E = \{0, 1\}^{\mathbb{Z}^d}$.
- ▶ Interpretation: "1" as particle and "0" as an empty site.
- ► At some rate q(|i j|) a particle at site i produces a particle at site j (if empty).
- Each particle dies at rate 1.

Figure : Directed percolation model: Analogous model in discrete time. Simulation on 100 sites by Allhoff and Eckhardt for different nearest neighbor birth rates.

Classical examples

Contact process on \mathbb{Z}^d : $X^{\times} = (X_t^{\times})_{t \ge 0}$ with $X_0^{\times} = x$

- Spatial version of a binary branching process with local carrying capacity.
- Longtime behavior: Survival For $|x| := \sum_{i \in \mathbb{Z}^d} x(i) < \infty$

$$\theta = \theta^{\times} = \mathbb{P} \big[X_t^{\times} \neq \underline{0} \ \forall t \ge 0 \big] > 0$$
?

► Longtime behavior: Complete convergence

$$\mathcal{L}(X_t^x) \Rightarrow \theta^x \bar{\nu} + (1 - \theta^x) \delta_{\underline{0}}$$

The upper invariant law ν
 is the limit for x = 1. Nontrivial if ν
 ≠ δ₀.

Cooperative branching coalescent

Classical examples

Interacting particle system - dualities

Duality:
$$\mathbb{E}[1_{\{|X_t^x, y|=0\}}] = \mathbb{E}[1_{\{|x \cdot Y_t^y|=0\}}], t \ge 0$$

 $|x \cdot y| = \sum_i x(i)y(i).$

For the **contact process** $X \sim Y$ (self-dual).

The above duality relates survival $\theta_{\chi}^{\delta_i} > 0$ with nontriviality of $\bar{\nu}_{\Upsilon}$:

$$\begin{split} & \mathbb{E}\big[\mathbf{1}_{\{|X_t^{\times}\cdot\underline{1}|=0\}}\big] &= \mathbb{E}\big[\mathbf{1}_{\{|x\cdot Y_t^{1}|=0\}}\big] \\ & \Leftrightarrow \mathbb{P}\big[|X_t^{\times}\cdot\underline{1}|\neq 0\big] &= \mathbb{P}\big[|x\cdot Y_t^{1}|\neq 0\big] \\ & \Leftrightarrow \mathbb{P}\big[X_t^{\times}\neq\underline{0}\big] &= \mathbb{P}\big[|x\cdot Y_t^{1}|\neq 0\big] \end{split}$$

With $t \to \infty$ and $x = \delta_i$

$$heta_X^{\delta_i} = \mathbb{P}\big[Y_\infty^1(i) \neq 0\big] = \int \overline{\nu}_Y(\mathrm{d}y) \mathbf{1}_{\{y(i)=1\}}.$$

- Continuous time Markov process with $E = \{0, 1\}^{\mathbb{Z}^d}$.
- ► Interpretation: Particle at each site of type either 0 or 1.
- At some rate q(|i j|) site *i* adopts the local state of site *j*.

- Continuous time Markov process with $E = \{0, 1\}^{\mathbb{Z}^d}$.
- ► Interpretation: Particle at each site of type either 0 or 1.
- At some rate q(|i-j|) site *i* adopts the local state of site *j*.

- Continuous time Markov process with $E = \{0, 1\}^{\mathbb{Z}^d}$.
- ► Interpretation: Particle at each site of type either 0 or 1.
- At some rate q(|i-j|) site *i* adopts the local state of site *j*.

- Continuous time Markov process with $E = \{0, 1\}^{\mathbb{Z}^d}$.
- Interpretation: Particle at each site of type either 0 or 1.
- At some rate q(|i-j|) site *i* adopts the local state of site *j*.

- Continuous time Markov process with $E = \{0, 1\}^{\mathbb{Z}^d}$.
- ► Interpretation: Particle at each site of type either 0 or 1.
- At some rate q(|i-j|) site *i* adopts the local state of site *j*.

- Continuous time Markov process with $E = \{0, 1\}^{\mathbb{Z}^d}$.
- ► Interpretation: Particle at each site of type either 0 or 1.
- At some rate q(|i-j|) site *i* adopts the local state of site *j*.

- Continuous time Markov process with $E = \{0, 1\}^{\mathbb{Z}^d}$.
- Interpretation: Particle at each site of type either 0 or 1.
- At some rate q(|i-j|) site *i* adopts the local state of site *j*.

- Continuous time Markov process with $E = \{0, 1\}^{\mathbb{Z}^d}$.
- ► Interpretation: Particle at each site of type either 0 or 1.
- At some rate q(|i-j|) site *i* adopts the local state of site *j*.

- Continuous time Markov process with $E = \{0, 1\}^{\mathbb{Z}^d}$.
- ► Interpretation: Particle at each site of type either 0 or 1.
- At some rate q(|i-j|) site *i* adopts the local state of site *j*.

- Continuous time Markov process with $E = \{0, 1\}^{\mathbb{Z}^d}$.
- ► Interpretation: Particle at each site of type either 0 or 1.
- At some rate q(|i-j|) site *i* adopts the local state of site *j*.

- Continuous time Markov process with $E = \{0, 1\}^{\mathbb{Z}^d}$.
- Interpretation: Particle at each site of type either 0 or 1.
- At some rate q(|i-j|) site *i* adopts the local state of site *j*.

- Continuous time Markov process with $E = \{0, 1\}^{\mathbb{Z}^d}$.
- Interpretation: Particle at each site of type either 0 or 1.
- At some rate q(|i-j|) site *i* adopts the local state of site *j*.

- Continuous time Markov process with $E = \{0, 1\}^{\mathbb{Z}^d}$.
- ► Interpretation: Particle at each site of type either 0 or 1.
- At some rate q(|i-j|) site *i* adopts the local state of site *j*.

- Continuous time Markov process with $E = \{0, 1\}^{\mathbb{Z}^d}$.
- ► Interpretation: Particle at each site of type either 0 or 1.
- At some rate q(|i-j|) site *i* adopts the local state of site *j*.

- Continuous time Markov process with $E = \{0, 1\}^{\mathbb{Z}^d}$.
- Interpretation: Particle at each site of type either 0 or 1.
- At some rate q(|i-j|) site *i* adopts the local state of site *j*.

- Continuous time Markov process with $E = \{0, 1\}^{\mathbb{Z}^d}$.
- Interpretation: Particle at each site of type either 0 or 1.
- At some rate q(|i-j|) site *i* adopts the local state of site *j*.

- Continuous time Markov process with $E = \{0, 1\}^{\mathbb{Z}^d}$.
- ► Interpretation: Particle at each site of type either 0 or 1.
- At some rate q(|i-j|) site *i* adopts the local state of site *j*.

- Continuous time Markov process with $E = \{0, 1\}^{\mathbb{Z}^d}$.
- ▶ Interpretation: Particle at each site of type either 0 or 1.
- At some rate q(|i-j|) site *i* adopts the local state of site *j*.

Figure : Sequential snapshots of the nearest neighbour voter model produced with an online simulator by Bryan Gillespie (Berkeley) on a 100x100 grid. **Clustering occurs! Longtime coexistence?**

Outline

1 Classical interacting particle systems

- Definition
- Classical examples

2 Cooperative branching coalescent

- The model
- Phase transitions
- Particle density and survival probability

The model

Cooperative branching coalescent (CBC)

Sturm and Swart: Annals of Applied Probability 2014

• Continuous time Markov process with state space $\{0,1\}^{\mathbb{Z}}$:

 $X = (X_t)_{t \ge 0}$

- ▶ "1" represents a particle, "0" an unoccupied site.
- Symmetric random walk with coalescence: particles on adjacent sites merge at rate 1.
- Adjacent pairs of particles produce a new particle: particle is placed on a (randomly chosen) neighbouring site at cooperative branching rate λ.

The model

Motivation

Cooperative branching coalescent

As a model in the biological context:

- Pair reproduction with migration and competition:
 "1" is a site occupied by an individual, "0" is an empty site.
 Cooperative branching: pairs of individuals reproduce.
 Coalescing random walk: death due to competition.
- Interface model of a multi type voter model:

"1" is an interface between different "types".

Cooperative branching: singletons give birth to a new type. *Coalescing random walk:* voter dynamics and disappearance of types.

As a mathematical toy model:

Tractable one dimensional model with interesting properties.

Cooperative branching coalescent

The model

The graphical representation

For $i \in \mathbb{Z}$

$$ec{\omega}(i), ec{\omega}(i)$$
 as well as $ec{\omega}(i-rac{1}{2}), ec{\omega}(i-rac{1}{2})$

are Poisson processes with rate $\frac{1}{2}\lambda$ and $\frac{1}{2}$.

The model

Useful basic properties

The graphical representation provides a "coupling" of processes with different initial states and parameters.

Monotonicity

If $x \leq y$ (componentwise) then the processes can be coupled such that

 $X_t^x \leq X_t^y$ for all $t \geq 0$.

 \Rightarrow Monotoniciy in the initial states.

We also have monotonicity in λ .

Cooperative branching coalescent

The model

Simulation of the model

Simulation of a near-critical cooperative branching-coalescent with $\lambda = 2\frac{1}{3}$ on a lattice of 700 sites with periodic boundary conditions, started from the fully occupied initial state.

Phase transitions

Cooperative branching coalescent

Long time behavior

From monotonicity

$$\mathbb{P}\big[X_t^{\underline{1}} \in \cdot\,\big] \underset{t \to \infty}{\Longrightarrow} \overline{\nu},$$

where $\overline{\nu}$ is the **upper invariant law.** Probability under $\overline{\nu}$ of finding a particle in the origin:

$$\overline{ heta}(\lambda) := \int \overline{
u}_{\lambda}(\mathrm{d}x) \mathbf{1}_{\{x(0)=1\}}$$

 $\overline{\nu}_{\lambda}$ is **nontrivial** if $\overline{\theta}(\lambda) > 0$.

Survival probability of pairs - "staying active":

$$heta(\lambda) := \mathbb{P}ig[|X_t^{\delta_0+\delta_1}| \geq 2 \; orall t \geq 0ig]$$

The process **survives** if $\theta(\lambda) > 0$.

Phase transitions

Cooperative branching coalescent

Existence of phase transitions

There exist phase transitions for the triviality/nontriviality of the upper invariant law as well for survival/extinction.

Theorem: Phase transitions for upper invariant law and survival (a) There exists a $1 \le \lambda_c < \infty$ such that $\overline{\nu}_{\lambda} = \delta_{\underline{0}}$ for $\lambda < \lambda_c$ but $\overline{\nu}_{\lambda}$ is nontrivial for $\lambda > \lambda_c$. (b) There exists a $1 \le \lambda'_c < \infty$ such that the process dies out for $\lambda < \lambda'_c$ and survives for $\lambda > \lambda'_c$.

Phase transitions

Cooperative branching coalescent

Existence of phase transitions

Simulation of the density $\overline{\theta}(\lambda)$ of the upper invariant law and survival probability $\theta(\lambda)$ (plotted in black and red, respectively) rate suggesting

$$\lambda_{\mathrm{c}} pprox \lambda_{\mathrm{c}}^{\prime} pprox 2.47 \pm 0.02,$$

Phase transitions

Proof ideas: Existence of phase transitions

Monotonicity implies the existence of λ_c and λ'_c if we can show

(a) $\overline{\nu} = \delta_0$ for $\lambda \leq 1$ and $\overline{\nu} \neq \delta_0$ for large λ .

(b) The process dies out for $\lambda \leq 1$ and survives for large λ .

Cooperative branching coalescent

Phase transitions

Proof ideas: Existence of phase transitions

Triviality of the upper invariant law for $\lambda \leq 1$: $\overline{\nu} = \delta_{\emptyset}$

If $\lambda > 0$ and the process is started translation invariant let $p_t(1) = \mathbb{P}(X_t(i) = 1), \quad p_t(11) = \mathbb{P}(X_t(i) = 1, X_t(i+1) = 1), \dots$

$$\begin{split} \frac{\partial}{\partial t} p_t(1) &= -\rho_t(1) + \frac{1}{2} \rho_t(10) + \frac{1}{2} \rho_t(01) + \frac{1}{2} \lambda \rho_t(110) + \frac{1}{2} \lambda \rho_t(011) \\ &= -\rho_t(11) + \lambda \big(\rho_t(11) - \rho_t(111)\big) \\ &= (\lambda - 1) \rho_t(11) - \lambda \rho_t(111), \end{split}$$

If the process is furthermore started from an invariant law

 $0 = \frac{\partial}{\partial t} p_t(1) \le -\lambda p_t(111) \Rightarrow p_t(111) = 0.$

As $p_t(1) > 0$ would imply $p_t(111) > 0$ we are done. (Case $\lambda = 0$ similar.)

Phase transitions

Cooperative branching coalescent

Proof ideas: Existence of phase transitions

Extinction for $\lambda \leq 1$: $\mathbb{P}[\exists T < \infty \text{ s.t. } |X_t^{\times}| = 1 \ \forall t \geq T] = 1.$

With similar calculations

$$\frac{\partial}{\partial t} \mathbb{E} \left[|X_t^{\mathsf{x}}| \right] = (\lambda - 1) \sum_{i \in \mathbb{Z}} \mathbb{P} [X_t^{\mathsf{x}}(i) = X_t^{\mathsf{x}}(i+1) = 1]$$
$$-\lambda \sum_{i \in \mathbb{Z}} \mathbb{P} [X_t^{\mathsf{x}}(i) = X_t^{\mathsf{x}}(i+1) = X_t^{\mathsf{x}}(i+2) = 1]$$

So $|X_t^x|$ is a supermartingale for $\lambda \le 1$: $|X_t^x| \xrightarrow[t \to \infty]{} N$ a.s. $\Rightarrow N = 1 \text{ a.s.}$

since if there were more particles left they would meet (a.s. due to recurrence) and interact (through branching or coalescence).

Phase transitions

Proof ideas: Existence of phase transitions

Nontrivial upper invariant law and survival for large λ :

"Coupling" with another process: Pairs of adjacent particles are coupled with a contact process variant.

The contact process with double deaths $Y = (Y_t)_{t \ge 0}$

- Sites infect any neighbor at rate $\frac{1}{2}\lambda$.
- Any particles on two neighboring sites die at rate 1.

Graphical representation with Poisson processes:

$$\overleftarrow{\pi}(i-rac{1}{2}), \overrightarrow{\pi}(i-rac{1}{2}), \quad ext{ and } \pi^*(i-rac{1}{2}), \quad i\in\mathbb{Z}.$$

Cooperative branching coalescent

Phase transitions

Proof ideas: Existence of phase transitions

Nontrivial upper invariant law and survival for large λ :

Comparison of X with the contact process with double deaths Y Let $X_t^{(2)}(i) := 1 \Leftrightarrow X_t^{\times}(i) = X_t^{\times}(i+1) = 1$ $t \ge 0$ denotes the locations of pairs of neighbouring particles in X_t . Then

denotes the locations of pairs of neighbouring particles in X_t . Then $(X_t^{(2)})_{t\geq 0}$ and $(Y_t)_{t\geq 0}$ can be coupled such that

 $Y_0 \leq X_0^{(2)}$ implies $Y_t \leq X_t^{(2)}$ $t \geq 0$.

Coupling:

$$\overleftarrow{\pi}(i-rac{1}{2}):=\overleftarrow{\omega}(i), \quad \overrightarrow{\pi}(i-rac{1}{2}):=\overrightarrow{\omega}(i), \quad \pi^*(i-rac{1}{2}):=\overleftarrow{\omega}(i-rac{1}{2})\cup\overrightarrow{\omega}(i+rac{1}{2})$$

Phase transitions

Cooperative branching coalescent

Proof ideas: Existence of phase transitions

Comparison with oriented percolation

- By considering large times blocks we can can bound the contact process with double deaths from below by **oriented percolation** with arbitrarily large *p* for large enough λ.
- For large enough p the oriented percolation process has a nontrivial upper invariant law and survives completing the proof.

Particle density and survival probability

Decay rate in the subcritical regime

Theorem: Decay rates of the survival probability and the density (a) There exists a constant c > 0 such that for all $\lambda > 0$, $\mathbb{P}[|X_t^{\delta_0+\delta_1}| \ge 2] \ge ct^{-1/2} \text{ and } \mathbb{P}[X_t^{\underline{1}}(0) = 1] \ge ct^{-1/2}$ t > 0.(b) Moreover, there exists a constant $C < \infty$ such that for each $0 \le \lambda \le \frac{1}{2}$, $\mathbb{P}[|X_t^{\delta_0+\delta_1}| \geq 2] \leq Ct^{-1/2} \text{ and } \mathbb{P}[X_t^{\underline{1}}(0)=1] \leq Ct^{-1/2}$ t > 0.

Note: $\frac{1}{2} \leq \lambda_c, \lambda'_c$ (subcritical regime) **Proof technique:** Pathwise (super-)duality

Particle density and survival probability

Proof ideas: Decay of the survival probability and density

Lower bound Suffices to consider $\lambda = 0$: coalescing random walk Consider coalescing random walk ξ following reversed arrows in reversed time:

No particles in I_1 if and only if no particles in I'_1 .

Pathwise duality to coalescing random walks:

$$\sum_{k=i+\frac{1}{2}}^{j-\frac{1}{2}} X_t^x(k) = 0 \quad \text{if and only if} \quad \sum_{k=\xi_0^{(i,t)}+\frac{1}{2}}^{\xi_0^{(j,t)}-\frac{1}{2}} x(k) = 0 \quad \text{a.s.}$$

Particle density and survival probability

Proof ideas: Decay of the survival probability and density

Upper bound A pathwise superdual for $\lambda > 0$ (similar to Gray '86)

Superduality: If there are particles in either l_1 or l_2 then there must exist a "backward 3-path" as drawn such that there are particles in either l'_1 or l'_2 . We can bound the expected number of 3-paths over time t "started" in adjacent sites.

Particle density and survival probability

Extensions of the model

Work in progress with Jan Swart and Tibor Mach:

Include natural deaths.

Exponential decay of particle density and survival

- ► Consider different graphs: Z^d, trees, complete graph.
 Dual process for the mean field model
- Consider different sexes:

Offspring only produced when parents are of opposite sex. Convergence to well mixed sexes and similar behavior to one sex model.

Thank you for your attention!