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Overview

@ Preferential Attachment Trees
© Model definition

© Growth of the system

@ Simulations

© Open problems
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Preferential Attachment Tree: Barabasi and Albert
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Preferential Attachment Tree: Bianconi and Barabasi
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Model Definition

At time t we have
e N(t) particles (= half-edges);
M(t) families (= set of particles sharing the same fitness = nodes);

Z,(t) the size of the nth family (= degree);

F,, fitness of the nt" family;

T, the time of the foundation of the nt" family.

At time t, each family reproduces at rate F,Z,(t).
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Model Parameters

Model Parameters
e 0 < f,7 <1 mutation and selection probability;
@ u the fitness distribution on (0, 1);

| A\

Mutation /Selection probability
When a birth event happens in a family n
@ with probability v a new particle is added to family n;
e with probability 5 a mutant having fitness Fpy(;)11 is born.

| A

Specific models

Bianconi and Barabasi model: g =1 = ~.
Kingman model : v =1 — §.
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Yule process with rate 1 (= Growth of nth family)

=0 time

The size of a family with fitness F,, grows like a Yule process, Y (t),
with rate vF,. So that Y(t) ~¢ 00 €7, where £ is an exponentially
distributed random variable.
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Yule process with rate 1 (= Growth of nth family)

exp(n)

=0 time

The size of a family with fitness F,, grows like a Yule process, Y (t),
with rate vF,. So that Y(t) ~¢ 00 €7, where £ is an exponentially
distributed random variable.
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Yule process with rate 1 (= Growth of nth family)

Y(0)=1 Y (t) = # particles at t
exp(1)
exp(1)
exp(1)
exp(1)
exp(1)
F—0 t time

The size of a family with fitness F,, grows like a Yule process, Y (t),
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Population Growth and Empirical Fitness Distribution
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Population Growth and Empirical Fitness Distribution
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Population Growth: possible scenarios

Scenarios of growth of the system:

Condition for condensation

) 1
@ growth driven by bulk B dp(x) < 1. (cond)

behaviour, B+~vJo 1—x
@ growth driven by extremal

REVEIZCIIASLIEL IV HIN Definition of Macroscopic Occupancy
@ non-extensive occupancy;
@ Mmacroscopic occupancy. max degree at time n
lim inf
n—00 n

-

0 10 1

Figure: =;—, growth driven by  Figure: =;—,, growth driven by
bulk behaviour. extremal behaviour.

> 0.
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Condition for condensation

ld
Bf—’y : 1”_();) <L (cond)

v

Theorem

If (cond) fails then there exists \* € [, 5 + 7) such that
ﬁ%y fol )\*)\T*,de,u(x) = 1, otherwise, we let A* = . In both cases:

° fol xd=¢(x) — ﬂ)\T'y almost surely when t — oo;

@ =—; — m almost surely weakly when t — oo, where
@ if (cond) fails then dr(x) = ﬁ’%%du(x);
@ if (cond) holds then dr(x) = 52-94) 1 (3, 7)d.
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An example without condesnation

Empirical Fitness Distribution Histogram

Family Size
Number of Particles.

o1 02 03 04 06 07 08 08 1 03 04

05
Fitness
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Fitness

Figure: Empirical fitness distribution, for u(x,1) = (1 — x)**!, for a = 2,
=08 v=0.2.
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An example with condensation

Histogram
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Figure: Empirical fitness distribution, for u(x,1) = (1 — x)**!, for a = 2.
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Window for the emergence of the largest family at time t

We introduce n(t) := [%W ~ t* and the random times
T(t) = inf{s>0:M(s)>n(t)} ~logt
~ first time when there exists a fitness at least 1 — 1/t.
A determines growth rate
1 yul
1 ¢/
t — L _ _ _ _ _ _ _ _ _ o_ o o_
| time to grow family
1
fitness 0(1)
1
1
1
1
L >
0 s=T(t) t
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An example with condensation

Figure: Time of introduction of nodes of different fitnesses, with a relative degree
of a node indicated by the area of the bubble, for y(x,1) = (1 — x)**! o = 2.
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Results for a Class of Regularly Varying Functions

Regular variation assumption on p

(1 — xe, 1)
:u(l - & 1)

—x% a>1 Vx>0asel0.

v

Theorem [2]
o Size S(t) of the largest family: e " (t=T()S(t) = M(\*, a).
o Fitness V/(t) of the largest family: t(1 — V/(t)) = W (explicit).
@ Time of birth ©(t) of the largest family: ©(t) — T(t) = Z.

The winner does not take it all [2]

In probability when t — oo, %(% = max"e{li\‘/("ﬁgt)} Zt) o
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Open Problems

@ Precise growth of the system: log N(t) = A"t + o(t);
@ More general branching, and Bianconi and Barabasi networks;

@ Different classes of fitness distributions: whether there exist bounded
fitness distributions where we experience condensation by macroscopic
occupancy.

Figure: Not this condensation.
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