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Preferential Attachment Tree: Barabasi and Albert
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Figure: Scale-free network (such
that P(k) ∼ k−3).
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Preferential Attachment Tree: Bianconi and Barabasi
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Model Definition

At time t we have
N(t) particles (= half-edges);
M(t) families (= set of particles sharing the same fitness = nodes);
Zn(t) the size of the nth family (= degree);
Fn fitness of the nth family;
τn the time of the foundation of the nth family.

At time t, each family reproduces at rate FnZn(t).
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Model Parameters

Model Parameters
0 ≤ β, γ ≤ 1 mutation and selection probability;
µ the fitness distribution on (0, 1);

Mutation/Selection probability
When a birth event happens in a family n

with probability γ a new particle is added to family n;
with probability β a mutant having fitness FM(t)+1 is born.

Specific models
Bianconi and Barabasi model: β = 1 = γ.
Kingman model : γ = 1− β.
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Yule process with rate η (= Growth of nth family)

timet = 0

Y (0) = 1

exp(η)

exp(η)

exp(η)

exp(η)

exp(η)

t

Y (t) = # particles at t

The size of a family with fitness Fn grows like a Yule process, Y (t),
with rate γFn. So that Y (t) ∼t→∞ eηtξ, where ξ is an exponentially
distributed random variable.
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Population Growth and Empirical Fitness Distribution
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Population Growth: possible scenarios
Scenarios of growth of the system:

1 growth driven by bulk
behaviour;

2 growth driven by extremal
behaviour (condensation):

non-extensive occupancy;
macroscopic occupancy.

Condition for condensation
β

β + γ

∫ 1

0

dµ(x)
1− x < 1. (cond)

Definition of Macroscopic Occupancy

lim inf
n→∞

max degree at time n
n > 0.

0 1

Figure: Ξt=∞, growth driven by
bulk behaviour.

0 1

Figure: Ξt=∞, growth driven by
extremal behaviour.

Definition of Macroscopic Occupancy

lim inf
n→∞

max degree at time n
n > 0.
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Condensation

Condition for condensation
β

β + γ

∫ 1

0

dµ(x)
1− x < 1. (cond)

Theorem
If (cond) fails then there exists λ∗ ∈ [γ, β + γ) such that
β

β+γ
∫ 1

0
λ∗

λ∗−γx dµ(x) = 1, otherwise, we let λ∗ = γ. In both cases:∫ 1
0 xdΞt(x)→ λ∗

β+γ almost surely when t →∞;
Ξt → π almost surely weakly when t →∞, where

1 if (cond) fails then dπ(x) = β
β+γ

λ∗

λ∗−γx dµ(x);
2 if (cond) holds then dπ(x) = β

β+γ
dµ(x)
1−x +$(β, γ)δ1.
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An example without condesnation

Figure: Empirical fitness distribution, for µ(x , 1) = (1− x)α+1, for α = 2,
β = 0.8, γ = 0.2.
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An example with condensation

Figure: Empirical fitness distribution, for µ(x , 1) = (1− x)α+1, for α = 2.
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Window for the emergence of the largest family at time t
We introduce n(t) :=

⌈
1

µ(1− 1
t ,1)

⌉
≈ tα and the random times

T (t) = inf{s > 0 : M(s) ≥ n(t)} ≈ log t
≈ first time when there exists a fitness at least 1− 1/t.

6
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time to grow family

determines growth rate
�
��

fitness
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An example with condensation

Figure: Time of introduction of nodes of different fitnesses, with a relative degree
of a node indicated by the area of the bubble, for µ(x , 1) = (1− x)α+1, α = 2.
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Results for a Class of Regularly Varying Functions

Regular variation assumption on µ

µ(1− xε, 1)
µ(1− ε, 1) → xα, α > 1, ∀x > 0 as ε ↓ 0.

Theorem [2]
Size S(t) of the largest family: e−λ∗(t−T (t))S(t)⇒ Γ(λ∗, α).
Fitness V (t) of the largest family: t(1− V (t))⇒W (explicit).
Time of birth Θ(t) of the largest family: Θ(t)− T (t)⇒ Z .

The winner does not take it all [2]

In probability when t →∞, S(t)
N(t) = maxn∈{1...M(t)} Zn(t)

N(t) → 0.
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Open Problems

Precise growth of the system: logN(t) = λ∗t + o(t);
More general branching, and Bianconi and Barabasi networks;
Different classes of fitness distributions: whether there exist bounded
fitness distributions where we experience condensation by macroscopic
occupancy.

Figure: Not this condensation.

Anna Senkevich (University of Bath) Condensation in branching processes June 19, 2017 16 / 17



Bibliography

[1] Athreya, Krishna B. and Ney, Peter E. Branching Processes.
Springer-Verlag, 1972.

[2] Dereich, Steffen and Mailler, Cécile, and Mörters, Peter.
Non-extensive condensation in reinforced branching processes.
arXiv:1601.08128 Preprint.

[3] Dereich, Steffen. Preferential attachment with fitness: Unfolding the
condensate. Electronic Journal of Probability, Vol. 21, 2016.

Anna Senkevich (University of Bath) Condensation in branching processes June 19, 2017 17 / 17


	Preferential Attachment Trees
	Model definition
	Growth of the system
	Simulations
	Open problems

