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The Umbrella Conundrum
I You can take the umbrella, or not take it.

I It may or may not rain during the day.

I Do not take the umbrella, and it rains → you get wet.

I Take the umbrella, and it does not rain → you have to carry it
around all day.

I You may look at the sky, or see the weather forecast, which may
help inform your decision.
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Ingredients

State of Nature θ ∈ Θ, with associated prior πθ( · )

Data x ∈ X , with likelihood πx( · ; θ)

The state of nature is unknown, and the observed data may depend upon
the state of nature.

Action α ∈ A

Decision Rule d : X → A

The decision rule stipulates which action to take given observed data.
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Ingredients
In the umbrella example,

State of Nature: Θ := {rain occurs, rain does not occur}

Data X := {no clouds, few clouds, many clouds}, or [0, 1]

Action A := {take umbrella, do not take umbrella}

Decision Rule d : X → A

d(x) = take umbrella ∀x
d(x) = do not take umbrella ∀x

d(x) =

{
take umbrella if x ∈ {few clouds,many clouds}
do not take umbrella if x = no clouds
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No data, Equally weighted losses case...

Suppose we have no data X .

Further, suppose there is a bijection γ : A → Θ between actions and
states of nature, with incorrect actions weighted equally.

i.e. α =take umbrella ⇒ γ(α) =rain.

Optimal Decision rule d :
Take action α ⇔ α maximises πθ(γ(α))

i.e. Assuming the prior gives a weighting of πθ(rain) < 0.5, we never
take the umbrella!
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... suppose we have data
The posterior probability may govern our decision:

π(θ|x) =
πx(x |θ) πθ(θ)

π(x)

=
πx(x |θ) πθ(θ)∫

Θ
πx(x |θ) πθ(θ)dθ

By minimising the average probability of error

P(error) =

∫ ∞
−∞

P(error|x) π(x) dx , (1)

one obtains
d(x) = argmax

α∈A
π(γ(α) | x).

Likelihoods uniform ⇒ decision relies only on priors.
Uniform prior ⇒ decision relies only on likelihood.

(Bayes decision rule in the case of equal losses)
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The need for gain functions

... but not taking an umbrella when it rains is worse than taking an
umbrella when it does not rain!

We introduce gain functions to complete our theory.
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Gain functions

The gain function describes the gain of each action.

G(α ; θ) : A×Θ→ R, is the gain incurred by taking action α when
the state of nature is θ.

In the case of equal costs, G(αi , θj) = δi,j for suitably ordered α and θ.

The expected gain G : A → R, given observed data x is defined as

G(α|x) =

∫
Θ

G(α|θ) π(θ|x) dθ (2)
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Bayes Decision Rule

Defining the overall gain of a decision rule as∫
X

G(d(x) | x) π(x) dx , (3)

choosing decision rule d such that the overall gain is maximised gives us
Bayes Decision Rule:

d(x) = argmax
α∈A

G(α|x)

= argmax
α∈A

∫
Θ

G(α|θ) π(θ|x) dθ
(4)
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Back to the umbrella problem

I Prior on the state of nature

πθ(θ) =

{
0.25 if θ = {rain occurs}
0.75 if θ = {no rain occurs}

I Gain function G(·, ·) takes the following form:

Action α
take umbrella do not take umbrella

θ
it rains -0.1 -1
no rain -0.1 0
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Back to the umbrella problem

I We observe some data x ∈ X relating to the prevalence of clouds in
the sky on the continuous scale of 0 to 1.

I Likelihood of cloud prevalence x ∈ X = [0, 1] given θ is:
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Bayes decision rule in this case is

d(x) = argmax
α∈A

∑
θ∈{rain, no rain}

G(α|θ) π(θ|x)

︸ ︷︷ ︸
(∗)

(5)

Plotting (∗) for each α ∈ A,

Thus Bayes decision rule is

d(x) =

{
take umbrella if x ≥ 0.4
do not take umbrella if x < 0.4 .
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The sequential decision problem

When making decisions sequentially, decisions you make at each stage

I determine interim loss or gain, and

I affect the ability to make decisions at further stages.
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The sequential decision problem

Dynamic programming (or backward induction) approach:

Find the optimal decision rule at the last stage, then work
backwards stage by stage, keeping track of the optimal decision rule and
the expected payoff when this rule is applied in each stage.
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Setting the picture of a Phase II/III program

Often we have several treatments that show promise. Require a program
that:

I Selects the most promising treatment (Phase II).

I Build up evidence of the efficacy of the treatment (Phase III).

Optimising the overall program is a complicated problem.
i.e. the best way to design Phase II depends on how one uses the results
of Phase II in designing Phase III.
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Phase III design, given Phase II data.

Phase II design.
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Phase III design, given Phase II data.

Phase II design.

22 / 31



Statistical Model (in Phase II)
Prior:

θ ∼ N(µ0,Σ0) (6)

Likelihood:

θ̂1|θ ∼ N (θ,Σ) ,where I1 =
n

(t)
1
σ2 (1 + K−1/2)−1, and

Σ :=
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1 σ2/
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(7)

Posterior:

θi |θ̂1 ∼ N
(

[(Σ−1
0 + Σ−1)−1(Σ−1θ̂1 + Σ−1

0 µ0)]i , [(Σ−1
0 + Σ−1)−1]ii

)
.

(8)
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Decision 2

For given X1 = x1, choose i∗ and n2 to maximise∫
R
E [ G(X2, θi∗) | θi∗ ,X1 = x1 ]︸ ︷︷ ︸
Expected gain given θi∗ and Phase II

πθi∗ |X1(θi∗ | X1 = x1)︸ ︷︷ ︸
Posterior density of θi∗

dθi∗ (9)

Define the Gain function G for the program with

I a large ’reward’ for rejecting the null hypothesis.

I a small ’penalty’ for testing each patient.
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Decision 2
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Decision 2
Bayes’ decision rule as a function of the posterior mean of θi∗ :
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Decision 1

Choose n
(t)
1 to maximise∫

RK

E [ G(X1,X2, θi∗) | θ ]︸ ︷︷ ︸
Expected Gain given θ

πθ(θ)︸ ︷︷ ︸
Prior

dθ. (10)

27 / 31



Decision 1

Equation (10) evaluated for selected values of Phase II sample size n
(t)
1 .
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Using Combination Testing and GSDs
I Use of Phase II data in the final hypothesis test.

(Combination Testing)
I Use of early stopping boundaries in Phase III.

(Group Sequential Designs)
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Opportunities of this approach

I Quantify the value of Combination Testing and Group
Sequential Designs.

I Identify how prior assumptions change the optimal decision rules.
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Thank you for your attention.
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