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OVERVIEW

• Brief	overview	of	the	EUSTACE	project:
– Aim
– Tasks

• Observational	analysis	(one-of-two):
– Observation	model:

• Modelling	biases	and	uncertainties
– Air	temperature	model:

• Daily	local	component
• Climatology	component
• Large-scale	component

– Examples	of	preliminary	results.



UNDERSTAND	AND	EXPLOIT	THE	
RELATIONSHIP	BETWEEN	AIR	AND	SKIN	
TEMPERATURE

From	Merchant	et	al.,	2013	community	paper	and	roadmap:
http://www.geosci-instrum-method-data-syst.net/2/305/2013/gi-2-305-2013.html



WP1:	Observation	integration
• Develop	skin-air	temperature	relationships	(over	land,	sea,	ice,	lakes).
• Quality	control	observations
• Develop	observation	bias/error	models.		Breakpoint	detection.
WP2:	Data	set	construction
• Merge	WP1	data	products.
• Produce	spatio-temporal	statistical	analyses	(global,	1850-present).
• Develop	and	build	system	for	dataset	construction.
WP3:	Validation	and	intercomparison
• Validate	WP1	and	WP2	products	and	uncertainty	estimates	against	independent	

reference	data.
WP4:	Outreach	and	dissemination
WP5:	Science	leadership
WP6:	Project	management



EXAMPLE	SATELLITE	DERIVED	2M	
AIR	TEMPERATURE	(1	JULY	2010)
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EXAMPLE	UNCERTAINTY	FIELDS	
(1	JULY	2010)
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• Satellite	observations	over	land,	sea,	ice:
– Structural	errors:	brightness	temperature	calibration,	

conversion	to	air	temperature,	observed	surface	related.
– Correlated	errors:	atmospheric	corrections,	surface	emissivity	

errors.
– Uncorrelated	errors:	sensor	noise,	geolocation.

• In	situ	observations	from	weather	stations,	ships,	buoys.
– Structural	errors:	observing	platform	specific	biases,	

instrumentation	changes	calibration,	station	siting	changes.
– Uncorrelated	errors:	observational	noise,	local	representivity.

SOURCES	OF	OBSERVATIONAL	UNCERTAINTY



• Build	multiple	linear	regression	model	using	weather	stations	and	satellite	Land	Surface	
Temperature	observations,	together	with	other	explanatory	variables.

Tmax=α0+	α1.LSTday +	α2.LSTngt+	α3.FVC	+	α4.DEM	+	α5.SZAnoon+	α6.Snow	+	εTmax

Tmin=β0+	β1.LSTday +	β2.LSTngt+	β3.FVC	+	β4.DEM	+	β5.SZAnoon+	β6.Snow	+	εTmin

AN	EMPIRICAL
LAND	SURFACE	TEMPERATURE	– AIR	TEMPERATURE	
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ANALYSIS	SYSTEM	AIM
Construct a spatially and temporally complete analysis of global air 

temperatures from 1850 to present with validated uncertainty estimates, 
constructed from satellite and in situ data sources.



COMMENTS	ON	SCALE

Output	resolution	=	0.25	degree	latitude/longitude	grid
=	1,036,800	output	locations	per	day

Number	of	days					>	60,000

Three	variables:				maximum,	minimum	and	mean	temperatures

Ensemble	output	– small	number	of	samples	of	whole	dataset	to	sample	
uncertainty	in	analysis.

Full	space-time	statistical	model	solve	requires	big	computing	(this	is	also	being	
investigated	in	the	project	in	a	second	analysis	approach).

The	approach	discussed	today	takes	a	different	route,	splitting	the	problem	into	
smaller,	solvable	chunks.	Many	similarities	in	modelling.



OBSERVATION	MODEL



PROCESS	MODEL



MODEL	COMPONENT:
DAILY	LOCAL	ANALYSIS

Independent,	daily	analyses	of	a	spatial	smooth	temperature	field.

Use	SPDE	approach	(Lindgren	et	al	2011):

• Describes	smooth	function	as	weighted	sum	of	local	basis	functions.

• Smoothness	- Gaussian	Markov	Random	Field	prior	weights.	Smoothness	
controlled	by	parameters	of	the	prior	precision	matrix.

• Objective	of	estimation	is	to	learn	the	probability	density	function	of	the	
coefficients	conditioned	on	the	data.



FROM	COVARIANCE	FUNCTIONS	TO	
SPDE MODELS

• Traditional	Kriging is	not	feasible	for	data	volumes	in	EUSTACE.
• (Requires	solutions	to	linear	systems	involving	big,	dense	covariance	matrices)

• Lindgren	et	al.	(2011)	result	allows	much	more	efficient	computation.
• (Can	directly	compute	sparse inverse	covariance	matrices	corresponding	to	
Matérn covariance	functions)

Basis	functions	on	grid	with	SPDE	weights	(Nychka et	al.,	2015)

Dense	covariance	matrix

Sparse	inverse	covariance	matrix	
(lots	of	zeros)



RANDOM	PROCESSES	ON	SPHERES



ESTIMATION	THROUGH	CONDITIONAL	
GAUSSIANS

Model:
Construct	a	design	matrix	J to	form	a	linear	observation	equation	as:

Observations	are	subject	to	Gaussian	measurement	error:

Latent	variables	u	have	Gaussian	prior	distribution:

Estimation:
Compute	the	distribution	of	u conditioned	on	the	observations:



JOINT	ESTIMATION	OF	BIASES

Append	observation	bias	variables	β	onto	model	variable	vector	u and	estimate	jointly.

Joint	prior:

The	design	matrix						describes	the	structure	of	systematic	errors.
The	unknown	vector	β controls	the	magnitude	of	systematic	error



ENSEMBLE	GENERATION
Aim to produce a dataset that can be used to undertake scientific analysis, 
including assessment of uncertainty.

To this end, multiple realisations of the dataset will be produced through 
conditional simulation.

Conditional 
simulation

Combine 
with other 
model 
components



SINGLE	VARIABLE	ANALYSIS	
MODEL:

MEAN/MAX/MIN	TEMPERATURE

Strategy	for	solution:

Decompose	the	space-time	temperature	field	into	components	with	defined	structure	
in	space/time:

Append	bias	variables	onto	model	components	and	estimate	jointly.

Solve	each	component	conditioned	on	the	expected	value	of	other	components.

Refine	solutions	by	iteratively	re-estimating	each	component.



CLIMATOLOGY
Climatology	=	Covariates	(e.g.	altitude,	latitude)	+	Seasonal	component

Seasonal	component	constructed	as	Fourier	series	in	time.

Fourier	series	coefficients	varying	smoothly	spatially.

Spatial	fields	of	coefficients	are	constructed	as	a	weighted	sum	of	spatial	
basis	functions.	The	weights	are	modelled	as	latent	variables	with	GMRF	
priors.



COMPONENT:	CLIMATOLOGY



COMPONENT:	CLIMATOLOGY



CLIMATOLOGY	COMPONENT



MODEL	COMPONENT:
CLIMATOLOGY

Seasonal	component

Local	Harmonic Temporally	harmonic,	spatially	local	
basis	functions.

Local	Offset Temporally	constant,	spatially	local	
basis	functions.

Covariate	component

Grand	mean Constant	offset	for	whole	globe.

Harmonics	of	latitude Accounts	for	temperature	variation	
with	latitude.		Spatially	harmonic.

Altitude Spatially	local	variation	in	mean	
temperature	with	altitude.

Distance	from	water Coastal	effect	for	large	water	bodies.

Climatological	surface	
type

Indicators	of	surface	type	(e.g.	
water,	ice,	vegetation)



COMPONENT:	LARGE	SCALE

Nonlinear	model:	products	of	spatial	and	temporal	
components:

Spatial	and	temporal	functions	formed	as	SPDE	models:

With	Gaussian	priors	on	the	latent	variables:



MODEL	COMPONENT:
LARGE	SCALE	ANALYSIS

Nonlinear	model:	products	of	spatial	and	temporal	
components:

Sp
ac
e

Time

Form	linear	approximation	through	Taylor	
expansion:

Then	use	methods	for	linear	Gaussian	model	for	estimation.



ANALYSIS	PROTOTYPE
CLIMATOLOGY/LOCAL	COMPONENT

Applied	to	in	situ	NMAT/SAT	&	LSAT	derived	SAT:
• Fitted	climatology	– spatial	SPDE’s	for	coefficients	of	
Fourier	components	in	time.

• Fitted	local	– daily	spatial	SPDE.

Climatology	used	observations	in	1961-1990	period.

Currently	extending	to	include	all	model	components.



SUMMARY

• Aim:
– Produce	a	globally	complete	daily	temperature	analysis	with	

validated	uncertainties.
• Approach:

– Draws	heavily	on	Gaussian	latent	variable	models.
– Split	model	into	climatology,	large-scale	and	daily	local	

components.
• Extensions:

– Non-stationary	processes	(linear	model	for	precision	matrix	
parameters	– amplitude	and	decorrelation	range	e.g.	a	function	
of	distance	from	coast)

– Diurnal	temperature	range	model	(transformed	Gaussian	
model).



EUSTACE has received funding from the European Union's Horizon 2020 Programme for
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QUESTIONS?



JOINT	ANALYSIS	MODEL:
MEAN	TEMPERATURE	AND	DTR

Tmean decomposed	as	sum	of	sub-components	(as	before):

DTR	decomposed	as	product	of	strictly	positive	sub-components:



JOINT	ANALYSIS	MODEL:
MEAN	TEMPERATURE	AND	DTR

Approximate	solution	through	Taylor	
expansion	of	observation	equation:

Analysis	example	(exponential	transform)

Can	now	solve	using	methods	for	linear	Gaussian	
model.	Iteration	is	required	to	refine	linearisation
set	point.



LINEAR	GAUSSIAN MODEL

Parameter	estimation:	
The	prior	precision	matrix	on	u has	parameters	to	be	optimised.

Optimise	the	parameters	to	maximise	conditional	marginal	log	likelihood:

Will	be	optimised	on	subset	of	data	before	running	the	full	analysis.	



MODEL	COMPONENT:
LARGE-SCALE

General	form: A	sum	of	D	processes.		Each	defined	as	a	
product	of	a	spatial	and	temporal	process.

Spherical	harmonic	option	(linear):
Spatial	spherical	harmonic	pattern
Temporal	smooth	process	to	estimate	– SPDE	approach.

Factor	analysis	option	(nonlinear):	:
Spatial	smooth	process	to	estimate	– SPDE	approach.
Temporal	smooth	process	to	estimate	– SPDE	approach.



1.	SPHERICAL	HARMONIC	MODEL

The	analysis	is	formed	as	a	weighted	sum	of	
spatial	spherical	harmonics.

Time	series	of	pattern	weights	are	estimated	
using	the	SPDE	approach.

A	linear	model	where	each	basis	function	is	
formed	as	the	product	of:
• A	spherical	harmonic	spatial	pattern.
• A	function	with	local	influence	in	time.

Spherical	harmonic	patterns

Smooth	pattern	time	series



2.	FACTOR	ANALYSIS	MODEL

The	analysis	is	formed	as	a	weighted	sum	of	
spatial	patterns	that	are	now	learnt	from	the	
data.

Similar	to	VBPCA	but	uses	SPDEs	for	both	the	
spatial	patterns	and	time	series.

Based	on	Gaussian	Process	Factor	Analysis	
(GPFA)	(Luttinen &	Ilin,	2009).	Modified	to	use	
SPDEs	and	include	observational	errors.

Iterative	– flips	between	estimation	of	spatial	
and	temporal	SPDEs.

Too	computationally	expensive.
Tests	of	the	prototype	SPDE-FA	decomposition	

applied	to	global	air	temperature	data
(3	components)


