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Claim: Irreversible systems converge faster to equilibrium
[Hwang et al. 2005][Pavliotis2013][ReyBellet-Spiliopoulos2015,2016]
[Bierkens2015]

Interesting for two reasons:

• Understanding the physics of non-equilibrium systems

• Acceleration of sampling methods like MCMC

We investigate the effect of breaking detailed balance on the
convergence to the steady state.

We will consider (interacting) particle systems and their hydrodynamic
scaling limits.
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We consider systems on two scales:

(1) Microscopic systems
finite state, ergodic and irreducible continuous time Markov processes
with unique steady state π and dynamics given by

µ̇t(x) =
∑
y

µt(y)c(y → x)− µt(x)c(x→ y)

= L†µt(x).

(2) Macroscopic systems
drift diffusive systems of the form

∂tρ = ∇ ·
(
D(ρ)∇ρ

)
−∇ ·

(
χ(ρ)E

)
.
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Microscopic systems

Marcus Kaiser



Microscopic systems = particle systems

We consider a system of indistinguishable particles which hop between sites

i i+1

leading to a transition from state x to state y

x yc(x, y)
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Microscopic systems

Relations to physics: Equilibrium systems are characterised by ‘detailed
balance’

π(x)c(x→y) = π(y)c(y→x),

which correspond to vanishing currents in the steady state, whereas
non-equilibrium systems are characterised by a non-zero current in the
steady state. The microscopic current for a measure µ is given by

Jx,y(µ) = µ(x)c(x→y)− µ(y)c(y→x).

Jx,y(π) = 0 (for all x, y) if and only if the system is an equilibrium
system (i.e. satisfies detailed balance).
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Microscopic systems

Alternative characterisation in terms of the generator L:

The process is reversible (satisfies detailed balance) if L is symmetric w.r.t. the
inner product in L2(π).

In general, we can write any generator L as L = LS + LA, where LS is
symmetric and LA is anti-symmetric (w.r.t. L2(π)).

LS is again a generator with unique stationary measure π.
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Example

We consider a system of independent particles in a potential U in 2d.
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We can think here of a Monte Carlo sampling with many (≈ 150000)
samples. Sampling from π ∝ e−U . Lattice size L2 = 140× 140.
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Example - Test observable
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[K., Jack, Zimmer, J Stat Phys 2017]
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Acceleration of convergence

⇒ The Markov chain with generator L = LS + LA converges faster to π
than the process with generator LS .

This convergence can be checked in different ways: (e.g.)

• The spectral gap of the generator

(the largest non-zero eigenvalue of L).

• The large deviation rate functional
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Spectral gap

The spectrum σ(L) is contained in C− := {z ∈ C|Re(z) ≤ 0} and
0 ∈ σ(L). We denote with α(L) the modulus of the real part of the
non-zero eigenvalue with largest real part.

reversible

irreversible

σ(LS)

σ(L)

α(LS)

α(L)
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Spectral gap

We assume that L is diagonalisable such that we can write any
distribution at time t ∈ [0,∞) as

µt(x) = π(x) + e−tα(L)γ(t, x)

for a (in t) bounded function γ(t, x). Therefore

‖µt − π‖ ≤ Ce−tα(L).

(The initial distribution is here given by µ0 = π + γ(0, ·))

Hence

Theorem (Spectral gap)

α(L) ≥ α(LS).
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Large deviations

Large deviations characterise asymptotic probabilities (here as t→∞) in
terms of a rate functional I(µ). In this case, we consider the empirical

average Θt := 1
t

∫ t
0
δXudu, which satisfies

P [Θt ≈ µ] � e−tI(µ).

This notation stands for the following two inequalities: For all closed sets A and open sets O, we have

lim sup
t→∞

1

t
logP [Θt ∈ A] ≤ − inf

µ∈A
I(µ)

and

lim inf
t→∞

1

t
logP [Θt ∈ O] ≥ − inf

µ∈O
I(µ).
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Large deviations

We compare

P [Θt(LS) ≈ µ] � e−tIS(µ) and P [Θt(L) ≈ µ] � e−tI(µ).

Consistently with the above result, we have

Theorem (Rate functional)

IS(µ) ≤ I(µ)

Informally this implies that asymptotically as t→∞

P [Θt(LS) ≈ µ] ≥ P [Θt(L) ≈ µ]

for µ 6= π.
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Macroscopic systems
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Macroscopic systems

With the appropriate rescaling of the rates, the systems becomes on large
enough scales (for large L) ‘independent’ of the lattice size.
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Plot of 1d system with L = 150, 300, 450.

The system then can be approximately described by a deterministic mass
evolution.
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Macroscopic systems

The macroscopic behaviour can be described in terms of a conservation
law of the form

∂tρt = −∇ · jt (1)

for some current jt on a given domain Λ with a suitable boundary
condition on ∂Λ.

E.g. a box with periodic boundary condition

∂tρ = −∇ · jt

on Λ

For the hydrodynamic limit, the associated hydrodynamic current J(ρt)
is given by

J(ρt) = −D(ρt)∇ρt + χ(ρt)E. (2)

We assume that equation (1) with jt = J(ρt) as in (2) has a unique
steady state ρ̄.
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Splitting the current

A fundamental result from the Macroscopic Fluctuation Theory (MFT) is
that one can split the current in the sum of a symmetric and an
anti-symmetric term:

J = JS + JA

which satisfies an orthogonality condition

〈JS(ρ), JA(ρ)〉χ(ρ)−1 :=

∫
Λ

JS(ρ) · χ(ρ)−1JA(ρ)dx = 0.

JS and JA can be obtained from the current of the adjoint process as JS = (J + J∗)/2 and

JA = (J − J∗)/2.

Note: In general JS(ρt) is not −D(ρt)∇ρt.
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Non-equilibrium systems

Non-equilibrium systems correspond to the case when JA does not
vanish, whereas equilibrium systems are characterised by J = JS .
Similar to the microscopic case, where L = LS for reversible systems.

In general, we can write the symmetric part of the current as

JS(ρt) = −χ(ρt)∇
δV
δρt

.

where V is the so called quasipotential.

• V(ρ) ≥ 0 with equality if and only if ρ = ρ̄.

• V(ρt) is monotonic decreasing.

• V can be thought of as a (non-equilibrium) free energy that drives
the system to the unique and globally attractive steady state ρ̄.
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Symmetric current

In the case that JA(ρ) = 0, we can write the dynamics as the gradient
flow (or steepest descent)

∂tρt = ∇ · χ(ρt)∇
δV
δρt

.

ρ̄

ρ0V

Recall that a gradient flow consists of a metric M and an energy V, such that ∂tρt = −M(ρt)
δV
δρt

.

(Here M(ρt) = −∇ · χ(ρt)∇).

Marcus Kaiser



Example of a symmetric process

Consider the linear equation

∂tρt = ∆ρt +∇ · (ρt∇U).

This is the linear case (where χ(ρt) = ρt) and the external force is of
gradient type (E = −∇U).

It can be restated as

∂tρt = ∇ ·
(
ρt∇ log

( ρt
e−U

))
,

and thus V is
δV
δρt

= log
( ρt

e−U

)
.

Note that the steady state ρ̄ is proportional to e−U . The quantity ∇ δV
δρt

is the force which drives the process to the steady state ρ̄.
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Anti-symmetric current

We assume that the external field is given by E = −∇U + Ẽ (where Ẽ is
not a gradient) and consider the Poisson equation

∇ ·
(
χ(ρ)∇ψ

)
= −∇ ·

(
χ(ρ)Ẽ),

which has (under some regularity assumptions on the rhs) a unique ρ dependent solution
ψ = ψρ.

With this, the flux can be written as

J(ρt) = −χ(ρ)∇δV
δρ
− χ(ρt)∇ψρ + JF (ρ)

for the divergence free flux JF (ρ) := JA(ρ) + χ(ρ)∇ψρ. All of these
three terms are orthogonal w.r.t. the inner product 〈·, ·〉χ(ρ)−1 , and

∂tρt = ∇ · χ(ρt)∇
δV
δρt

+∇ · χ(ρt)∇ψρt .

Marcus Kaiser



Anti-symmetric current

We assume that the external field is given by E = −∇U + Ẽ (where Ẽ is
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Large deviation rate functional

Under typical assumptions of no dynamical phase transition, the rate
functional for the empirical density is given by

I2(ρ) =
1

4

∫
Λ

∇δV
δρ
· χ(ρ)∇δV

δρ
dx+

1

4

∫
Λ

∇ψρ · χ(ρ)∇ψρ dx.

Note that the first term corresponds to the contribution of the symmetric
current and the second summand corresponds to the first part of the
anti-symmetric current which is not divergence free. The divergence free
part is not contributing to the rate functional.

Marcus Kaiser



Large deviation rate functional

Under typical assumptions of no dynamical phase transition, the rate
functional for the empirical density is given by

I2(ρ) =
1

4

∫
Λ

∇δV
δρ
· χ(ρ)∇δV

δρ
dx+

1

4

∫
Λ

∇ψρ · χ(ρ)∇ψρ dx.

Note that the first term corresponds to the contribution of the symmetric
current and the second summand corresponds to the first part of the
anti-symmetric current which is not divergence free. The divergence free
part is not contributing to the rate functional.

Marcus Kaiser



Large deviation rate functional

The rate functional for the reversible process has ∇ψ = 0, such
that

Theorem (Rate functional)

IS2 (ρ) ≤ I2(ρ).

This implies again that asymptotically, as L→∞, for ρ 6= ρ̄

P [ΘL
t (JS) ≈ ρ] ≥ P [ΘL

t (J) ≈ ρ].
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Intuition for the convergence

The orthogonality condition

0 = −
∫

Λ

JS(ρ) · χ(ρ)−1JA(ρ)dx =

∫
Λ

δV
δρ
∇ · JA(ρ)dx

implies that JA has no effect on the value of V. That is, the current
JA(ρ) acts on the level sets of V.

ρ̄

ρ0V
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