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1 Time series as sto
hasti
 pro
esses

1.1 Introdu
tion

A time series is a 
olle
tion of repeated observations of a system, made sequentially

through time.

Examples o

ur in a variety of real life appli
ations, ranging from e
onomi
s to engineer-

ing.

• E
onomi
 and �nan
ial time series: share pri
es on su

essive days, e
onomi
 in-

dexes su
h as FTSE 100, export totals in su

essive months, average in
omes in

su

essive months, 
ompany pro�ts in su

essive years et
.

• Physi
al time series, e.g. in meteorology, marine s
ien
e and geophysi
s: rainfall on

su

essive days, air temperature measured on su

essive hours (days or months)

• Marketing time series: sales �gures in su

essive days or weeks, monetary re
eipts,

advertising 
osts and so on.

• Demographi
 time series (in study of population 
hange): population of Canada

measured annually, monthly birth totals in England.

• Binary pro
esses, a spe
ial type of time series when observations 
an take one of

only two values: in 
omputer s
ien
e, in biology (e.g. ion 
hannel kineti
s).

1.2 Referen
es

• Chat�eld, C. (2004). The analysis of time series. 6th Edition. Chapman & Hall

• Bro
kwell P.J. and Davis R.A. (1991). Time series: theory and methods. Springer-

Verlag

• A �rst 
ourse on time series analysis (2006). Online book, available at

http://statistik.mathematik.uni-wuerzburg.de/timeseries/

• Diggle, P. (1990). Time series. A biostatisti
al introdu
tion.

• Harvey, A. (1989). Fore
asting, stru
tural time series models and the Kalman �lter.
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1.3 Stationary sto
hasti
 pro
esses

1.3.1 De�nitions and some examples

Let T ⊆ R.

De�nition 1.1 A sto
hasti
 pro
ess is a 
olle
tion of random variables {Xt = Xt(w), t ∈
T} = {Xt, t ∈ T}, de�ned on a probability spa
e (Ω,F ,P).

In this 
ourse we 
onsider only dis
rete time sto
hasti
 pro
ess, i.e., T = Z or T = Z+.

De�nition 1.2 Given w ∈ Ω the fun
tion X{·}(w), w ∈ Ω is known as a realisation or

a sample path of the pro
ess {Xt(w), t ∈ Z}.

Example 1.1 A sequen
e {Zt, t ∈ Z} of i.i.d. random variables is a sto
hasti
 pro
ess.

An i.i.d. sequen
e with zero mean E(Zt) = 0) is often 
alled a purely random pro
ess or

white noise.

Example 1.2 A random walk. Let {Zt, t ∈ Z+}, be a sequen
e of i.i.d. random vari-

ables. A random walk is a sto
hasti
 pro
ess {Xt, t ∈ Z+ ∪ {0}}, de�ned as follows

X0 = 0

Xt = Xt−1 + Zt, t ≥ 1.

Example 1.3 The MA(1)-pro
ess (Moving Average pro
ess of order 1) is de�ned by the

equation

Xt = Zt + βZt−1, t ∈ Z,
where {Zt, t ∈ Z}, is a sequen
e of i.i.d. random variables and β ∈ R.

The joint distribution fun
tion F (x1, . . . , xk) of a random ve
tor (ξ1, . . . , ξk) is de�ned as

follows

F (x1, . . . , xk) = P{ξ1 ≤ x1, . . . , ξk ≤ xk}, xj ∈ R, j = 1, . . . , k.

De�nition 1.3 The �nite dimensional distribution fun
tions of a sto
hasti
 pro
ess

{Xt, t ∈ T} are the fun
tions {Ft1...tn(x1, . . . , xn), ti ∈ T, xi ∈ R, i = 1, . . . , n} de�ned as

follows

Ft1...tn(x1, . . . , xn) = P{Xt1 ≤ x1, . . . , Xtn ≤ xn},
i.e., Ft1...tn(x1, . . . , xn) is a joint distribution fun
tion of (Xt1 , . . . , Xtn).

De�nition 1.4 A sto
hasti
 pro
ess Xt, t ∈ T, is said to be stri
tly stationary if for any

t1, . . . , tn ∈ T and τ su
h that t1 + τ, . . . , tn + τ ∈ T the joint distribution fun
tion of

(Xt1 , . . . , Xtn) is the same as the joint distribution fun
tion of (Xt1+τ , . . . , Xtn+τ ).

Example 1.4 A sequen
e {Zt, t ∈ Z} of i.i.d. random variables is a stri
tly stationary

pro
ess.

Re
all that for a a random variable ξ, the kth moment is de�ned to be E(ξk), and we say

that the kth moment exists if E(|ξ|k) <∞.
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De�nition 1.5 A sto
hasti
 pro
ess Xt, t ∈ T, is said to be a weakly stationary or

se
ond-order stationary if its �rst and se
ond moments are �nite and

E(Xt) = const,

(i.e., the pro
ess mean is a 
onstant fun
tion) and

Cov(Xt, Xt+τ ) = E((Xt − EXt)(Xt+τ − EXt+τ )) = γ(τ),

(i.e., the pro
ess auto
ovarian
e fun
tion depends only on lag τ) for any t and τ ∈ T ,
su
h that t+ τ ∈ T .

Example 1.5 A random walk

Xt = Xt−1 + Zt,

where {Zt, t ∈ Z}, is i.i.d. sequen
e with E(Zt) = 0, E(Z2
t ) = σ2 < ∞, t ∈ Z, is not a

weakly stationary sto
hasti
 pro
ess, but its �rst di�eren
e

∇Xt = Xt −Xt−1, t ≥ 1,

is weakly stationary.

To see this, use the bilinear properties of 
ovarian
e and the independen
e of the variables

Zi to note that

Cov(Xt, Xt+τ ) = Cov(
t∑

i=1

Zi,
t+τ∑

i=1

Zi) =
t∑

i=1

Cov(Zi, Zi) = σ2t,

whi
h depends on t. The �rst di�eren
e is just Zt, whi
h is 
learly stationary.

For a pro
ess with �nite �rst and se
ond moments, stri
t stationarity implies weak sta-

tionarity. But by 
onstru
ting a pro
ess whose variables have �rst and se
ond moments

that fail to be �nite, it is possible to exhibit a stri
tly stationary pro
ess that is not

weakly stationary.

Example 1.6 Let {Xt, t ∈ Z}, be i.i.d. random variables with the Cau
hy distribution.

This pro
ess is stri
tly stationary by 
onstru
tion, be
ause the variables are i.i.d. but it

fails to be weakly stationary be
ause the kth moment of the Cau
hy distribution does not

exist for any k ≥ 1.

(NB the pre
eding example was only hinted at in le
tures - it is not examinable.)

Note also that weak stationarity (as the name suggests) does not imply stri
t stationarity.

Example 1.7 Consider a sequen
e of independent random variables Xt, t ∈ Z+, su
h
that Xt is uniformly distributed on [−1, 1] when t is odd and normally distributed with

zero mean and varian
e 1/3 when t is even. Xt, t ∈ Z+, is weakly stationary, but is not

stri
tly stationary.

Remark. In the rest of the 
ourse, by a stationary sto
hasti
 pro
ess we mean a weakly

stationary sto
hasti
 pro
ess.
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1.3.2 Auto
ovarian
e and auto
orrelation fun
tions

Two main 
hara
teristi
s of a weakly stationary sto
hasti
 pro
ess {Xt, t ∈ Z} are the

mean µ = E(Xt) (
onstant fun
tion of t) and the auto
ovarian
e fun
tion

γ(k) = Cov(Xt, Xt+k), k ∈ Z.

The pro
ess auto
orrelation fun
tion (a
.f.)

ρ(k) =
γ(k)

γ(0)
, k ∈ Z,

is just its auto
ovarian
e fun
tion standardized by dividing it by the varian
e of the

pro
ess.

Example 1.8 {Zt, t ∈ Z}, a sequen
e of un
orrelated random variables with E(Zt) =
0, E(Z2

t ) = σ2 <∞, t ∈ Z, is a weakly stationary sto
hasti
 pro
ess with

ρ(k) =

{
1, k = 0,
0, k 6= 0.

To see this, note that γ(k) = Cov(Zt, Zt+k) = 0 for k 6= 0, be
ause the variables Zt are

un
orrelated, while γ(0) = Cov(Zt, Zt) = σ2
. Normalising gives the required result.

Example 1.9 The MA(1)-pro
ess is weakly stationary sto
hasti
 pro
ess with

ρ(k) =





0, |k| > 1,
1, k = 0,
β/(1 + β2), k = −1, 1

This 
an be seen from the de�ning equation of the MA(1) pro
ess as follows.

γ(k) = Cov(Xt, Xt+k) = Cov(Zt + βZt−1, Zt+k + βZt+k−1)

= Cov(Zt, Zt+k) + βCov(Zt, Zt+k−1) + βCov(Zt−1, Zt+k) + β2
Cov(Zt−1, Zt+k−1).

For |k| > 1, the indi
es t− 1, t, t+ k − 1, t+ k are all distin
t, so that γ(k) = 0 be
ause

the variables Zt are independent.

For k = 0,

γ(0) = Var(Zt) + β2
Var(Zt−1) = (1 + β2)σ2.

For k = 1,

γ(1) = βCov(Zt, Zt) = βσ2,

and symmetri
ally, γ(−1) = βσ2
. Normalizing gives the result for ρ(k).
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We see that the a
.f for an MA(1) pro
ess 
uts o� after the �rst lag. It is typi
ally the


ase that γ(k) de
ays exponentially to 0 as k → ∞ for stationary pro
esses.

Theorem 1.1 1) The auto
ovarian
e fun
tion γ(t), t ∈ Z, is a non-negative de�nite

fun
tion, i.e., for any real numbers ai, i = 1, . . . , n, and any times ti ∈ Z, i = 1, . . . , n,

n∑

i,j=1

aiajγ(ti − tj) ≥ 0.

2) Both the auto
ovarian
e and the auto
orrelation fun
tion are even fun
tions of lag

γ(τ) = γ(−τ),

ρ(τ) = ρ(−τ),
τ ∈ Z.

3) |ρ(τ | ≤ 1, τ ∈ Z.

4) The a
.f. does not uniquely identify the underlying sto
hasti
 pro
ess.

Proof.

1) Indeed

n∑

i,j=1

aiajγ(ti − tj) = Var(a1Xt1 + · · ·+ anXtn) ≥ 0.

2) Che
k this property for the auto
ovarian
e fun
tion

γ(τ) = Cov(Xt, Xt+τ ) = Cov(Xt−τ , Xt) = Cov(Xt, Xt−τ ) = γ(−τ);

the same property for the auto
orrelation fun
tion follows immediately.

3) Indeed

0 ≤ Var(λ1Xt + λ2Xt+τ ) = (λ21 + λ22)γ(0) + 2λ1λ2γ(τ).

If λ1 = λ2 = 1, then γ(τ) ≥ −γ(0), so that ρ(τ) ≥ −1. If λ1 = 1, λ2 = −1, then
γ(0) ≥ γ(τ), so that ρ(τ) ≤ 1. Thus |ρ(τ)| ≤ 1 as required. This property is also an

immediate 
onsequen
e of the Cau
hy-S
hwartz inequality.

|Cov(Xt, Xt+τ )| ≤
√

Var(Xt)
√
Var(Xt+τ ).

4) Examples will be given later. �
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1.3.3 The sample mean and the sample auto
ovarian
e fun
tion

Let {Xt, t ∈ Z} be a weakly stationary pro
ess with mean µ and the auto
ovarian
e

fun
tion γ(·).

The sample mean

X =
1

n

n∑

t=1

Xt

is used as an unbiased point estimator for µ. If mean is estimated, then usually the zero

mean pro
ess Yt = Xt − µ is 
onsidered. Subtra
ting the mean does not 
hange the

pro
ess auto
orrelation fun
tion.

Given x1, . . . , xN observations of a stationary pro
ess, the sample auto
ovarian
e is de-

�ned as follows

ck =
1

N

N−k∑

t=1

(xt − x)(xt+k − x)

x =
1

N

N∑

t=1

xt

. ck is the usual estimator of the theoreti
al auto
ovarian
e 
oe�
ient γ(k) at lag k. Note
the following properties of the sample 
ovarian
e fun
tion:

• E(ck) 6= γ(k), i.e., it is a biased estimator.

• E(ck) → γ(k) as N → ∞, i.e., it is an asymptoti
ally unbiased estimator.

The sample a
.f. is de�ned by

rk =
ck
c0

=

∑N−k
t=1 (xt − x)(xt+k − x)
∑N

t=1(xt − x)2

We often look at plots of rk as a fun
tion of time. This is known as a 
orrelogram.

1.3.4 Linear �lters

Given a time series {Xt, t ∈ Z} one 
an apply to it a linear operator or linear �lter

Yt =
∞∑

k=−∞

akXt−k,

spe
i�ed by �xed (i.e. non-random) 
oe�
ients ak, k ∈ Z. In general this is an in�nite

sum, therefore its 
onvergen
e in some probabilisti
 sense has to be justi�ed (e.g., mean

square 
onvergen
e, to be dis
ussed later).

We have already en
ountered several pro
esses that were de�ned impli
itly as linear �l-

ters, e.g. the MA(1)-pro
ess, whi
h is obtained by applying a linear �lter with two

nonzero 
oe�
ients a0 = 1 and a1 = β to a white noise pro
ess.

We 
an sometimes use a linear �lter to transform a non-stationary time series into a

stationary one.
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1.3.5 Di�eren
ing as a linear �lter

De�ne the �rst di�eren
e of the sto
hasti
 pro
ess Xt at lag d to be

∇dXt = Xt −Xt−d.

This is a linear �lter with two non-zero 
oe�
ients a0 = 1 and ad = −1. Note that ∇1Xt

will always be denoted ∇Xt.

Further, for j > 1, the jth di�eren
e at lag d is de�ned to be

∇j
dXt = ∇d

(
∇j−1

d Xt

)
.

An important property of di�eren
ing is that it preserves stationarity.

Proposition 1.1 If {Xt, t ∈ Z} is a stationary sto
hasti
 pro
ess with nonzero mean

and auto
ovarian
e fun
tion γ(τ), τ ∈ Z, then its �rst di�eren
e at lag d, ∇dXt, is a

stationary sto
hasti
 pro
ess with zero mean and auto
ovarian
e fun
tion

γ̃(k) = 2γ(k)− γ(k + d)− γ(k − d), k ∈ Z.

Proof. It is 
lear that

E(Xt −Xt−d) = 0.

Compute the auto
ovarian
e fun
tion of {Yt = Xt −Xt−d, t ∈ Z},

Cov(Yt, Yt+k) = Cov(Xt −Xt−d, Xt+k −Xt+k−d)

= Cov(Xt, Xt+k)− Cov(Xt−d, Xt+k)− Cov(Xt, Xt+k−d) + Cov(Xt−d, Xt+k−d)

= 2γ(k)− γ(k + d)− γ(k − d).

This depends only on k, hen
e the pro
ess is stationary (with zero mean).�

More generally, it is the 
ase that if Xt is stationary, the linear �lter

Yt =

∞∑

k=−∞

akXt−k

is also stationary, so long as

∑∞
k=−∞ |ak| <∞.

1.4 Removal of trend and seasonal 
omponents

A polynomial trend 
an be removed by taking di�eren
es of an appropriate order. A

seasonal 
omponent 
an also be removed, by taking di�eren
es of an appropriate lag.

8



Proposition 1.2 If mt =
∑k

j=0 ajt
j , t ∈ Z then

∇kmt = k!ak.

Corollary 1.1 If Xt =
∑k

j=0 ajt
j + Yt, t ∈ Z, where k ≥ 1, ak 6= 0 and {Yt, t ∈ Z} is a

stationary pro
ess, then

∇kXt = k!ak +∇kYt

is a stationary pro
ess with mean k!ak.

This means that we 
an remove any polynomial trend.

Suppose we now 
onsider a time series

Xt = mt + St + Yt,

where {St, t ∈ Z} has period d, i.e., St = St−d for any t. Applying ∇d gives

∇dXt = Xt −Xt−d = mt −mt−d + Yt − Yt−d

whi
h gives a de
omposition of the di�eren
e ∇dXt into a trend 
omponent mt −mt−d

and a stationary term Yt−Yt−d. If now mt is a polynomial of order k, mt−mt−d is also a

polynomial and so 
an be removed by taking di�eren
es of the appropriate order as above.

Another approa
h to removing a polynomial trend is to estimate the polynomial �rst,

and then subtra
t it. e.g. suppose

Xt = a+ bt + ct2 + Yt,

where Yt is stationary and we have observations of Xt for 1 ≤ t ≤ N . We 
an obtain

estimators (â, b̂, ĉ) by looking for the minimizers of the fun
tion

f(u1, u2, u3) =
N∑

t=1

(Xt − u1 − u2t− u3t
2)2

and then simply work with the subtra
ted time series

Xt − â− b̂t− ĉt2.

1.5 L2−spa
e and mean square 
onvergen
e

This non-examinable se
tion 
ontains a number of results that are useful for a rigor-

ous understanding of the probabilisti
 issues underlying 
onvergen
e results that we need.

Proofs are generally omitted, but 
an be found in Chapter 2 of Bro
kwell and Davis.

Consider a probability spa
e (Ω,F , P ). We say that a random variable X de�ned on Ω
is square integrable if

E(X2) <∞.
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We denote by L2 = L2(Ω,F , P ) the 
olle
tion of all square integrable random variables

X de�ned on (Ω,F , P ). Note that L2
is a linear spa
e, sin
e if E(X2) < ∞ and a ∈ R,

then

E((aX)2) = a2E(X2) <∞,

so L2
is 
losed under multipli
ation. Further, it is 
losed under addition, sin
e if E(X2) <

∞,E(Y 2) <∞, then

E((X + Y )2) = E(2X2 + 2Y 2 − (X − Y )2) ≤ 2E(X2) + 2E(Y 2) <∞.

(This is the parallelogram law.)

Two square integrable random variables X and Y are said to be orthogonal if

E(XY ) = 0.

A square integrable random variable X is 
alled orthogonal to a set of {Y, Z, . . .} square

integrable random variables if

E(XY ) = 0, E(XZ) = 0, . . . ,

i.e., if X is orthogonal to any element of the set.

Note that we 
an also de�ne the norm ‖X‖ by

‖X‖2 = E(X2).

If Xn, n ≥ 1, and X are square integrable random variables and

‖Xn −X‖2 = E(Xn −X)2 → 0, as n→ ∞,

then we say that the sequen
e Xn, n ≥ 1, 
onverges to X in mean square.

Theorem 1.2 If {Xn} is a Cau
hy sequen
e, i.e., ‖Xn −Xm‖ → 0, as n,m→ ∞, then

there exists X ∈ L2
, su
h that Xn → X in mean square as n→ ∞.

This theorem states that L2
is 
omplete, whi
h is to say that L2

is an example of a Hilbert

spa
e.

Proposition 1.3 If Xn, Yn ∈ L2, n ≥ 1, X, Y ∈ L2
and Xn → X, Yn → Y in mean

square as n→ ∞, then

E(XnYn) → E(XY ),

as n→ ∞.

Lemma 1.1 Let Yk, k ≥ 1, be a sequen
e of independent random variables with zero

mean and E(Y 2
k ) = σ2

k su
h that

∞∑

k=1

σ2
k <∞, (1)

then the sequen
e of random variables Sn =
∑n

k=1 Yk, n ≥ 1, 
onverges in L2
.
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Proof. By Theorem 1.2 it su�
es to show that Sn =
∑n

k=1 Yk, n ≥ 1, is Cau
hy sequen
e

in L2
. Assuming n > m we get by dire
t 
omputation that

E((Sn − Sm)
2) =

n∑

k=m+1

σ2
k

hen
e E((Sn − Sm)
2) → 0 as n,m → ∞, by assumption (1). Therefore Sn, n ≥ 1,


onverges in L2
. The limit is, of 
ourse, the in�nite sum S∞ =

∑∞
k=1 Yk. Also, observe

that

E(S2
∞) =

∞∑

k=1

σ2
k.

Theorem 1.3 (Consisten
y of the sample mean.) Let {Xt, t ∈ Z} be a stationary

sto
hasti
 pro
ess with mean µ and the auto
ovarian
e fun
tion γ(k), k ∈ Z. If γ(k) → 0
as k → ∞, then X → µ in mean square as n→ ∞.
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2 ARMA (Autoregressive Moving Average) pro
esses

2.1 MA (moving average) pro
esses

We have already en
ountered the MA(1) pro
ess, satisfying

Xt = Zt + βZt−1,

where the variables Zt are white noise, i.e. i.i.d with E(Zt) = 0.

It is often 
onvenient to write su
h de�nitions in terms of the ba
kward shift operator B.
This a
ts on a time series as follows

BXt = Xt−1,

and powers of B are de�ned by

BkXt = Xt−k.

In terms of this operator, the de�ning equation of the MA(1) pro
ess is just

Xt = (1 + βB)Zt.

The moving average pro
ess of order q (MA(q) pro
ess) is de�ned analogously:

Xt = Zt + β1Zt−1 + · · ·+ βqZt−q, (2)

or, more 
ompa
tly:

Xt = (1 + β1B + β2B
2 + . . .+ βqB

q)Zt,

where Zt is white noise with Var(Zt) = σ2 <∞. It will be of use to abbreviate this even

further to

Xt = θ(B)Zt,

with θ(λ) = 1 + β1λ+ . . .+ βqλ
q
.

It is 
lear that this pro
ess is weakly stationary for any {βk}. Indeed, de�ning for 
onve-
nien
e β0 = 1, we 
ompute that

EXt = 0

γ(0) = Var(Xt) = σ2

q∑

i=0

β2
i ,

both of whi
h are independent of t. Now 
onsidering γ(k) for k > 0,

γ(k) = Cov(Xt, Xt+k) = Cov(Zt+β1Zt−1+ . . .+βqZt−q, Zt+k+β1Zt+k−1+ . . .+βqZt+k−q).
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Figure 1: Plot of 200 simulated realizations of MA(1) pro
ess with β = 0.5

Note that if k > q, there is no overlap in the indi
es t, t− 1, . . . , t− q and t + k, t + k −
1, . . . , t+ k − q, so that γ(k) = 0. However, if 0 ≤ k ≤ q, then

γ(k) = Cov(Xt, Xt+k) =

q−k∑

i=0

βiβi+kE(Z
2
t−i) =

q−k∑

i=0

βiβi+kσ
2.

Sin
e γ(k) is an even fun
tion of lag, this 
ompletes the 
al
ulation.

The a
.f. of the above MA(q) pro
ess 
an now be written as

ρ(k) =





0 k > q,
1 k = 0,
q−k∑
i=0

βiβi+k/
q∑

i=0

β2
i k = 1, . . . , q,

ρ(−k) k < 0.

An important property when trying to re
ognise an MA(q) pro
ess is that its a
.f 
uts

o� after q lags.

(I don't think I got to the example below, but it is worth noting, and I will mention it

brie�y when time permits.)

Note that it is possible to exhibit di�erent weakly stationary MA pro
esses with the same

a
.f.

Model I: MA(1) pro
ess Xt = Zt + βZt−1, with a
.f

ρ(k) =





0 |k| > 1,
1 k = 0,
β/(1 + β2) k = −1, 1
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Model II: MA(1) pro
ess Xt = Zt + β−1Zt−1, with a
.f.

ρ(k) =





0 |k| > 1,
1 k = 0,
β/(1 + β2) k = −1, 1

So, if β 6= 1, then we have two di�erent MA(1) pro
esses with the same a
.f. (this is an

example of the last assertion of Theorem 1.1). We will 
onsider only MA(1)-pro
esses

with |β| < 1, be
ause they are invertible. Invertibility will be dis
ussed shortly!

2.2 AR (autoregressive) pro
esses

The AR(p) pro
ess satis�es the following equation

Xt = α1Xt−1 + α2Xt−2 + . . .+ αpXt−p + Zt, (3)

where Zt is white noise. This 
an be written in terms of the ba
kward shift operator as

φ(B)Xt = Zt.

What 
onditions on φ are needed for Xt as de�ned above to be stationary? Consider the


ase of the AR(1) pro
ess �rst, with de�ning equation

Xt = αXt−1 + Zt, (4)

where α ∈ R and {Zt, t ∈ Z} is white noise.

1) Assume �rst that |α| < 1. Substituting into the equation (4) k times we obtain

Xt = α(αXt−2 + Zt−1) + Zt

= . . .

= α2(αXt−3 + Zt−2) + +αZt−1 + Zt

= Zt + αZt−1 + · · ·+ αkZt−k + αk+1Xt−k−1.

If {Xt, t ∈ Z} is a stationary solution, then E(X2
t ) is 
onstant and α

k+1Xt−k−1 
onverges

to zero in mean square as k → ∞. This means that Xt −
∑k

j=0 α
jZt−j also 
onverges to

zero in mean square. Therefore, if |α| < 1, the sto
hasti
 pro
ess

Xt =

∞∑

j=0

αkZt−j (5)

is the unique stationary solution of equation (4).

This 
an be expressed quite neatly in B-notation as follows.

(1− αB)Xt = Zt

14



and so

Xt = Zt/(1− αB)

= (1 + αB + α2B2 + · · · )Zt

= Zt + αZt−1 + α2Zt−2 + · · ·

By working dire
tly with the representation (5), it is 
lear that

E(Xt) = 0,

Var(Xt) = σ2
∞∑

k=0

α2k =
σ2

(1− α2)
<∞,

We 
an now 
al
ulate the auto
ovarian
e fun
tion γ(k) dire
tly from the de�ning equation

(4). This foreshadows the approa
h we will take for higher order AR(p) pro
esses. First,

multiply both sides of (4) by Xt−k and then take expe
tations.

E(XtXt−k) = E(αXt−1Xt−k) + E(ZtXt−k).

Note that E(ZtXt−k) = 0, as 
an be seen by 
onsidering the representation (5) for Xt−k.

Now

E(XtXt−k) = E(αXt−1Xt−k) = αCov(Xt−1, Xt−k) = αCov(Xt−1, Xt−1−(k−1)).

This gives

E(XtXt−k) = αCov(Xt−1, Xt−1−(k−1)) = αCov(X0, Xk−1) = αγ(k − 1),

using stationarity and the fa
t that γ is an even fun
tion of k. This shows that γ(k) =
αγ(k − 1). Iterating this argument then gives

γ(k) = αkγ(0) =
αkσ2

1− α2
.

Note that we 
ould also obtain the same result from the representation (5) as follows.

Taking k ≥ 0,

γ(k) = E(XtXt+k) = E

((
∞∑

i=0

αiZt−i

)(
∞∑

i=0

αiZt+k−i

))
= σ2

∞∑

i=0

αiαk+j =
αkσ2

(1− α2)
.

By normalizing by the varian
e of the pro
ess, the a
.f. is seen to be.

ρ(k) = α|k|, k ∈ Z

Note that the a
.f. of an AR(1)-pro
ess de
ays exponentially.

2) Assume now that |α| > 1. In this 
ase the series (5) does not 
onverge in L2
, but the

equation (4) 
an be rewritten as follows

Xt = −α−1Zt+1 + α−1Xt+1.

15
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Figure 2: Simulated realization of a stationary pro
ess (AR(1) with α = 0.7, 200 values)

This pro
ess 
an be repeated to gives

Xt = −α−1Zt+1 − · · · − α−kZt+k + α−k−1Xt+k+1.

By the same arguments as before we obtain that

Xt =
∞∑

k=1

α−kZt+k

is the unique stationary solution of (4).

We have seen that the AR(1) pro
ess with |α| < 1: 
an be represented as an MA(∞)-

pro
ess, i.e., in terms of Zk, k ≤ t. Su
h a pro
ess is 
alled 
ausal or future-independent

AR-pro
ess. In 
onstrast, the AR(1) pro
ess with |α| > 1 is future-dependent, so is

regarded as unnatural and is not used in modelling stationary times series.

|α| = 1 is a degenerate 
ase. If, say, α = 1, then

Xt = Xt−1 + Zt

is not stationary (we have already seen that the random walk is not stationary). In this


ase, there is no stationary solution. Higher order AR(p) pro
esses will be dis
ussed in a

later se
tion.

2.3 De�nition of the general ARMA pro
ess

De�nition 2.1 The pro
ess {Xt, t ∈ Z}, is said to be an ARMA(p,q) pro
ess if it is

weakly stationary and satis�es the following linear di�eren
e equation

Xt = α1Xt−1 + . . .+ αpXt−p + Zt + β1Zt−1 + · · ·+ βqZt−q, t ∈ Z

16



where {αi, i = 1, . . . , p, βj , j = 1, . . . , q} are real numbers, and {Zt, t ∈ Z}, is a white

noise pro
ess with �nite varian
e Var(Zt) = σ2
.

In terms of the operator B, the equation for an ARMA(p,q) pro
ess 
an be written in

the form

φ(B)Xt = θ(B)Zt

where φ(B) and θ(B) are polynomials of order p, q respe
tively

φ(B) = 1− α1B − · · · − αpB
p

is the 
hara
teristi
 polynomial of the AR part, and

θ(B) = 1 + β1B + · · ·+ βqB
q

is the 
hara
teristi
 polynomial of the MA part.
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Figure 3: The sample a
.f.for the MA(1) sample plotted in Fig. 1

2.4 Invertibility and 
ausality

Let {Zt, t ∈ Z} be a white noise pro
ess with zero mean and varian
e σ2 < ∞ and let

{Xt, t ∈ Z} be an ARMA(p,q) pro
ess de�ned by the following equation

φ(B)Xt = θ(B)Zt, t ∈ Z, (6)

where φ(B) and θ(B) are the 
hara
teristi
 polynomials given after (2.1).

De�nition 2.2 An ARMA(p,q) pro
ess {Xt, t ∈ Z} de�ned by equation (6) is said to be

invertible if there exists a sequen
e of 
onstants {ai, i ∈ Z+} su
h that

∑ |ai| <∞ and

Zt =
∞∑

i=0

aiXt−i.

17



Invertibility means that the inverse operator

a(B) =
φ(B)

θ(B)
= θ−1(B)φ(B),

exists, therefore

Zt =
φ(B)

θ(B)
Xt = a(B)Xt.

Sin
e φ and θ are polynomials with α0 = β0 = 1 the a(B) 
an be written as

a(B) = 1−
∑

j≥1

ajB
j ,

provided

∑
|aj| <∞ (so that this formal power series expansion 
onverges), and

Zt = Xt −
∞∑

j=1

ajXt−j .

As an illustration, 
onsider the MA(1) pro
ess

Xt = Zt + βZt−1 = (1 + βB)Zt.

Here φ(B) = 1 and θ(B) = 1 + βB. For |β| < 1, the MA(1) pro
ess is invertible and

Zt = (1 + βB)−1 = Xt − βXt−1 + β2Xt−2 − · · ·
Invertibility means that an AR(∞)-representation of the pro
ess Xt is valid

Zt =
φ(B)

θ(B)
Xt = Xt −

∞∑

j=1

ajXt−j

or

Xt =

∞∑

j=1

ajXt−j + Zt

this representation is often helpful, e.g. when 
al
ulating the a
.f of a pro
ess, as we shall

see later.

De�nition 2.3 An ARMA(p,q) pro
ess de�ned by equation (6) is said to be 
ausal, if

there exists a sequen
e of 
onstants {ci, i ∈ Z+} su
h that

∑
|ci| <∞ and

Xt =

∞∑

i=0

ciZt−i.

Causality means that the inverse operator

c(B) =
θ(B)

φ(B)
= φ−1(B)θ(B)

18



exists, therefore

Xt =
θ(B)

φ(B)
Zt = c(B)Zt.

Sin
e φ and θ are polynomials with α0 = β0 = the inverse operator 
an be written as

c(B) = 1 +

∞∑

j=1

cjZt−j ,

Theorem 2.1 Assume that the polynomials θ(λ) and φ(λ), λ ∈ C, do not have 
ommon

roots. Then the ARMA(p,q) pro
ess

Xt = α1Xt−1 + . . .+ αpXt−p + Zt + β1Zt−1 + · · ·+ βqZt−q

1) is invertible, if and only if all roots of the 
hara
teristi
 polynomial θ(λ) (
orresponding
to its MA part) lie outside the unit dis
 {z ∈ C : |z| ≤ 1}, i.e., the absolute value of any

root is greater than 1.
2) is 
ausal, if and only if all roots of the 
hara
teristi
 polynomial φ(λ) (
orresponding
to its AR part) lie outside the unit dis
 {z ∈ C : |z| ≤ 1}, i.e., the absolute value of any

root is greater than 1.

Re
all the earlier example of the MA(1) pro
ess Xt = Zt + βZt−1. Its 
hara
teristi


polynomial is θ(λ) = 1+βλ, with root λ = −1/β, whi
h is a real number and lies outside

the unit dis
 provided |β| < 1.

For the AR(1) pro
ess Xt−αXt−1 = Zt, the 
hara
teristi
 polynomial is φ(λ) = 1−αλ =
0, with root λ = 1/α, whi
h is a real number and lies outside the unit dis
 provided

|α| < 1.

Example 2.1 Show that the ARMA(1,1) pro
ess Xt − 0.6Xt−1 = Zt − 0.2Zt−1 is both

invertible and 
ausal, and �nd its MA representation.

First note that φ(λ) = 1− 0.6λ and θ(λ) = 1− 0.2λ. This means that the root of the AR


hara
teristi
 polynomial is λ = 10
6
> 1 and the root of the MA 
hara
teristi
 polynomial

is λ = 5 > 1. These values are outside the unit dis
, hen
e the pro
ess is both invertible

and 
ausal.

Xt =
θ(B)

φ(B)
Zt =

(1− 0.2B)

(1− 0.6B)
Zt = (1−0.2B)

(
∞∑

i=0

0.6iBi

)
Zt = Zt+

∞∑

i=1

0.4×0.6i−1Zt−i

2.5 Computation of the a
.f. for ARMA(p,q) pro
esses

2.5.1 Computation by using MA(∞)-representation

Suppose the ARMA(p,q) pro
ess

Xt = α1Xt−1 + . . .+ αpXt−p + Zt + β1Zt−1 + · · ·+ βqZt−q
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is 
ausal. How 
an we 
ompute the auto
ovarian
e fun
tion and the auto
orrelation

fun
tion of this pro
ess?

If we 
an solve

c(B) =
θ(B)

φ(B)
= φ−1(B)θ(B),

i.e., 
ompute 
oe�
ients in the expansion

Xt =
∞∑

j=0

cjZt−j ,

then we 
an 
ompute

γ(k) = Cov(Xt, Xt+k) = σ2
∞∑

j=0

cjcj+k, k > 0,

and the problem is theoreti
ally solved.

However, it 
an be di�
ult to 
ompute the 
oe�
ients ci and only in parti
ular 
ases 
an

the 
oe�
ients be 
omputed expli
itly. For instan
e, we 
an 
ompute the 
oe�
ients for

an ARMA(1,1) pro
ess. Indeed, 
onsider

(1− αB)Xt = (1 + βB)Zt, (7)

where |α| < 1 and |β| < 1.

Xt =
1 + βB

1− αB
Zt = (1− αB)−1(1 + βB)Zt,

whi
h gives

Xt =

(
∞∑

k=0

αkBk

)
(1 + βB)Zt =

∞∑

k=0

αkBk(1 + βB)Zt.

This then simpli�es to

Zt + (α+ β)
∞∑

k=1

αk−1Zt−k (8)

This pro
ess is a linear �lter of the time series Zt, and the sum 
onverges sin
e |α| < 1.

This representation now allows us to 
al
ulate the a
.f of the general ARMA(1,1) pro
ess.

We �rst set up some useful preliminary results. Multiplying (8) by Zt, taking expe
tations

and using independen
e of Zi and Zj, when i 6= j we obtain

E(ZtXt) = E(Z2
t ) = σ2.

Further, multiplying (8) by Zt−1 gives

E(Zt−1Xt) = αE(Xt−1Zt−1) + E(ZtZt−1) + βE(Z2
t−1) = σ2(α + β).
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On multiplying (7) by Xt we �nd that

γ(0) = αγ(1) + σ2 + β(α+ β)σ2.

Moreover, multiplying (7) by Xt−1 and taking expe
tation gives

E(XtXt−1) = αE(X2
t−1) + E(ZtXt−1) + βE(Zt−1Xt−1).

Now E(ZtXt−1) = 0 (by 
onsidering a similar MA representation for Xt−1), so we get the

following equation

γ(1) = αγ(0) + βσ2.

We now have two equations in the two unknowns γ(0) and γ(1). Solving them we get

γ(0) = σ21 + β2 + 2αβ

1− α2

γ(1) = σ2 (1 + αβ)(α+ β)

1− α2
.

To obtain the equations for γ(k), k ≥ 2, we again multiply the equation for Xt by

Xt−k, k ≥ 2 and take expe
tations:

E(XtXt−k) = αE(Xt−1Xt−k) + E(ZtXt−k) + βE(Zt−1Xt−k).

By 
onsidering the MA representation for Xt−k, it is 
lear that E(ZtXt−k) = 0 and

E(Zt−1Xt−k) = 0. Hen
e
γ(k) = αγ(k − 1), k ≥ 2.

So, �nally

γ(0) = σ21 + β2 + 2αβ

1− α2

γ(1) = σ2 (1 + αβ)(α+ β)

1− α2

γ(k) = αγ(k − 1), k ≥ 2,

γ(k) = γ(−k), if k < 0.

and we have the following system of equations for the a
.f.

ρ(0) = 1

ρ(1) =
(1 + αβ)(α+ β)

1 + β2 + 2αβ

ρ(k) = αρ(k − 1), k ≥ 2,

ρ(k) = ρ(−k), if k < 0.

The 
orrelations of an ARMA(1,1) pro
ess de
ays exponentially; the same is true for any

ARMA(p,q) pro
ess.

21



2.5.2 The Yule-Walker equations for an AR(2) pro
ess

Consider an AR(2)-pro
ess

Xt = α1Xt−1 + α2Xt−2 + Zt, t ∈ Z (9)

and suppose that it is 
ausal.

Multiplying both sides of the equation (9) by Xt−k, where k ≥ 0, and taking expe
tations,
we obtain the following equations

E(XtXt−k) = α1E(Xt−1Xt−k) + α2E(Xt−2Xt−k) + E(ZtXt−k).

The pro
ess Xt 
an be expressed as an MA pro
ess of in�nite order

Xt = Zt + c1Zt−1 + c2Zt−2 + · · ·

with some 
oe�
ients ci. Therefore, if k > 0, then Xt−k and Zt are independent and we

have that E(ZtXt−k) = 0, hen
e

γ(−k) = α1γ(−k + 1) + α2γ(−k + 2), k > 0, (10)

If k = 0, then the equation will be

γ(0) = α1γ(1) + α2γ(2) + σ2.

Using the fa
t that γ is an even fun
tion, we 
an rewrite these equations as follows

γ(0)− α1γ(1)− α2γ(2) = σ2

γ(1)− α1γ(0)− α2γ(1) = 0

γ(2)− α1γ(1)− α2γ(0) = 0

γ(k)− α1γ(k − 1)− α2γ(k − 2) = 0, k ≥ 3.

These are the Yule Walker equations for an AR(2) pro
ess.

It is 
lear that the �rst three equations form a 
losed system of equations for γ(0), γ(1)
and γ(2), so we 
an obtain the form of γ(0), γ(1) and γ(2) expli
itly.

If we divide all equations (10) by the pro
ess varian
e, i.e., by γ(0), and use the fa
t

that ρ(k) = ρ(−k), then we get the following system of equations for the auto
orrelation

fun
tion ρ(k), k ∈ Z, of the pro
ess

ρ(0) = 1

ρ(1)− α1 − α2ρ(1) = 0

ρ(k)− α1ρ(k − 1)− α2ρ(k − 2) = 0, k ≥ 2.

For k = 1 we 
an �nd from the se
ond equation that

ρ(1) =
α1

1− α2
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therefore we get the following system of equations for the a
.f. of the AR(2) pro
ess

ρ(0) = 1

ρ(1) =
α1

1− α2

ρ(k) = α1ρ(k − 1) + α2ρ(k − 2), k ≥ 2,

ρ(k) = ρ(−k), k < 0.

We 
an, in prin
iple, 
ompute re
ursively ρ(k) for any k > 0 (and for k < 0 similarly),

one by one.

Another way to 
ompute ρ(k), k ≥ 0 is to note that the equations above are linear

di�eren
e equations, for whi
h there is a systemati
 method of solution. Some terminology

from the theory of di�eren
e equations is useful here: given an AR(p) pro
ess

Xt − α1Xt−1 − . . .− αpXt−p = θ(B)Xt = Zt

with 
hara
teristi
 polynomial

φ(λ) = 1− α1λ− . . .− αpλ
p,

the auxiliary polynomial is de�ned as

λp − α1λ
p−1 − . . .− αp.

If πi, i = 1, . . . , p are the zeroes of the auxiliary polynomial, then π−1
i , i = 1, . . . , p are

the zeros of the 
hara
teristi
 polynomial. The AR(p)-pro
ess is 
ausal if and only if

|πi| < 1, i = 1, . . . , p.

If πi, i = 1, 2, are the zeroes of the auxiliary polynomial for the AR(2)-pro
ess, i.e.,

πi, i = 1, 2, are the roots of the following equation

λ2 − α1λ− α2 = 0,

then a general solution of Yule-Walker equations for ρ is given by the following formula

ρ(k) = A1π
|k|
1 + A2π

|k|
2 , k ≥ 0,

in the 
ase when the roots are di�erent and by a slightly di�erent formula, if they 
oin-


ide. The 
onstants Ai are determined by the initial 
onditions.

For the AR(2) pro
ess, the 
ausality-stationarity 
ondition |πi| < 1, i = 1, 2 takes the

form ∣∣∣∣∣
α1 ±

√
α2
1 + 4α2

2

∣∣∣∣∣ < 1.

It 
an be shown (by 
onsidering 
arefully all possible 
hoi
es of αi) that these 
onditions

are equivalent to the following simple 
onditions on 
oe�
ients α1 and α2

α1 + α2 < 1

α1 − α2 > −1

α2 > −1
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Assume that the 
oe�
ients αi satisfy the above 
onditions. We will 
onsider the di�er-

ent possible 
ases in turn.

I. Real roots. If α2
1 + 4α2 > 0, the roots πi are real. To �nd the 
onstants Ai in the

formula

ρ(k) = A1π
|k|
1 + A2π

|k|
2

we use the equations for k = 0 and k = 1. Setting k = 0, we get the �rst equation for

determining A1 and A2

ρ(0) = 1 = A1 + A2.

If k = 1, then

ρ(1) =
α1

1− α2

so, we get the se
ond equation for determining A1 and A2

ρ(1) = A1π1 + A2π2.

Solving the system

A1 + A2 = 1

A1π1 + A2π2 =
α1

1− α2

we �nd

A1 =
α1(1− α2)

−1 − π2
π1 − π2

A2 = 1− A1

II. Coin
ident roots. If α2
1 + 4α2 = 0, then the roots 
oin
ide, πi = α1/2, they are real,

and the solution takes the form

ρ(k) = (A+Bk)(α1/2)
k, k ≥ 0,

Using the initial 
onditions ρ(0) = 1 and ρ(1) = α1/(1− α2) we �nd that

A = 1, B =
1 + α2

1− α2
.

III. Complex roots. If α2
1 + 4α2 < 0, then the roots are a 
omplex 
onjugate pair

π1 = reiϕ, π2 = re−iϕ,

where i is an imaginary unit, r =
√−α2 > 0 and ϕ = tan−1((−α2

1 − 4α2)/α1), to be

interpreted as lying in the range π/2 to π if α1 is negative. A general (
omplex-valued)

solution 
an be written then in the form

ρ(k) = rk(A1e
ikϕ + A2e

−ikϕ), k ≥ 0,

where A1, A2 ∈ C are 
omplex numbers. We are looking for a real-valued solution, so the


hoi
e of A1 and A2 must give

ρ(k) = rk(A cos(kϕ) +B sin(kϕ)), k ≥ 0,

where A and B are real numbers. Using again the initial 
onditions ρ(0) = 1 and

ρ(1) = α1/(1− α2) we 
an 
ompute the 
oe�
ients A and B.
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Example 2.2 Consider the AR(2) pro
ess Xt = Xt−1 − 0.5Xt−2 + Zt. This is a 
ausal

stationary pro
ess, and its a
.f. is

ρ(k) =

(
1√
2

)k (
cos

(
πk

4

)
+

1

3
sin

(
πk

4

))
, k ≥ 0.
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3 Integrated ARMA or ARIMA models

De�nition 3.1 A sto
hasti
 pro
ess {Xt, t ∈ Z}, is 
alled an ARIMA(p,d,q) pro
ess if

its dth di�eren
e Wt = (1−B)dXt is a 
ausal and invertible ARMA(p,q) pro
ess of order

p,q, i.e.,

φ(B)Wt = θ(B)Zt,

φ(B)(1− B)dXt = θ(B)Zt.

Note that the ARIMA(p,d,q) pro
ess is not a stationary sto
hasti
 pro
ess for d > 0
sin
e its 
hara
teristi
 polynomial is φ(λ)(1 − λ)d,whi
h has a (multiple, if d > 1) zero
on the unit 
ir
le {z ∈ C : |z| = 1}. There is no (
ausal or not) stationary solution of

the equation

φ(B)(1− B)dXt = θ(B)Zt.

Example 3.1 The ARIMA(0,1,0) pro
ess

(1− B)Xt = Zt

Xt = Xt−1 + Zt

is a random walk.

Example 3.2 ARIMA(1,1,0) pro
ess

(1− 0.7B)(1− B)Xt = Zt

Xt = 1.7Xt−1 − 0.7Xt−2 + Zt
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4 Time series predi
tion

One of the main goals of time series analysis is to predi
t the future evolution of a time

series given past observations.

4.1 Best linear predi
tion in L2

Example 4.1 Let X1, X2 and Y be square integrable random variables de�ned on the

same probability spa
e. The problem: Find the linear 
ombination Ŷ = b1X1 + b2X2 that

minimizes the mean squared error (m.s.e.)

m.s.e. = E(Y − b1X1 − b2X2)
2.

Solution.I. Minimize the fun
tion

f(b1, b2) = E(Y − b1X1 − b2X2)
2 = E(Y 2) + b21E(X

2
1 ) + b22E(X

2
2 )

− 2b1E(Y X1)− 2b2E(Y X2) + b1b2E(X1X2)

of two real variables by 
al
ulus.

Solution.II. Find a linear 
ombination Ŷ = b1X1 + b2X2 su
h that

E((Y − Ŷ )X1) = 0

E((Y − Ŷ )X2) = 0,

so, Y − Ŷ is orthogonal to both X1 and X2, and, therefore, orthogonal to any linear


ombination a1X1 + a2X2.

In both 
ases the 
oe�
ients minimizing the m.s.e. must satisfy the equations

b1E(X
2
1 ) + b2E(X2X1) = E(Y X1)

b1E(X1X2) + b2E(X
2
2 ) = E(Y X2).

More generally, 
onsider random variables X1, . . . , Xn and Y with �nite se
ond moments

E(Y 2
k ) <∞, k = 1, . . . , n,

E(X2) <∞
de�ned on the same probability spa
e (Ω,F , P ), i.e., X1, . . . , Xn, Y ∈ L2(Ω,F , P ).

De�nition 4.1 The best linear predi
tor Ŷ of Y in terms of X1, . . . , Xn is the linear


ombination b1X1 + · · ·+ bnXn su
h that

E(|Y − (b1X1 + · · ·+ bnXn)|2) = inf
c1,...,cn

E(|Y − (c1X1 + · · ·+ cnXn)|2).
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Theorem 4.1 Let X1, . . . , Xn, and Y be an arbitrary square integrable random variables

de�ned on the same probability spa
e (Ω,F , P ). If the 
oe�
ients bi ∈ R, i = 1, . . . , n
satisfy the predi
tion equations

b1E(X1Xk) + . . .+ bnE(XnXk) = E(Y Xk), k = 1, . . . , n, (11)

then

Ŷ = b1X1 + · · ·+ bnXn

is the best linear predi
tor of Y in terms of X1, . . . , Xn.

Proof. Let bi, i = 1, . . . , n be a solution of the predi
tion equations. Consider an arbitrary
linear 
ombination of X1, . . . , Xn

Ỹ = a1X1 + · · ·+ anXn, ai ∈ R, i = 1, . . . , n.

Dire
t 
omputation gives

E((Y − Ỹ )2) = E((Y − Ŷ + Ŷ − Ỹ )2)

= E((Y − Ŷ )2) + E((Ŷ − Ỹ )2) + 2E((Y − Ŷ )(Ŷ − Ỹ )

= E((Y − Ŷ )2) + E



(

n∑

i=1

(bi − ai)Xi

)2

 + 2E

(
(Y − Ŷ )

n∑

i=1

(bi − ai)Xi

)

= E((Y − Ŷ )2) + E



(

n∑

i=1

(bi − ai)Xi

)2

 + 2

n∑

i=1

(bi − ai)E
(
(Y − Ŷ )Xi

)

= E((Y − Ŷ )2) + E



(

n∑

i=1

(bi − ai)Xi

)2



sin
e

E

(
(Y − Ŷ )Xi

)
= 0, i = 1, . . . , n

by de�nition of bi ∈ R, i = 1, . . . , n. Therefore

E((Y − Ỹ )2) = E((Y − Ŷ )2) + E



(

n∑

i=1

(bi − ai)Xi

)2

 ≥ E((Y − Ŷ )2)

The theorem is proved. �

This means that the best linear predi
tor of Y in terms of X1, . . . , Xn is a proje
tion in

L2
of Y onto

Lin{X1, . . . , Xn} = {c1X1 + · · ·+ cnXn, ci ∈ R}, (12)

the linear subspa
e generated by X1, . . . , Xn.

Notation: Π(Y |X1, . . . , Xn) denotes the best linear predi
tion (BLP) of Y in terms of

X1, . . . , Xn.

The proje
tion is a linear operator:

Π(Y + Z|X1, . . . , Xn) = Π(Y |X1, . . . , Xn) + Π(Z|X1, . . . , Xn).
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Corollary 4.1 Let {Xt, t ∈ Z} be a weakly stationary sto
hasti
 pro
ess with zero mean.

If the 
oe�
ients bi, i = 0, . . . , t− 1 are solutions of the following system of equations

γ(h+ k) =

t−1∑

i=0

biγ(k − i), k = 0, . . . , t− 1,

or, equivalently,

ρ(h + k) =
t−1∑

i=0

biρ(k − i), k = 0, . . . , t− 1,

where γ(·) and ρ(·) are the auto
ovarian
e and the auto
orrelation fun
tion of the pro
ess,

then

X̂t+h =

t−1∑

i=0

biXt−i

is the best linear predi
tor of of Xt+h in terms of X1, . . . , Xt.

The equations in the 
orollary are the predi
tion equations written in this parti
ular 
ase

in terms of the auto
ovarian
e fun
tion.

If

X̂t+h =

t−1∑

i=0

biXt−i = bt−1X1 + . . .+ b0Xt.

then the predi
tion equations take the following form

E((Xt+h − X̂t+h)Xk′) = 0, k′ = 1, . . . , t.

Or,

E((Xt+hXk′) = b0E(XtXk′) + . . .+ bt−1E(X1Xk′), k
′ = 1, . . . , t.

In terms of the auto
ovarian
e fun
tion we have

γ(t + h− k′) = γ(t + h− k′) = b0γ(t− k′) + . . .+ bt−1γ(1− k′), k′ = 1, . . . , t.

If k′ ∈ {1, ..., t}, then t− k′ ∈ {0, ..., t− 1}. Denote k = t− k′ then

γ(h+k) = b0γ(k)+ b1γ(k−1)+ . . .+ bt−1γ(k− (t−1)) =

t−1∑

i=0

biγ(k− i), k = 0, 1, ..., t−1.

Note that the mean-square error is de�ned as follows

m.s.e. = E((Xt+h − X̂t+h)
2).
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4.2 Examples of best linear predi
tion for ARMA-pro
esses

4.2.1 AR(1)-pro
ess

Theorem 4.2 Consider an AR(1)-pro
ess

Xt = αXt−1 + Zt

with |α| < 1, where Var(Zt) = σ2
. Then, for any t ≥ 2 and h ≥ 1, αhXt is the best linear

predi
tor of Xt+h in terms of X1, . . . , Xt.

Proof. Xt is a 
ausal stationary pro
ess, sin
e |α| < 1. We have 
omputed its auto
o-

varian
e fun
tion as

γ(k) = E(XtXt+k) = σ2 α|k|

1− α2
.

Looking at the predi
tion equations then gives, for k ∈ {1, . . . t},

E
[
(Xt+h − αhXt)Xk

]
= E [Xt+hXk]− αh

E [Xt+hXk] =
σ2

1− α2

(
αt+h−k − αhαt−k

)
= 0.

This shows that Xt+h − αhXt is orthogonal to any Xk, k = 1, . . . , t. By Theorem 4.1,

αhXt is the best linear predi
tor of Xt+h in terms of X1 . . . , Xt.

We 
ould also see this more dire
tly from the MA(∞) representation, by using linearity

of the proje
tion. For this pro
ess, we have shown that the MA(∞) representation is

given by

Xt =

∞∑

k=0

αkZt−k.

This formula 
an be rewritten as follows

Xt = Zt + αZt−1 + · · ·+ αk−1Zt−k+1 + αkXt−k,

for any given k. Therefore

Xt+h = Zt+h + αZt+h−1 + · · ·+ αh−1Zt+1 + αhXt.

Using linearity of proje
tion now gives

Π(Xt+h|X1, . . . , Xt) = Π(Zt+h + αZt+h−1 + · · ·+ αh−1Zt+1 + αhXt|X1, . . . , Xt)

= αhΠ(Xt|X1, . . . , Xt) = αhXt,

sin
e Π(Zt+h + αZt+h−1 + · · ·+ αh−1Zt+1|X1, . . . , Xt) = 0 by 
ausality. �

We 
an 
ompute the m.s.e. of this fore
ast. By de�nition

m.s.e. = E((Xt+h − αhXt)
2) = E((Zt+h + αZt+h−1 + . . .+ αh−1Zt+1)

2)

= σ2(1 + α2 + . . .+ α2h−2) = σ21− α2h

1− α2
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4.2.2 MA(1) pro
ess

Consider a MA(1)-pro
ess

Xt = Zt + βZt−1.

where we take β < 1 for invertibility. It is 
lear that if h ≥ 2, then X̂t+h = 0. This is

be
ause

E(Xt+hZk) = 0, k = 1, . . . , t.

If h = 1, then

Π(Xt+1|X1, . . . , Xt) = Π(Zt+1 + βZt|X1, . . . , Xt) = βẐt,

Note that Zt is not observable. This means that we need to estimate it.

If all past observations Xk, k = t, t− 1, ... were available, then by invertibility

Zt = Xt − βXt−1 + β2Xt−2...,

i.e. the exa
t formula for Zt are given as as a linear fun
tion of the X variables, so this

would give a fore
ast for Zt in terms of the past values of the pro
ess.

If only Xt, Xt−1, ..., X1 are available, then by Corollary 4.1, the 
oe�
ients bi, i = 1, . . . , t
determining the best linear predi
tor, 
an be found by solving the system of linear equa-

tions

ρ(k + 1) =
t−1∑

i=0

biρ(k − i), k = 0, . . . , t− 1.

Therefore the bi 
an be written in matrix notation as




b0
.

.

.

bt−1


 = P−1

t




ρ(1)
.

.

.

ρ(t)


 = P−1

t




a
0
.

.

.

0




Where the t× t matrix Pt, whi
h 
an be shown to be invertible, is given by

Pt =




1 a 0 0 . . . 0
a 1 a 0 . . . 0
0 a 1 a 0 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 . . . 1 a
0 0 0 . . . a 1




where a = β/(1 + β2) = ρ(±1).

For general ARMA(p,q) models, the solutions of the predi
tion equations do not have ni
e

expli
it forms. They 
an however be 
al
ulated using an e�
ient re
ursion (the Durbin-

Levinson algorithm), whi
h is beyond our 
urrent s
ope. Further details are available in

Se
tion 8.2 of Bro
kwell and Davis.
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4.3 Minimum mean squared error predi
tion

4.3.1 Con
ept

Suppose the random variables z1, . . . , zn and y are de�ned on the same probability spa
e

(Ω,F , P ), and have �nite se
ond moments.

De�nition 4.2 The minimum mean squared error predi
tion of y in terms of z1 . . . zn is

the fun
tion m(z1, . . . , zn) su
h that

E
[
{y −m (z1 . . . zn)}2

]
= inf

f
E
[
{y − f (z1 . . . zn)}2

]
.

It 
an be shown that m(z1 . . . zn) = E(y|z1 . . . zn).

4.3.2 Fore
ast for general ARIMA(p,d,q) pro
esses

In what follows, we'll see a re
ursive approa
h to 
al
ulating the minimum mean square

error predi
tor of Xt+h based on X1 . . .Xt only.

Suppose we have a 
ausal and invertible ARIMA(p,d,q) pro
ess

φ(B)(1− B)dXt = θ(B)Zt,

and only Xk, k = 1 . . . t are available. We want to predi
t Xt+h.

Let

φ(B)(1−B)d = 1−
p+d∑

j=1

αjB
j , θ(B) = 1+

q∑

j=1

βjB
j , Xt = (Xt, . . . , X1)

T , X̂t+h = E(Xt+h|Xt).

We have

Xt =

p+d∑

j=1

αjXt−j + Zt +

q∑

j=1

βjZt−j (13)

and

X̂t+h = E(Xt+h|Xt) =

p+d∑

j=1

αjE(Xt+h−j|Xt) +

q∑

j=1

βjE(Zt+h−j |Xt) h ≥ 1.

To simplify this, note that

X̂t+h−j = E(Xt+h−j|Xt) = Xt+h−j, j ≥ h. (14)

Further, 
ausality gives Ẑt+h−j = 0 for j < h.
This then gives

X̂t+h =
h−1∑

j=1

αjX̂t+h−j +

p+d∑

j=h

αjXt+h−j +

q∑

j=h

βjẐt+h−j, h ≥ 1.
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The estimators Ẑk for k ≤ t 
an be obtained through rearranging the de�ning equation

of the pro
ess, (13) and again using (14):

Ẑk = Xk −
p+d∑

j=1

αjXk−j −
q∑

j=1

βjẐk−j, (15)

with initial values set to

Ẑl = 0, l = 1, . . . ,max(p+ d, q).

Example Consider the ARIMA(1,2,1) pro
ess

(1− 0.5B)(1− B)2Xt = (1 + 0.2B)Zt (16)

This pro
ess is the same as

(1− 2.5B + 2B2 − 0.5B3)Xt = (1 + 0.2B)Zt,

whi
h is

Xt = 2.5Xt−1 − 2Xt−2 + 0.5Xt−3 + Zt + 0.2Zt−1.

The predi
tion of Xt+2 is

X̂t+2 = 2.5X̂t+1 − 2Xt + 0.5Xt−1

with

X̂t+1 = 2.5Xt − 2Xt−1 + 0.5Xt−2 + 0.2Ẑt.

Noti
e that (16) 
an be written as

Zt = Xt − 2.5Xt−1 + 2Xt−2 − 0.5Xt−3 − 0.2Zt−1.

max{p + d, q} here is 3. So, we set the initial values Ẑ1 = Ẑ2 = Ẑ3 = 0, and obtain the

remaining Ẑk for k ≤ t, through

Ẑk = Xk − 2.5Xk−1 + 2Xk−2 − 0.5Xk−3 − 0.2Ẑk−1, 3 < k ≤ t.

On substituting ba
k through, this gives a re
ursive fore
ast for Xt.

4.4 Fore
ast for general ARMA(p,q) pro
esses

4.5 The partial a
.f.

Given two random variables ξ and η, denote

Corr(ξ, η) =
Cov(ξ, η)√

Var(ξ)
√
Var(η)

,

i.e., the usual 
orrelation 
oe�
ient.
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The partial a
.f. of a zero mean stationary pro
ess Xt, t ∈ Z is de�ned by

a(k) = Corr(Xk+1 − Π(Xk+1|X2, . . . , Xk), X1 − Π(X1|X2, . . . , Xk)), k ≥ 2

and by 
onvention a(1) = ρ(1). This is another important 
hara
teristi
 of a weakly

stationary sto
hasti
 pro
ess.

Example 4.2 The partial auto
orrelation fun
tion of the white noise pro
ess 
oin
ides

with the auto
orrelation fun
tion of the pro
ess. This 
an be seen by 
onsidering the pre-

di
tion equations, whi
h in this 
ase give Π(Xk+1|X2, . . . , Xk) = 0 and Π(X1|X2, . . . , Xk) =
0.

An equivalent de�nition of the partial auto
orrelation fun
tion is given below. Proving

equivalen
e is algebrai
ally involved, and 
ertainly not examinable. For 
ompleteness, a

derivation of the equivalen
e of the two de�nitions 
an be found in Bro
kwell and Davis,

Corollary 5.2.1.

Let bki, i = 1, . . . , k, k ≥ 1 be the 
oe�
ients in the representation

Π(Xk+1|X1, . . . , Xk) =

k∑

i=1

bkiXk+1−i

From the predi
tion equations

E((Xk+1 − Π(Xk+1|X1, . . . , Xk))Xi) = 0, i = 1, . . . , k

we obtain that the 
oe�
ients bki 
an be found from the following system of equations

k∑

i=1

bkiρ(j − i) = ρ(j), j = 1, . . . , k (17)

Then the partial a
.f. at lag k ≥ 2 is

a(k) = bkk.

4.6 The partial auto
orrelation fun
tion for AR(p) pro
esses

For the AR(p) pro
ess, it 
an be shown that

a(k) = 0, k > p.

Indeed, 
onsider for simpli
ity a zero mean AR(1) pro
ess

Xt = αXt−1 + Zt,

where |α| < 1.
By de�nition

a(1) = Corr(αX1 + Z2, X1) = ρ(1) = α.
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Let k ≥ 2, then, as we know from the predi
tion se
tion,

Π(Xk+1|X2, . . . , Xk) = αXk.

A similar dire
t argument using the predi
tion equations shows that

Π(X1|X2, . . . , Xk) = αX2.

Therefore

a(k) = Corr(Xk+1 − αXk, X1 − αX2) = Corr(Zk+1, X1 − αX2) = 0, k > 1,

be
ause the pro
ess Xt is un
orrelated with future values of the white noise pro
ess.

Similar 
omputations 
an be done for an arbitrary AR(p) pro
ess. In brief, if Xt is a


ausal AR(p) pro
ess,

Xt = α1Xt−1 + . . .+ αpXt−p + Zt,

then it 
an be shown that for k > p,

Π(Xk+1|Xk . . .X2) = α1Xk + . . .+ αpXk−p+1.

Then

a(k) = Corr(Xk+1 −Π(Xk+1|Xk . . .X2), X1 − Π(X1|X2, . . . , Xk))

= Corr(Zk+1, X1 −Π(X1|X2, . . . , Xk)),

whi
h is zero sin
e the righthand 
orrelation argument is a linear 
ombination ofX1 . . .Xk,

ea
h of whi
h is un
orrelated with Zk+1.

4.7 Summary of a
f and pa
f behaviour for ARMA pro
esses

The following table summarizes the behaviour of the auto
orrelation fun
tion and partial

auto
orrelation fun
tions of the di�erent 
lasses of pro
ess.

AR(p) MA(q) ARMA(p,q)

ACF Tails o� Cuts o� after lag q Tails o�

pACF Cuts o� after lag p Tails o� Tails o�

Note that tailing o� 
an in
lude damped os
illatory behaviour.

4.8 The sample partial auto
ovarian
e fun
tion

The sample auto
ovarian
e fun
tion is a point estimator of the a
.f. of a stationary

sto
hasti
 pro
ess. The sample partial a
.f. ak, k ∈ Z, is used as a point estimator of

the partial a
.f. of a sto
hasti
 pro
ess and is de�ned as follows. First, estimate the a
.f.

using the sample a
.f. and then 
al
ulate the estimates of the partial a
.f. by repla
ing

the auto
orrelations ρ(k) in the equation (17) with the sample auto
orrelations rk, to
give the system

k∑

i=1

b̂kirj−i = rj , j = 1, . . . , k

whi
h is then solved for b̂ki and de�ning ak = b̂kk.
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5 Elements of statisti
al inferen
e for time series

5.1 Model sele
tion, parameter estimation and veri�
ation

5.1.1 The Box-Jenkins methodology for model building

Suppose that we have been presented with a time series, for whi
h we seek an adequate

model (e.g. for predi
tion). Assume that all ne
essary preliminary transformations have

been made and any 
y
li
 
omponent has been removed. If data still appear to be non-

stationary and it is due to a trend, then we remove the trend by di�eren
ing. In pra
ti
e,

one or two di�eren
es often su�
es. Then we �t an ARMA model to the stationary time

series Yt = Xt − µ, where E(Xt) = µ.

Xt − µ = α1(Xt−1 − µ) + . . .+ αp(Xt−p − µ) + Zt + β1Zt−1 + · · ·+ βqZt−q.

Overdi�eren
ing Note that in seeking to obtain a stationary series, it is important

not to overdi�eren
e time series data. Though the di�eren
e of a stationary pro
ess is a

stationary pro
ess, overdi�eren
ing introdu
es unne
essary 
orrelations and 
ompli
ates

the model. For example, suppose the time series Xt is a random walk,

Xt = Xt−1 + Zt

then its �rst di�eren
e is

Zt = Xt −Xt−1

the white noise pro
ess. But the se
ond di�eren
e

Yt = Zt − Zt−1

is a non invertible MA(1) pro
ess.

The Box-Jenkins methodology is an iterative model-building pro
edure, whi
h 
onsists of

the following four steps.

1. Identi�
ation: de
ide on reasonable values for p, d and q.

2. Estimation: using the values of p and q, estimate the unknown parameters: α1, . . . , αp, β1, . . . , βq,
µ and σ2

.

3. Diagnosti
 
he
king: 
he
k the model against histori
al data to see whether it

a

urately des
ribes the underlying pro
ess that generates the series.

4. If the model doesn't �t well, repeat earlier steps using an improved model. If the

model �t is adequate, begin fore
asting.
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5.1.2 Model sele
tion/identi�
ation

The main tools in model identi�
ation are the sample a
.f. rk and the sample partial

a
.f. ak.

Typi
al patterns of rk and ak for MA pro
esses:

• The a
.f. fun
tion of a MA(q) pro
ess 
uts o� after lag q.

• The partial a
.f. of a MA(q) pro
ess is, in general, a mixture of exponentials

and damped sine waves (i.e., its asymptoti
 behaviour at in�nity is similar to the

asymptoti
 behaviour of the a
.f. of an AR(p) pro
ess).

• If an MA pro
ess is thought to be appropriate for a given data set, then the order

of the pro
ess is usually evident from the sample a
.f.

Typi
al patterns pf rk and ak of AR pro
esses:

• The a
.f. of an AR(p) pro
ess is, in general, a mixture of exponentials and damped

sine waves, and is usually of little help in identifying the pro
ess order.

• The partial a
.f. fun
tion of an AR(p) pro
ess 
uts o� after lag p.

• If an AR pro
ess is thought to be appropriate for a given set of data, then the order

of the pro
ess is usually evident from the sample partial a
.f.

It 
an be proved that for an underlying AR(p) pro
ess, the approximate sampling distri-

bution of ea
h ak with k > p is normal with zero mean and varian
e 1/N . Hen
e

P{|ak| ≤ 1.96/
√
N} = 0.95

Therefore the 
on�den
e limits ±1.96/
√
N ≈ ±2/

√
N 
an be used to dete
t the 
ut o�

e�e
t in the sample partial 
orrelogram for an AR pro
ess. A similar result holds for the

auto
orrelation 
oe�
ients rk of a MA(q) pro
ess.

Observed 
oe�
ients that fall outside these limits are signi�
antly di�erent from zero at

the 5% level. But note that even if a 
oe�
ient should be zero in the true underlying

pro
ess, the probability of getting at least one observed 
oe�
ient outside the 
on�den
e

limits in
reases with the number of 
oe�
ients plotted.

In pra
ti
e: Consider a sample from a white noise pro
ess. If, say, the �rst 20 values of

rk are plotted, then we 
an expe
t one signi�
ant value (at 5% level) on average. So,

if just one or 
oe�
ients are signi�
ant, the size and lag of these 
oe�
ients must be

taken into a

ount when de
iding if a set of data is random. A single 
oe�
ient just

outside the 95% 
on�den
e limits may be ignored (
onsistent with being a realisation of

a white noise pro
ess), but two or more values well outside the limits 
an be 
onsidered

as an indi
ation of signi�
ant auto
orrelation (or partial auto
orrelation) at the lags in

question.

�Re
ipe� for visual inspe
tion:
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• A 
orrelogram that de
ays to zero suggests that the series is stationary and one 
an

sear
h for an appropriate ARMA model;

• if there is a sharp 
ut-o� in the 
orrelogram, i.e., all rk with k > q for some q
are within ±2/

√
N limits, then the behaviour of the sample partial a
.f. 
an be

negle
ted and an MA(q) pro
ess 
an be used as a possible model for the data;

• if there is a sharp 
ut-o� in the partial 
orrelogram, i.e., all rk with k > p for some

p are within ±2/
√
N limits, then an AR(p) pro
ess 
an be used as a possible model

for the data;

• if neither 
orrelogram nor partial 
orrelogram 
uts o� then possibly a mixed ARMA(p,q)

should be taken as a model. Usually, ARMA(1,1) is tested �rst.

For example:

• If r1 is signi�
antly di�erent from zero but all subsequent values of rk are all 
lose

to zero, then the behaviour of the sample partial a
.f. 
an be negle
ted and an

MA(1) pro
ess 
an be used as a possible model for the data.

• If rk appear to be de
reasing exponentially and the partial 
orrelogram 
uts o� at

lag 1, then an AR(1) may be appropriate.

Example 5.1 Given a data set with 120 observations (of a stationary times series), the

following values of the sample a
.f. was 
omputed

k 0 1 2 3 4 5 6
Sample a
.f. 1 −0.52 −0.04 0.13 −0.09 −0.01 0.1

Find a suitable ARMA model for the data.

Answer: A 95%CI is (−2/
√
N, 2/

√
N) = (−0.183, 0.183). It is easy to see that the sample

a
.f. 
uts at lag 2. This might indi
ate that an MA(1) model 
an be taken a possible


andidate.

Example 5.2 Given a data set with 120 observations (of a stationary times series), the

following values of the sample a
.f. and the sample partial a
.f. were 
omputed

k 0 1 2 3 4 5 6
Sample a
.f. 1 −0.52 −0.04 0.13 −0.09 −0.01 0.1

Sample partial a
.f. 1 −0.52 −0.43 −0.21 −0.2 −0.23 −0.1

Find a suitable ARMA model for the data.

Answer. For both the sample a
.f. and the sample partial a
.f. a 95%CI is (−2/
√
N, 2/

√
N) =

(−0.183, 0.183). It is easy to see that the sample a
.f. 
uts at lag 2 and that the sample

partial a
.f. de
ays. This might indi
ate that an MA(1) model 
an be taken a possible


andidate.

Example 5.3 Given a data set with 100 observations (of a stationary times series), the

following values of the sample a
.f. and the sample partial a
.f. were 
omputed
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k 0 1 2 3 4 5 6
Sample a
.f. 1 0.9 0.81 0.729 0.657 0.59 0.532

Sample partial a
.f. 1 0.9 0.1 0.12 0.07 0.062 0.03

Find a suitable ARMA model for the data.

Answer. For both the sample a
.f. and the sample partial a
.f. a 95%CI is (−2/
√
N, 2/

√
N) =

(−0.2, 0.2). It is easy to see that the sample a
.f. de
ays exponentially (∼ 0.9k) and the

sample partial a
.f. 
uts at lag 2. Therefore, one 
an try to �t AR(1) pro
ess to this data

set.

Example 5.4 Given a data set with 100 observations (of a stationary times series), the

following values of the sample a
.f. and the sample partial a
.f. were 
omputed

k 0 1 2 3 4 5 6
Sample a
.f. 1 0.9 0.8 0.6 0.5 0.3 0.22

Sample partial a
.f. 1 0.9 0.5 0.1 0.03 0.07 0.04

Find a suitable ARMA model for the data.

Answer. For both the sample a
.f. and the sample partial a
.f. a 95%CI is (−2/
√
N, 2/

√
N) =

(−0.2, 0.2). It is easy to see that the sample a
.f. de
ays exponentially and the sample

partial a
.f. 
uts at lag 3. Therefore, one 
an try to �t AR(2) pro
ess to this data set.

5.2 Estimating parameters of an ARMA pro
ess

5.2.1 Method of moments

For reasonably large samples, we expe
t the sample moments to be 
lose to their theoret-

i
al population values. This gives a method of estimating parameters of the underlying

pro
ess: we equate theoreti
al values of the moments in terms of parameters to the ob-

served sample values, and solve to obtain parameter estimates. The idea should be 
lear

after seeing a few examples.

Example The moment estimator of the pro
ess mean of a stationary time series Xt is

µ̂ = X =
1

N

N∑

i=1

Xi.

Example Consider a zero-mean AR(2) pro
ess: Xt = α1Xt−1 + α2Xt−2 + Zt.

The Yule-Walker equations for ρ(1) and ρ(2) are

ρ(1) = α1 + α2ρ(1)

ρ(2) = α1ρ(1) + α2

Repla
ing ρ(1) and ρ(2) by their sample equivalents r1 and r2 we get the equations

r1 = α1 + α2r1

r2 = α1r1 + α2.
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Solving these equations we get

α̂1 =
r1(1− r2)

1− r21

α̂2 =
r2 − r21
1− r21

.

Example Consider a zero-mean invertible MA(1) pro
ess: Xt = Zt+βZt−1. We have seen

already that ρ(1) = β
1+β2 , therefore, repla
e ρ(1) by the 
orresponding sample 
oe�
ient

r1 =
β

1 + β2

and solve this quadrati
 equation for β.

β̂ =
1±

√
1− 4r21
2r1

.

Invertibility means that we must sele
t the negative root, to ensure |β| < 1.
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5.2.2 Least-squares estimation for AR pro
esses

Consider a stationary AR(p) pro
ess

Xt − µ = α1(Xt−1 − µ) + . . .+ αp(Xt−p − µ) + Zt. (18)

Given N observations x1, . . . , xN , the parameters µ, α1, . . . , αp may be estimated by min-

imizing

S(µ, α1, . . . , αp) =
N∑

t=p+1

(xt − µ− α1(xt−1 − µ)− . . .− αp(xt−p − µ))2.

Consider in detail the 
ase p = 1.

S(µ, α) =

N∑

t=2

(xt − µ− α(xt−1 − µ))2.

The values µ̂ and α̂ that minimise the quadrati
 from S(µ, α) 
an be found as solutions

of the following system of equations

∂S(µ, α)

∂µ
= 0,

∂S(µ, α)

∂α
= 0

This gives

2(1− α̂)

N∑

t=2

(xt − µ̂− α̂(xt−1 − µ̂)) = 0,

−2
N∑

t=2

(xt−1 − µ̂)(xt − µ̂− α̂(xt−1 − µ̂)) = 0.

Note that α̂ 
annot be equal to 1, therefore from the �rst equation we get that

N∑

t=2

(xt − µ̂− α̂(xt−1 − µ̂)) = 0.

Simple algebra gives

µ̂ =
N

N − 1
x+ dN ,

where

x =
1

N

N∑

t=1

xt

and

dN =
α̂xN − x1

(N − 1)(1− α̂)
.
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For large N , dN → 0 and so

µ̂ ≈ x

in the sense that µ̂/x→ 1 as N → ∞.

From the equation ∂S/∂α = 0 we get

N∑

t=2

(xt−1 − µ̂)(xt − µ̂)− α̂
N−1∑

t=1

(xt − µ̂)2 = 0.

From this we 
an �nd

α̂ =

∑N−1
t=1 (xt − µ̂)(xt+1 − µ̂)
∑N

t=1(xt − µ̂)2
1

vN

where

vN = 1− (xN − µ̂)2
∑N

t=1(xt − µ̂)2

(NB An error in the de�nition of vN from an earlier version of the notes has been 
or-

re
ted.)

It 
an be shown that vN → 1 (in a 
ertain sense) as N → ∞. Re
alling that

r1 =

∑N−1
t=1 (xt − x)(xt+1 − x)
∑N

t=1(xt − x)2

and using the approximation µ̂ ≈ x for large N , we get that asymptoti
ally

α̂ ≈ r1

in the sense that α̂/r1 → 1 as N → ∞.

Similar 
omputations 
an be done for an arbitrary AR(p) pro
ess For example, if p = 2,
then we (approximately) re
over the moment estimators 
omputed in the previous se
tion:

µ̂ ≈ x, α̂1 ≈ r1(1− r2)/(1− r21), α̂2 ≈ (r2 − r21)/(1− r21).

For the general AR(p) pro
ess (18), we seek the minimizer (µ̂, α̂1, . . . , α̂p) of

S(µ, α1 . . . αp) =

N∑

t=p+1

{xt − µ− α1(xt−1 − µ)− . . .− (xt−p − µ)}2.

Let Y = (xp+1, . . . , xN )
T
, ζ =

(
µ(1−

∑p
j=1 αj), α1, . . . , αp

)
and

H =




1 xp xp−1 · · · x2 x1
1 xp+1 xp · · · x3 x2
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 xN−1 xN−2 · · · xN−p+1 xN−p



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Then S 
an be written as a quadrati
 form

S(µ, α1 . . . αp) = (Y −Hζ)T (Y −Hζ),

whose minimiser is 
an be found by di�erentiation to be

ζ̂ =
(
H

T
H
)−1

H
T
Y.

The form of this expression should be familiar from linear models.

5.2.3 Least square estimation for MA pro
esses

LSE is not so straightforward for MA pro
esses as for AR pro
esses. Consider, for

example, a MA(1) pro
ess

Xt = µ+ βZt−1 + Zt.

Given observations x1, . . . , xN we would like to write the residual sum of squares

∑
z2t in

terms of observed x1, . . . , xn and parameters µ and β, as we did in the 
ase of the AR(1)

pro
ess. This is not possible here, so the expli
it least squares estimates 
annot be found.

Instead, the following iterative pro
edure is used:

• sele
t suitable starting values for µ and β, for example µ̂ = x = (
∑N

k=1 xk)/N and

β̂ a solution of the moment equation

r1 =
β

1 + β2
,

where r1 is the value of the sample a
.f. at lag 1, (one must 
hoose the solution

|β̂| < 1),

• taking z0 = 0, 
al
ulate z1 = x1 − µ̂, then z2 = x2 − µ̂ − β̂z1, and so on until

zN = xN − µ̂− β̂zN−1, and �nally 
al
ulate the residual sum

∑N
t=1 z

2
t for 
hosen µ̂

and β̂,

• repeat the pro
edure for the other neighbouring values of µ and β so that the

residual sum of squares

∑N
t=1 z

2
t is 
omputed on a grid of points in the (µ, β) plane,

• determine by visual inspe
tion of otherwise (by an iterative optimization pro
e-

dure) the values of µ and β that minimize

∑N
t=1 z

2
t . These values are least square

estimates.

5.3 Maximum likelihood estimation for Gaussian ARMA(p,q)

pro
esses

Consider a 
ausal, invertible ARMA(p,q) pro
ess Xt, t ∈ Z,

Xt − µ =

p∑

k=1

αk(Xt−k − µ) + Zt +

q∑

k=1

βkZt−k, (19)
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where Zt, t ∈ Z, are independent random variables with zero mean and varian
e σ2
.

If Zt, t ∈ Z, are normally distributed, then the pro
ess Xt, t ∈ Z, is said to be a

Gaussian ARMA pro
ess. In this 
ase, for any t1, . . . , tn ∈ Z the probability distri-

bution of the random ve
tor (Xt1 , . . . , Xtn) is a multivariate normal distribution (see

de�nition 5.1 below) with mean µ = (µ, . . . , µ) and 
ovarian
e matrix Σ with entries

Σij = Cov(Xti , Xtj ) = γ(ti − tj).

De�nition 5.1 The random ve
tor Y = (Y1, . . . , Yn)
T
is said to be multivariate normal

if there exist a 
olumn ve
tor µ, a (n×n)-matrix B and a random ve
tor η = (η1, . . . , ηn)
T

with independent standard normal 
omponents su
h that

Y = µ+Bη.

The mean of Y is the ve
tor µ with entries µi = E(Yi) and the 
ovarian
e matrix of Y is

Σ = BBT
, with entries Σij = Cov(Yi, Yj). Provided that det(Σ) > 0, the density fun
tion

of Y = (Y1, . . . , Yn)
T
is

f(y) =
1

(2π)n/2(det(Σ))1/2
exp

(
−1

2
(y − µ)TΣ−1(y − µ)

)
, y = (y1, . . . , yn)

T ∈ Rn.

Taking the pro
ess (19) to be Gaussian, we would like to 
arry out maximum likelihood

estimation of the parameters µ, σ2
, αj for j = 1 . . . p and βk for k = 1 . . . q. The

likelihood fun
tion is just the joint density of (X1 . . .XN )
T
, 
onsidered as a fun
tion of

the parameters, for �xed observations. For general ARMA models, it is di�
ult to express

the likelihood as an expli
it fun
tion of the parameters. In the se
tion that follows we

will show how to obtain a 
onditional maximum likelihood estimator, whi
h will be 
lose

to the full maximum likelihood estimator for su�
iently large sample sizes.

5.3.1 Conditional MLE

By working with Yt = Xt − µ, it is enough to develop maximum likelihood estimation

for a zero-mean pro
ess. It is straightforward to in
orporate µ as an additional parameter.

De�ne

Yt = (Yt . . . Y1), θ = (α1 . . . αp, β1 . . . βq).

The 
onditional density fun
tion of Yt given Yt−1 is denoted f(yt|yt−1, θ, σ
2), and the

density fun
tion of Yp is f(yp|θ, σ2). The likelihood, whi
h is just the joint density of

YN , 
an then be written as follows, by using laws of 
onditional probability.

L(YN |θ, σ2) = f(yp|θ, σ2)f(yp+1 . . . yN |yp, θ, σ
2)

= f(yp|θ, σ2)f(yN |yN−1, θ, σ
2)f(yN−1|yp, θ, σ

2)

= . . .

= f(yp|θ, σ2)
N∏

t=p+1

f(yt|yt−1, θ, σ
2)
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The expression

N∏

t=p+1

f(yt|yt−1, θ, σ
2),

whi
h will be denoted L∗(yN , θ, σ
2), is known as the 
onditional likelihood fun
tion of µ,

σ2
and θ.

An important property of the multivariate normal distribution is that its 
onditional

distributions are also multivariate normal (see Appendix C3 of Shumway and Sto�er for

more details). Moreover, a multivariate normal distribution is determined by its mean

ve
tor and 
ovarian
e matrix. This means that to determine the density f(yt|yt−1, θ, σ
2),

it is enough to work out E(Yt|Yt−1) and Var(Yt|Yt−1).

We begin by making the assumption that

Z1 = Z2 = . . . = Zq = 0,

whi
h will be reasonable in any pra
ti
al situation where estimation is required.

Now, assume that Y1 . . . Yt−1 are known. From the de�ning equation it 
an be seen that

Yt =

p∑

k=1

αkYt−k + Zt +

q∑

k=1

βkZt−k,

and the values of Zi for i = q + 1 . . . t− 1 
an be obtained re
ursively from

Zi = Yi −
p∑

k=1

αkYi−k −
q∑

k=1

βkZi−k,

as in (15) when 
omputing fore
asts for general ARMA pro
esses. This means that the


onditional expe
tation and varian
e of Yt are given in terms of known quantities as

E(Yt|Yt−1) =

p∑

k=1

αkYt−k +

q∑

k=1

βkZt−k

Var(Yt|Yt−1) = Var(Zt|Yt−1) = σ2.

It is 
onvenient to denote E(Yt|Yt−1) by Ŷt|t−1, and de�ne the innovation at t to be

ǫt(θ) = yt − Ŷt|t−1.

This means that we 
an write the 
onditional likelihood in terms of the innovations as

L∗(yN , θ, σ
2) = (2πσ2)−(N−p)/2 exp

{
− 1

2σ2

N∑

t=p+1

ǫ2t (θ)

}
,

so that the full likelihood is given by

L(YN |θ, σ2) = f(yp|θ, σ2)(2πσ2)−(N−p)/2 exp

{
− 1

2σ2

N∑

t=p+1

ǫ2t (θ)

}
. (20)
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Maximizing (20) is a non-linear optimization problem, whi
h is 
omputationally expensive

in general. In pra
ti
e it is often enough to maximize the 
onditional likelihood L∗
. To

maximize L∗
, it is enough to �nd θ su
h that the sum of squares

N∑

t=p+1

ǫ2t (θ)

is minimal. The 
onditional maximum likelihood estimator of σ2
is then given by

σ̂2 =
1

N − p

N∑

t=p+1

ǫ2t (θ̂).

Note that for reasonably large samples, the 
onditional MLEs and full MLEs will be

typi
ally be very 
lose.

5.4 Model veri�
ation or diagnosti
 
he
king

On
e an ARIMA(p,d,q) model has been �tted to a time series X1 . . .XN , the next step is

to assess how well the model �ts the data. We do this by analysing the residuals z1, . . . , zN ,
whi
h 
an be obtained from the re
ursive algorithm given in (15). For Wt = (1−B)dXt,

the residuals are

Ẑt = Wt −
p∑

j=t

α̂jWt−j −
q∑

k=1

β̂kẐt−k, t > max{p+ d, q},

and Ẑt = 0 for t ≤ max{p+ d, q}.

For a �good� model �t, the sequen
e of residuals z1, . . . , zN should behave like a realisation

of a white noise pro
ess. This means that we should expe
t:

• the mean of the residuals should be 
lose to zero

z1 + . . .+ zN
N

≈ 0

• the spread of the residuals around the mean is 
onstant over time

• auto
orrelations between residuals are negligible, i.e.,

rz,k =

∑N−k
t=1 ((zt − z)(zt+k − z)
∑N

t=1(zt − z)2

Under assumption that the residuals are un
orrelated, approximate 95% 
on�den
e limits

are ±2/
√
N . If we observe signi�
ant auto
orrelations, i.e., there are values of rz,k whi
h

are well outside these limits, then it is worth exploring other plausible models.
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5.4.1 The Ljung-Box statisti


The Ljung-Box statisti
 
an be used to test whether or not the auto
orrelation fun
tion

of a stationary pro
ess is zero. For a sample X1 . . .Xt from a stationary pro
ess with

sample auto
orrelation rk at lag k, the Ljung-Box statisti
 is de�ned as

Q = t(t + 2)

m∑

k=1

r2k
t− k

,

where the integer m is 
hosen arbitrarily. Under the null hypothesis that the model �t

is adequate (so that the residuals are essentially white noise), the test statisti
 Q has an

asymptoti
 χ2
distribution with m − p − q degrees of freedom. This means that for Q

larger than some 
riti
al value, we reje
t the null hypothesis

H0 : ρ(k) = 0, k 6= 0.

5.4.2 Over�tting

After spe
ifying and �tting the model one 
an try to �t a more general model. As an

example, suppose that we �t an AR(2) model and estimated the parameters µ, α1, α2.

Then repeat the estimation pro
edure assuming AR(3) model. If

• additional parameter α3 ≈ 0

• α1,new ≈ α1,old and α2,new ≈ α2,old,

then it is reasonable to 
on
lude that there is no need to repla
e the initial model AR(2)

by a more general one. You will noti
e this prin
iple in use in the solutions to lab 
lass

3. Another approa
h is to use the Akaike Information Criterion (AIC) - see se
tion 2.2

of Shumway and Sto�er for more details.
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Figure 4: Good model �t for an ARIMA(2,1,2) model. No patterns in the residuals, and no signi�
ant

p-values for the Ljung-Box statisti
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Figure 5: Fitting an AR(2) model to a dataset simulated with higher order auto
orrelation. Note the

signi�
ant auto
orrelation in the residuals and signi�
ant p-values for the Ljung-Box test. This suggests

some stru
ture in the residuals remains unmodelled.
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6 Spe
tral analysis

A time series 
an be 
onsidered to be a noisy observation of a 
urve at a set of time

points. We 
an 
onsider the 
urve as being made up of sine and 
osine waves of di�erent

frequen
ies. (You may re
all this idea from Fourier analysis). Fitting a model to a time

series essentially means estimating the amplitude of the sine and 
osine 
omponents at

di�erent frequen
ies. The periodogram is of use in this task.

6.1 The periodogram

Let X1 . . .XN be a sample from a stationary time series, with N = 2q+1, an odd number.
Write

Xt = A0 +

q∑

i=1

Ai cos(2πfit) +Bi sin(2πfit) + et,

where fi =
i
N
. Least squares estimates of Ai and Bi, denoted with the 
orresponding

lower 
ase letters, 
an be obtained as follows

a0 = X̄, ai =
2

N

N∑

t=1

Xt cos(2πfit) bi =
2

N

N∑

t=1

Xt sin(2πfit), i = 1 . . . q.

(21)

This is a saturated model, i.e. N parameters are being estimated with N observations,

so that we 
annot obtain residuals êt.

The periodogram is the set of q intensity values

I(fi) =
N

2
(a2i + b2i ), i = 1 . . . q.

Note that if instead N = 2q is even, the values aq and bq have to be 
hanged to

aq =
1

N

N∑

t=1

(−1)tXt, bq = 0.

Note: If the frequen
y fi is indeed a 
omponent of the 
urve, the intensity I(fi) is

expe
ted to be relatively large.

6.2 The spe
trum and spe
tral density fun
tion

Suppose X1 . . .XN is a sample from a stationary time series with auto
ovarian
e fun
tion

γ(·) and auto
orrelation fun
tion ρ(·).

The sample spe
trum For any frequen
y 0 ≤ f ≤ 0.5, de�ne

I(f) =
N

2
(a2f + b2f ),

50



where af and bf are obtained by repla
ing fi by f in (21). I(f) is 
alled the sample

spe
trum of (Xt). It 
an be shown that

I(f) = 2

[
c0 + 2

N−1∑

k=1

ck cos(2πfk)

]
, 0 ≤ f ≤ 0.5,

where ck is the sample auto
ovarian
e at lag k.

The power spe
trum The power spe
trum is de�ned as

p(f) = lim
N→∞

E [I(f)] = 2

[
γ(0) + 2

∞∑

k=1

γ(k) cos(2πfk)

]
0 ≤ f ≤ 0.5.

Note that

∑∞
k=1 |γ(k)| < ∞ is a su�
ient 
ondition for the 
onvergen
e of the power

spe
trum. This is be
ause | cos(x)| ≤ 1 for real x, giving

|p(f)| ≤ 2

[
|γ(0)|+ 2

∞∑

k=1

|γ(k)|
]
.

By integrating term-by-term and using the fa
t that

∫ 0.5

0
cos(2πfk) df = 0 for k 6= 0, it

is 
lear that

γ(0) =

∫ 0.5

0

p(f) df.

The spe
tral density fun
tion This is just a normalization of the power spe
trum,

whi
h 
an therefore be expressed in terms of the auto
orrelation fun
tion:

g(f) =
p(f)

γ(0)
= 2

[
1 + 2

∞∑

k=1

ρ(k) cos(2πfk)

]
0 ≤ f ≤ 0.5.

Clearly

∫ 0.5

0
g(f) df = 1.

The spe
tral density fun
tion shows the frequen
ies that dominate the variability in a

time series, and guide preliminary 
hoi
es of parametri
 models.

Example Let Zt, t = 1, 2, . . . be white noise with Var(Zt) = 1. Consider two series

Series I: Xt = 10 + Zt + Zt−1.

Xt has auto
ovarian
e fun
tion given by

γ(k) =





2 k = 0,
1 k = 1,
0 k ≥ 2.

Its spe
tral density fun
tion is

g(f) = 2

[
1 + 2

∞∑

k=1

ρ(k) cos(2πfk)

]
= 2(1 + cos(2πf)).
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Series II: Xt = 10 + Zt − Zt−1.

Xt has auto
ovarian
e fun
tion given by

γ(k) =





2 k = 0,
−1 k = 1,
0 k ≥ 2.

Analogously, its spe
tral density fun
tion is

g(f) = 2(1− cos(2πf)).

These two pro
esses are dominated by di�erent types of variation, as 
an be seen from

the time plots, and the plots of the spe
tral densities.

Series I

Time

0 20 40 60 80 100

7
9

1
1

Series II

Time

0 20 40 60 80 100

7
9

1
1

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4

f

0.0 0.1 0.2 0.3 0.4 0.5

0
2

4

f

Figure 6: Spe
tral density fun
tions for series I and II.

Theorem 6.1 If

∑∞
k=0 |γ(k)| <∞, then

γ(k) =

∫ 0.5

0

cos(2πfk) p(f) df.

This says that the auto
ovarian
e fun
tion 
an be re
overed if the power spe
trum is

known.
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6.2.1 Spe
tral density of a linear �lter

Let {Yt, t ∈ Z} be a stationary pro
ess with power spe
trum pY (f). If Xt is a linear �lter

of Yt, i.e.,

Xt =
∞∑

j=−∞

ψjYt−j,

where

∞∑

j=−∞

|ψj | <∞,

Then {Xt, t ∈ Z} is also a stationary pro
ess with power spe
trum

pX(f) = |ψ(e−2πfi)|2pY (f), 0 ≤ f ≤ 0.5,

where i is the imaginary unit and

ψ(e−i2πf ) =

∞∑

j=−∞

ψje
−ij2πf .

The fun
tion ψ(e−i2πf ) is 
alled the frequen
y response fun
tion or the transfer fun
tion

of the �lter. The fun
tion |ψ(e−i2πf )|2 is 
alled the power transfer fun
tion or the gain of

the �lter.

6.3 Computations of spe
tral density fun
tions for some ARMA(p,q)

pro
esses

Example 6.1 Purely random pro
esses. Let {Zt, t ∈ Z}, be a zero mean white noise

pro
ess with varian
e σ2
. Then

γ(k) =

{
σ2 k = 0
0 k 6= 0

and

g(f) = 2 0 ≤ f ≤ 0.5.

Example 6.2 MA(1) pro
esses.

For the MA(1) pro
ess Xt = Zt+βZt−1 we have two non-zero values of the auto
ovarian
e

fun
tion: γ(0) = (1 + β2)σ2
and γ(1) = βσ2

, hen
e

p(f) = 2σ2(1 + β2 + 2β cos(2πf))

g(f) = 2

(
1 + 2

β cos(2πf)

1 + β2

)

Example 6.3 AR(1) pro
esses

For the AR(1) pro
ess Xt = αXt−1+Zt, |α| < 1. We 
an rearrange the de�ning equation

to write
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Zt = Xt − αXt−1,

so that white noise is expressed as a linear �lter of the pro
ess Xt, with ψ0 = 1, ψ1 = −α
and ψk = 0 for k 6= 0, 1. The transfer fun
tion is

ψ(e−i2πf ) = 1− αe−i2πf ,

and the gain is just the magnitude of this,

1− 2α cos(2πf) + α2.

Using the result on linear �lters from above, this means that

2σ2 = (1− 2α cos(2πf) + α2)pX(f),

so that (on normalizing)

gX(f) =
2(1− α2)

1− 2α cos(2πf) + α2
.

Now, suppose {Xt, t ∈ Z} is an ARMA(p,q) pro
ess

Xt − α1Xt−1 − . . .− αpXt−p = Zt + β1Zt−1 + . . .+ βqZt−q

or,

φ(B)Xt = θ(B)Zt

where

φ(B) = 1− α1B − . . .− αpB
p

and

θ(B) = 1 + β1B + . . .+ βqB
q.

If φ and θ do not have 
ommon zeroes and φ does not have zeroes on the unit 
ir
le, then

pX(f) = 2σ2 |θ(e−i2πf)|2
|φ(e−i2πf)|2 , 0 ≤ f ≤ 0.5.

Example 6.4 ARMA(1,1) pro
ess Xt − αXt−1 = Zt + βZt−1.

pX(f) =
2σ2(1 + 2β cos(2πf) + β2)

1− 2α cos(2πf) + α2
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7 State-spa
e models and the Kalman �lter

7.1 Univariate state-spa
e models

7.1.1 General form

De�nition 7.1 A univariate state-spa
e model is a sto
hasti
 pro
ess {Xt, t ≥ 1; θt, t ≥
0}, su
h that

• Xt ∈ R,

• θTt = (θt,1, . . . , θt,k), for some �xed k ≥ 1,

and

Xt = hT θt + nt, t ≥ 1, (22)

θt = Gθt−1 + wt, t ≥ 1, (23)

θ0 = θ, (24)

where

• G = (Gij) is a known (k × k) matrix,

• h is a known (k × 1) 
olumn ve
tor, hT = (h1, . . . , hk), so

hT θt = h1θt,1 + . . .+ hkθt,k,

• {nt, t ∈ Z+} and {wT
t = (wt,1, . . . , wt,k), t ∈ Z+}, are independent zero-mean white

noise pro
esses, with the varian
e σ2
n and the 
ovarian
e matrix

W = E(wtw
T
t ) = (Cov(wt,i, wt,j))

k
i,j=1 (25)

respe
tively,

the initial value θ0 is un
orrelated with the noise pro
esses (might be a 
onstant ve
tor).

Terminology: Xt is the observation at time t; θt is the state ve
tor, a ve
tor of state vari-
ables, a non-observable target pro
ess. Equation (22) is 
alled the observation equation,

equation (23) is 
alled the state or transition equation.

Appli
ations of the state-spa
e models:

• Navigation

• Tra
king missiles

• Extra
ting an obje
t motion from video

• Computer vision appli
ations

• E
onomi
s: fore
asting e
onomi
 indi
ators

The main problem in all these appli
ations is predi
tion of unobservable state variable θt
given observations X1, . . . , Xt. The Kalman �lter is a re
ursive algorithm for 
omputing

the best linear predi
tor θ̂t of θt in terms of observations X1, . . . , Xt.
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7.1.2 The lo
al level model

Xt = θt + nt (26)

θt = θt−1 + wt (27)

Here, equation (26) is the transition equation, and the state ve
tor θt 
onsists of a single

variable θt ∈ R whi
h is 
alled the lo
al level. The unobservable lo
al level θt is assumed to

follow a random walk. Here h = G = 1. The noise pro
ess {nt, t ∈ Z+} and {wt, t ∈ Z+}
are assumed to be un
orrelated with zero means and respe
tive varian
es σ2

n and σ2
w. If

σ2
w = 0, then θt = θ is 
onstant and we get a 
onstant-mean model

Xt = θ + nt (28)

Proposition 7.1 The �rst di�eren
e ∇Xt of the lo
al level model is a weakly stationary

pro
ess with the a
.f. as the following MA(1) model

Yt = Zt + βZt−1, t ≥ 0,

with β = −1 + (
√
c2 + 4c− c)/2, where c = σ2

w/σ
2
n.

Proof This follows by dire
t 
omputation.

∇Xt = θt − θt−1 + nt − nt−1.

= wt + nt − nt−1.

We �rst 
ompute the varian
e of ∇Xt:

γ(0) = Var(∇Xt) = Var(wt + nt − nt−1) = σ2
w + 2σ2

n,

sin
e the white noise terms are un
orrelated.

Now

γ(k) = Cov(wt + nt − nt−1, wt+k + nt+k − nt+k−1)

Note that if k > 1, there are no 
ommon indi
es in the left and right terms of the


ovarian
e, so that γ(k) = 0 for k > 1, as for the MA(1) pro
ess. For k = 1, we get

γ(1) = Cov(wt + nt − nt−1, wt+1 + nt+1 − nt) = −σ2
n.

This then gives

ρ(1) =
−σ2

n

σ2
w + 2σ2

n

= − 1

c + 2
.

Sin
e ρ(1) = β
1+β2 for the MA(1) pro
ess, setting the above expressions equal and solving

the resulting quadrati
 gives the stated value for β.
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7.1.3 Linear growth model

The linear growth model is spe
i�ed by these three equations

Xt = µt + nt (29)

µt = µt−1 + βt−1 + w1,t (30)

βt = βt−1 + w2,t (31)

Equation (29) is the observation equation, two other equations are transition/state equa-

tions. The state ve
tor θTt = (µt, βt) has two 
omponents whi
h are interpreted as follows:

µt is the lo
al level, βt is the lo
al trend. Comparing these equations with the general

form of the state-spa
e model we obtain that hT = (1, 0) and

G =

(
1 1
0 1

)

, whi
h are 
learly 
onstant through time.

The 
omponents of the pro
ess wT
t = (w1,t, w2,t) are assumed to be independent, so the


ovarian
e matrix of the pro
ess is

W =

(
σ2
1 0
0 σ2

2

)
.

If w1,t and w2,t have zero varian
es, then the trend is deterministi


Xt = µt + nt (32)

µt = µt−1 + β = µ0 + βt. (33)

The model is 
alled a global linear trend model in this 
ase. "Lo
al linear trend" means

that the trend is allowed to 
hange.

Proposition 7.2 The se
ond di�eren
e ∇2Xt of the linear growth model is a weakly

stationary sto
hasti
 pro
ess and its a
.f. has the same stru
ture as the a
.f. of an

MA(2) model, i.e., ρ(0) = 1, ρ(±1) 6= 0, ρ(±2) 6= 0 and ρ(k) = 0, if |k| > 2.

Proof. Again, this follows by dire
t 
omputation with ∇2Xt.

7.2 The Kalman �lter

Let θ̂t be the best linear predi
tor of the state variable θt based on observationsX1, . . . , Xt.

The Kalman �lter is a re
ursive algorithm for 
omputing θ̂t re
ursively from θ̂t−1 and the

last observation Xt.

Xt = hT θt + nt (34)

θt = Gθt−1 + wt (35)

Given X1, . . . , Xt we want to 
ompute

θ̂t = C1X1 + · · ·+ CtXt
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su
h that the mean square error

E((θt − θ̂t)
T (θt − θ̂t)) = min

D1,...,Dt∈R
k
E



(
θt −

t∑

i=1

DiXi

)T (
θt −

t∑

i=1

DiXi

)


(36)

is minimized.

The following theorem is implied by Theorem 4.1.

Theorem 7.1 If θ̂t = C1X1 + · · ·+ CtXt is su
h that

E((θt − θ̂t)Xi) = 0, i = 1, . . . , t

then θ̂t is the best linear predi
tor of θt based on X1, . . . , Xt.

Let Ct = (C1, . . . , Ct) and XT
t = (X1, . . . , Xt). The solution to this system 
an be

obtained as an orthogonal proje
tion, as in Chapter 4:

Ct = E
[
θtX

T
t

] {
E
(
XtX

T
t

) }−1
.

In pra
ti
e, however, this representation is not an e�
ient way to 
ompute Ct, sin
e


omputing

{
E
(
XtX

T
t

) }−1
is expensive. The Kalman �lter is an algorithm that allows

θ̂t to be 
omputed re
ursively from θ̂t−1 and the most re
ent observation Xt.

7.2.1 Predi
tion stage of the Kalman �lter

At the predi
tion stage of the Kalman �lter, a fore
ast θ̂t|t−1 of θt is made from the ob-

servable data up to time t− 1.

De�ne

Pt = Pt|t = E

[
(θt − θ̂t)(θt − θ̂t)

T
]

and

Pt|t−1 = E

[
(θt − θ̂t|t−1)(θt − θ̂t|t−1)

T
]
,

known as the error 
ovarian
e matri
es of θ̂t and θ̂t|t−1, respe
tively. Assume that at time

t− 1 we know θ̂t−1 and the 
ovarian
e matrix Pt−1 of the 
orresponding error θt−1 − θ̂t−1.

Lemma 7.1 θ̂t|t−1, the best linear predi
tor of θt based on X1, . . . , Xt−1, is given in terms

of θ̂t−1 as

θ̂t|t−1 = Gθ̂t−1, (37)

and the 
ovarian
e matrix of the 
orresponding error θt − θ̂t|t−1 is

Pt|t−1 = GPt−1G
T +W (38)

where W is the 
ovarian
e matrix de�ned by (25).
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Proof. This essentially follows be
ause of linearity of proje
tion.

θ̂t|t−1 = E
[
θtX

T
t−1

] {
E
(
Xt−1X

T
t−1

) }−1
Xt−1

= E
[
(Gθt−1 + wt)X

T
t−1

] {
E
(
Xt−1X

T
t−1

) }−1
Xt−1

= Gθ̂t−1.

Note that XT
t−1 is assumed known.

Now to 
ompute the 
ovarian
e matrix Pt|t−1. Denote ηt−1 = G(θt−1 − θ̂t−1). Sin
e

θt = Gθt−1 + wt, we obtain that

Pt|t−1 = E

[
(θt −Gθ̂t−1)(θt −Gθ̂t−1)

T
]

= E
[
(ηt−1 + wt)(ηt−1 + wt)

T
]

= E(ηt−1η
T
t−1) + E(wtw

T
t ) + E(ηt−1w

T
t ) + E(wtη

T
t−1)

= E(ηt−1η
T
t−1) + E(wtw

T
t ) = GPt−1G

T +W.

Note that we used above that E(ηt−1w
T
t ) = 0 and E(wtη

T
t−1) = 0.

Equations (37) and (38) are 
alled the predi
tion equations of the Kalman �lter.

Denote by X̂t the best linear predi
tor of Xt based on X1, . . . , Xt−1.

Lemma 7.2

X̂t = hT θ̂t|t−1.

Proof.

Again, this is essentially linearity of the proje
tion.

X̂t = E
[
XtX

T
t−1

] {
E
(
Xt−1X

T
t−1

) }−1
Xt−1

= E
[
(hT θt + nt)X

T
t−1

] {
E
(
Xt−1X

T
t−1

) }−1
Xt−1

= hTE
[
θtX

T
t−1

] {
E
(
Xt−1X

T
t−1

) }−1
Xt−1 = hT θ̂t|t−1.

7.2.2 Updating stage

When the observation at time t, namely, Xt, be
omes available, it 
an be taken into

a

ount to modify the estimator for θt. Let

et = Xt − X̂t = Xt − hT θ̂t|t−1,

be the error of the predi
tion based on X1, . . . , Xt−1.

Lemma 7.3 The optimal estimator θ̂t and its 
ovarian
e matrix Pt 
an be found by

means of the following updating equations

θ̂t = θ̂t|t−1 +Ktet = θ̂t|t−1 +Kt(Xt − hT θ̂t|t−1) (39)

Pt = Pt|t−1 −Kth
TPt|t−1 (40)

where

Kt =
(
hTPt|t−1h+ σ2

n

)−1
Pt|t−1h (41)

the (k × 1) matrix (ve
tor) Kt is 
alled the Kalman gain matrix.
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Proof.

Let Xt = (X1 . . .Xt−1, Xt)
T = (XT

t−1, Xt)
T
.

Be
ause

θ̂t = E
[
θtX

T
t

] {
E
(
XtX

T
t

) }−1
Xt = (E(θtX

T
t−1),E(θtXt))

{
E
(
XtX

T
t

) }−1
(

Xt−1

Xt

)

and the matrix E
(
XtX

T
t

)

an be written as follows

E
(
XtX

T
t

)
=

(
E
(
Xt−1X

T
t−1

)
E (Xt−1Xt)

E (Xt−1Xt) E(X2
t )

)
=

(
D11 D12

D2
12 D22

)
.

The inverse of this matrix 
an be shown (by dire
t 
omputation) to be

(
D11 D12

D2
12 D22

)−1

=

(
D−1

11 +D−1
11 D12(D22 −DT

12D
−1
11 D12)

−1DT
12D

−1
11 −D−1

11 D12(D22 −DT
12D

−1
11 D12)

−1

−(D22 −DT
12D

−1
11 D12)

−1DT
12D

−1
11 (D22 −DT

12D
−1
11 D12)

−1.

)

We 
an now 
ompute that

DT
12D

−1
11 Xt−1 = E

[
XT

t−1Xt

] {
E
(
Xt−1X

T
t−1

) }−1
Xt−1 = X̂t = hT θ̂t|t−1,

D22 −DT
12D

−1
11 D12 = E(X2

t )− E(XT
t−1Xt)

{
E
(
Xt−1X

T
t−1

) }−1
E(Xt−1Xt)

= E(Xt −XT
t−1

{
E
(
Xt−1X

T
t−1

) }−1
E(Xt−1Xt))

2

= E(hT θt + nt − hT θ̂t|t−1)
2 = σ2

n + hTPt|t−1h,

and

E(θtX
T
t−1)D

−1
11 Xt−1 = θ̂t|t−1, D−1

11 D12 =
{
E
(
Xt−1X

T
t−1

) }−1
E(Xt−1θ

T
t )h.

Hen
e we have

θ̂t = θ̂t|t−1+(σ2
n+h

TPt|t−1h)
−1
[
E(θtθ

T
t )− E(θtX

T
t−1)

{
E
(
Xt−1X

T
t−1

) }−1
E(Xt−1θ

T
t )
]
h(Xt−hT θ̂t|t−1).

Now 
onsider Pt|t−1:

Pt|t−1 = E

[
(θ̂t|t−1 − θt)(θ̂t|t−1 − θt)

T
]

= E

[
(E(θtX

T
t−1)

{
E
(
Xt−1X

T
t−1

) }−1
Xt−1 − θt)(E(θtX

T
t−1)

{
E
(
Xt−1X

T
t−1

) }−1
Xt−1 − θt)

T
]

= E(θtθ
T
t )− E(θtX

T
t−1)

{
E
(
Xt−1X

T
t−1

) }−1
E(Xt−1θ

T
t ),

so that

θ̂t = θ̂t|t−1 + (σ2
n + hTPt|t−1h)

−1Pt|t−1h(Xt − hT θ̂t|t−1).
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We 
an now 
ompute Pt

Pt = E

[
(θt − θ̂t)(θt − θ̂t)

T
]
= E

[
(θt − θ̂tt|t−1 −Ktet)(θt − θ̂tt|t−1 −Ktet)

T
]

= E

[
(θt − θ̂tt|t−1)(θt − θ̂tt|t−1)

T
]
−KtE

[
et(θt − θ̂t|t−1)

T
]
− E

[
(θt − θ̂t|t−1)et

]
KT

t +KtE(e
2
t )K

T
t

= Pt|t−1 −Kth
TPt|t−1 − Pt|t−1hK

T
t +Kt(h

TPt|t−1h + σ2
n)K

T
t = Pt|t−1 −Kth

TPt|t−1.

As required.

7.3 The Kalman �lter for the lo
al level model

7.3.1 Predi
tion and updating stages

Re
all the observation and transition equations for the lo
al level model.

Xt = θt + nt

θt = θt−1 + wt.

Here, h = G = 1, {nt, t ∈ Z} and {wt, t ∈ Z} are zero mean mutually independent white

noise pro
esses:

E(nt) = E(wt) = 0, Var(nt) = σ2
n, Var(wt) = σ2

w, Cov(wt, nt′) = 0, t, t′ ∈ Z+.

Let θ̂t be the BLP of θ given X1, . . . , Xt and Pt = E((θt − θ̂t)
2).

The predi
tion stage: θ̂t|t−1 is the BLP of θt given X1, . . . , Xt−1

θ̂t|t−1 = Gθ̂t−1 = θ̂t−1

the varian
e of the 
orresponding error is given by

Pt|t−1 = E(θt − θ̂t|t−1)
2 = Pt−1 + σ2

w.

The updating stage:

et = Xt − hT θ̂t|t−1 = Xt − θ̂t−1

X̂t = hT θ̂t|t−1 = θ̂t−1.

We 
ompute the Kalman gain as follows

Kt =
Pt|t−1

Pt|t−1 + σ2
n

=
Pt−1 + σ2

w

Pt−1 + σ2
w + σ2

n

.

Now for the updating stage:

θ̂t = θ̂t|t−1 +Ktet = θ̂t−1 +Ktet

Pt = Pt|t−1 −KtPt|t−1 = Pt−1 + σ2
w −Kt(Pt−1 + σ2

w)
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Using the expli
it formula for Kt in this 
ase we 
an write

θ̂t = θ̂t−1 +
Pt−1 + σ2

w

Pt−1 + σ2
w + σ2

n

et.

This equation 
an be rewritten as follows

θ̂t = (1−Kt)θ̂t−1 +KtXt.

The error 
ovarian
e matrix is

Pt = Pt|t−1 −KtPt|t−1 = (1−Kt)(Pt−1 + σ2
w) =

(Pt−1 + σ2
w)σ

2
n

Pt−1 + σ2
w + σ2

n

.

7.3.2 Long-time behaviour and steady state

It 
an be shown that the sequen
e Pt 
onverges to a 
ertain limit as t→ ∞. We say that

the Kalman �lter 
onverges to a steady state.

Assuming that the steady state limit exists it 
an be 
omputed as follows. We have from

the updating equation, that

Pt = Pt−1 + σ2
w −Kt(Pt−1 + σ2

w)

= Pt−1 + σ2
w − (Pt−1 + σ2

w)
2

Pt−1 + σ2
w + σ2

n

Passing to the limit in this equation we get that the limit P must be the solution of the

following equation

P = P + σ2
w − (P + σ2

w)
2

P + σ2
w + σ2

n

whi
h 
an be rewritten in the following quadrati
 form

P 2 + σ2
wP − σ2

wσ
2
n = 0

This equation has two roots, P is the non-negative one (as a limit of non-negative se-

quen
e)

P =
−σ2

w +
√
σ4
w + 4σ2

wσ
2
n

2

Denoting c = σ2
w/σ

2
n the formula for P 
an be rewritten as follows

P =
σ2
n

2
(−c +

√
c2 + 4c). (42)

A dire
t 
omputation shows that 
onvergen
e of Pt to the limit (42) yields that

Kt → K =
1

2

(√
c2 + 4c− c

)
, as t→ ∞.
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7.3.3 State-spa
e models of ARIMA pro
esses

ARIMA pro
esses have state spa
e representations, and in general these representations

are not unique. In what follows, we will give a state spa
e representation of an AR(p)

pro
ess.

Suppose we have an AR(p) pro
ess

Yt = α1Yt−1 + . . .+ αpYt−p + Zt

Let the state ve
tor be

θTt = (Yt, . . . , Yt−p+1),

and let the p× p matrix

G =




α1 α2 . . . αp−1 αp

1 0 . . . 0 0
0 1 0 0
.

.

.

.

.

.

.

.

.

.

.

.

0 0 . . . 1 0




the p×1matrix hT = (1, 0, . . . , 0), the white noise pro
esses nt = 0 and wT
t = (Zt, 0, . . . , 0) ∈

R

p
. The observation variable is Xt = Yt ∈ R, so we have is a univariate model.

The observation equation is

Xt = hT θt,

and the state equation is

θt = Gθt−1 + wt.

State-spa
e representations for ARIMA pro
esses allow us to use the general results

relating to state-spa
e models (though these are not always helpful).
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