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1 Time series as stohasti proesses

1.1 Introdution

A time series is a olletion of repeated observations of a system, made sequentially

through time.

Examples our in a variety of real life appliations, ranging from eonomis to engineer-

ing.

• Eonomi and �nanial time series: share pries on suessive days, eonomi in-

dexes suh as FTSE 100, export totals in suessive months, average inomes in

suessive months, ompany pro�ts in suessive years et.

• Physial time series, e.g. in meteorology, marine siene and geophysis: rainfall on

suessive days, air temperature measured on suessive hours (days or months)

• Marketing time series: sales �gures in suessive days or weeks, monetary reeipts,

advertising osts and so on.

• Demographi time series (in study of population hange): population of Canada

measured annually, monthly birth totals in England.

• Binary proesses, a speial type of time series when observations an take one of

only two values: in omputer siene, in biology (e.g. ion hannel kinetis).

1.2 Referenes

• Chat�eld, C. (2004). The analysis of time series. 6th Edition. Chapman & Hall

• Brokwell P.J. and Davis R.A. (1991). Time series: theory and methods. Springer-

Verlag

• A �rst ourse on time series analysis (2006). Online book, available at

http://statistik.mathematik.uni-wuerzburg.de/timeseries/

• Diggle, P. (1990). Time series. A biostatistial introdution.

• Harvey, A. (1989). Foreasting, strutural time series models and the Kalman �lter.
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1.3 Stationary stohasti proesses

1.3.1 De�nitions and some examples

Let T ⊆ R.

De�nition 1.1 A stohasti proess is a olletion of random variables {Xt = Xt(w), t ∈
T} = {Xt, t ∈ T}, de�ned on a probability spae (Ω,F ,P).

In this ourse we onsider only disrete time stohasti proess, i.e., T = Z or T = Z+.

De�nition 1.2 Given w ∈ Ω the funtion X{·}(w), w ∈ Ω is known as a realisation or

a sample path of the proess {Xt(w), t ∈ Z}.

Example 1.1 A sequene {Zt, t ∈ Z} of i.i.d. random variables is a stohasti proess.

An i.i.d. sequene with zero mean E(Zt) = 0) is often alled a purely random proess or

white noise.

Example 1.2 A random walk. Let {Zt, t ∈ Z+}, be a sequene of i.i.d. random vari-

ables. A random walk is a stohasti proess {Xt, t ∈ Z+ ∪ {0}}, de�ned as follows

X0 = 0

Xt = Xt−1 + Zt, t ≥ 1.

Example 1.3 The MA(1)-proess (Moving Average proess of order 1) is de�ned by the

equation

Xt = Zt + βZt−1, t ∈ Z,
where {Zt, t ∈ Z}, is a sequene of i.i.d. random variables and β ∈ R.

The joint distribution funtion F (x1, . . . , xk) of a random vetor (ξ1, . . . , ξk) is de�ned as

follows

F (x1, . . . , xk) = P{ξ1 ≤ x1, . . . , ξk ≤ xk}, xj ∈ R, j = 1, . . . , k.

De�nition 1.3 The �nite dimensional distribution funtions of a stohasti proess

{Xt, t ∈ T} are the funtions {Ft1...tn(x1, . . . , xn), ti ∈ T, xi ∈ R, i = 1, . . . , n} de�ned as

follows

Ft1...tn(x1, . . . , xn) = P{Xt1 ≤ x1, . . . , Xtn ≤ xn},
i.e., Ft1...tn(x1, . . . , xn) is a joint distribution funtion of (Xt1 , . . . , Xtn).

De�nition 1.4 A stohasti proess Xt, t ∈ T, is said to be stritly stationary if for any

t1, . . . , tn ∈ T and τ suh that t1 + τ, . . . , tn + τ ∈ T the joint distribution funtion of

(Xt1 , . . . , Xtn) is the same as the joint distribution funtion of (Xt1+τ , . . . , Xtn+τ ).

Example 1.4 A sequene {Zt, t ∈ Z} of i.i.d. random variables is a stritly stationary

proess.

Reall that for a a random variable ξ, the kth moment is de�ned to be E(ξk), and we say

that the kth moment exists if E(|ξ|k) <∞.
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De�nition 1.5 A stohasti proess Xt, t ∈ T, is said to be a weakly stationary or

seond-order stationary if its �rst and seond moments are �nite and

E(Xt) = const,

(i.e., the proess mean is a onstant funtion) and

Cov(Xt, Xt+τ ) = E((Xt − EXt)(Xt+τ − EXt+τ )) = γ(τ),

(i.e., the proess autoovariane funtion depends only on lag τ) for any t and τ ∈ T ,
suh that t+ τ ∈ T .

Example 1.5 A random walk

Xt = Xt−1 + Zt,

where {Zt, t ∈ Z}, is i.i.d. sequene with E(Zt) = 0, E(Z2
t ) = σ2 < ∞, t ∈ Z, is not a

weakly stationary stohasti proess, but its �rst di�erene

∇Xt = Xt −Xt−1, t ≥ 1,

is weakly stationary.

To see this, use the bilinear properties of ovariane and the independene of the variables

Zi to note that

Cov(Xt, Xt+τ ) = Cov(
t∑

i=1

Zi,
t+τ∑

i=1

Zi) =
t∑

i=1

Cov(Zi, Zi) = σ2t,

whih depends on t. The �rst di�erene is just Zt, whih is learly stationary.

For a proess with �nite �rst and seond moments, strit stationarity implies weak sta-

tionarity. But by onstruting a proess whose variables have �rst and seond moments

that fail to be �nite, it is possible to exhibit a stritly stationary proess that is not

weakly stationary.

Example 1.6 Let {Xt, t ∈ Z}, be i.i.d. random variables with the Cauhy distribution.

This proess is stritly stationary by onstrution, beause the variables are i.i.d. but it

fails to be weakly stationary beause the kth moment of the Cauhy distribution does not

exist for any k ≥ 1.

(NB the preeding example was only hinted at in letures - it is not examinable.)

Note also that weak stationarity (as the name suggests) does not imply strit stationarity.

Example 1.7 Consider a sequene of independent random variables Xt, t ∈ Z+, suh
that Xt is uniformly distributed on [−1, 1] when t is odd and normally distributed with

zero mean and variane 1/3 when t is even. Xt, t ∈ Z+, is weakly stationary, but is not

stritly stationary.

Remark. In the rest of the ourse, by a stationary stohasti proess we mean a weakly

stationary stohasti proess.
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1.3.2 Autoovariane and autoorrelation funtions

Two main harateristis of a weakly stationary stohasti proess {Xt, t ∈ Z} are the

mean µ = E(Xt) (onstant funtion of t) and the autoovariane funtion

γ(k) = Cov(Xt, Xt+k), k ∈ Z.

The proess autoorrelation funtion (a.f.)

ρ(k) =
γ(k)

γ(0)
, k ∈ Z,

is just its autoovariane funtion standardized by dividing it by the variane of the

proess.

Example 1.8 {Zt, t ∈ Z}, a sequene of unorrelated random variables with E(Zt) =
0, E(Z2

t ) = σ2 <∞, t ∈ Z, is a weakly stationary stohasti proess with

ρ(k) =

{
1, k = 0,
0, k 6= 0.

To see this, note that γ(k) = Cov(Zt, Zt+k) = 0 for k 6= 0, beause the variables Zt are

unorrelated, while γ(0) = Cov(Zt, Zt) = σ2
. Normalising gives the required result.

Example 1.9 The MA(1)-proess is weakly stationary stohasti proess with

ρ(k) =





0, |k| > 1,
1, k = 0,
β/(1 + β2), k = −1, 1

This an be seen from the de�ning equation of the MA(1) proess as follows.

γ(k) = Cov(Xt, Xt+k) = Cov(Zt + βZt−1, Zt+k + βZt+k−1)

= Cov(Zt, Zt+k) + βCov(Zt, Zt+k−1) + βCov(Zt−1, Zt+k) + β2
Cov(Zt−1, Zt+k−1).

For |k| > 1, the indies t− 1, t, t+ k − 1, t+ k are all distint, so that γ(k) = 0 beause

the variables Zt are independent.

For k = 0,

γ(0) = Var(Zt) + β2
Var(Zt−1) = (1 + β2)σ2.

For k = 1,

γ(1) = βCov(Zt, Zt) = βσ2,

and symmetrially, γ(−1) = βσ2
. Normalizing gives the result for ρ(k).
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We see that the a.f for an MA(1) proess uts o� after the �rst lag. It is typially the

ase that γ(k) deays exponentially to 0 as k → ∞ for stationary proesses.

Theorem 1.1 1) The autoovariane funtion γ(t), t ∈ Z, is a non-negative de�nite

funtion, i.e., for any real numbers ai, i = 1, . . . , n, and any times ti ∈ Z, i = 1, . . . , n,

n∑

i,j=1

aiajγ(ti − tj) ≥ 0.

2) Both the autoovariane and the autoorrelation funtion are even funtions of lag

γ(τ) = γ(−τ),

ρ(τ) = ρ(−τ),
τ ∈ Z.

3) |ρ(τ | ≤ 1, τ ∈ Z.

4) The a.f. does not uniquely identify the underlying stohasti proess.

Proof.

1) Indeed

n∑

i,j=1

aiajγ(ti − tj) = Var(a1Xt1 + · · ·+ anXtn) ≥ 0.

2) Chek this property for the autoovariane funtion

γ(τ) = Cov(Xt, Xt+τ ) = Cov(Xt−τ , Xt) = Cov(Xt, Xt−τ ) = γ(−τ);

the same property for the autoorrelation funtion follows immediately.

3) Indeed

0 ≤ Var(λ1Xt + λ2Xt+τ ) = (λ21 + λ22)γ(0) + 2λ1λ2γ(τ).

If λ1 = λ2 = 1, then γ(τ) ≥ −γ(0), so that ρ(τ) ≥ −1. If λ1 = 1, λ2 = −1, then
γ(0) ≥ γ(τ), so that ρ(τ) ≤ 1. Thus |ρ(τ)| ≤ 1 as required. This property is also an

immediate onsequene of the Cauhy-Shwartz inequality.

|Cov(Xt, Xt+τ )| ≤
√

Var(Xt)
√
Var(Xt+τ ).

4) Examples will be given later. �
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1.3.3 The sample mean and the sample autoovariane funtion

Let {Xt, t ∈ Z} be a weakly stationary proess with mean µ and the autoovariane

funtion γ(·).

The sample mean

X =
1

n

n∑

t=1

Xt

is used as an unbiased point estimator for µ. If mean is estimated, then usually the zero

mean proess Yt = Xt − µ is onsidered. Subtrating the mean does not hange the

proess autoorrelation funtion.

Given x1, . . . , xN observations of a stationary proess, the sample autoovariane is de-

�ned as follows

ck =
1

N

N−k∑

t=1

(xt − x)(xt+k − x)

x =
1

N

N∑

t=1

xt

. ck is the usual estimator of the theoretial autoovariane oe�ient γ(k) at lag k. Note
the following properties of the sample ovariane funtion:

• E(ck) 6= γ(k), i.e., it is a biased estimator.

• E(ck) → γ(k) as N → ∞, i.e., it is an asymptotially unbiased estimator.

The sample a.f. is de�ned by

rk =
ck
c0

=

∑N−k
t=1 (xt − x)(xt+k − x)
∑N

t=1(xt − x)2

We often look at plots of rk as a funtion of time. This is known as a orrelogram.

1.3.4 Linear �lters

Given a time series {Xt, t ∈ Z} one an apply to it a linear operator or linear �lter

Yt =
∞∑

k=−∞

akXt−k,

spei�ed by �xed (i.e. non-random) oe�ients ak, k ∈ Z. In general this is an in�nite

sum, therefore its onvergene in some probabilisti sense has to be justi�ed (e.g., mean

square onvergene, to be disussed later).

We have already enountered several proesses that were de�ned impliitly as linear �l-

ters, e.g. the MA(1)-proess, whih is obtained by applying a linear �lter with two

nonzero oe�ients a0 = 1 and a1 = β to a white noise proess.

We an sometimes use a linear �lter to transform a non-stationary time series into a

stationary one.
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1.3.5 Di�erening as a linear �lter

De�ne the �rst di�erene of the stohasti proess Xt at lag d to be

∇dXt = Xt −Xt−d.

This is a linear �lter with two non-zero oe�ients a0 = 1 and ad = −1. Note that ∇1Xt

will always be denoted ∇Xt.

Further, for j > 1, the jth di�erene at lag d is de�ned to be

∇j
dXt = ∇d

(
∇j−1

d Xt

)
.

An important property of di�erening is that it preserves stationarity.

Proposition 1.1 If {Xt, t ∈ Z} is a stationary stohasti proess with nonzero mean

and autoovariane funtion γ(τ), τ ∈ Z, then its �rst di�erene at lag d, ∇dXt, is a

stationary stohasti proess with zero mean and autoovariane funtion

γ̃(k) = 2γ(k)− γ(k + d)− γ(k − d), k ∈ Z.

Proof. It is lear that

E(Xt −Xt−d) = 0.

Compute the autoovariane funtion of {Yt = Xt −Xt−d, t ∈ Z},

Cov(Yt, Yt+k) = Cov(Xt −Xt−d, Xt+k −Xt+k−d)

= Cov(Xt, Xt+k)− Cov(Xt−d, Xt+k)− Cov(Xt, Xt+k−d) + Cov(Xt−d, Xt+k−d)

= 2γ(k)− γ(k + d)− γ(k − d).

This depends only on k, hene the proess is stationary (with zero mean).�

More generally, it is the ase that if Xt is stationary, the linear �lter

Yt =

∞∑

k=−∞

akXt−k

is also stationary, so long as

∑∞
k=−∞ |ak| <∞.

1.4 Removal of trend and seasonal omponents

A polynomial trend an be removed by taking di�erenes of an appropriate order. A

seasonal omponent an also be removed, by taking di�erenes of an appropriate lag.
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Proposition 1.2 If mt =
∑k

j=0 ajt
j , t ∈ Z then

∇kmt = k!ak.

Corollary 1.1 If Xt =
∑k

j=0 ajt
j + Yt, t ∈ Z, where k ≥ 1, ak 6= 0 and {Yt, t ∈ Z} is a

stationary proess, then

∇kXt = k!ak +∇kYt

is a stationary proess with mean k!ak.

This means that we an remove any polynomial trend.

Suppose we now onsider a time series

Xt = mt + St + Yt,

where {St, t ∈ Z} has period d, i.e., St = St−d for any t. Applying ∇d gives

∇dXt = Xt −Xt−d = mt −mt−d + Yt − Yt−d

whih gives a deomposition of the di�erene ∇dXt into a trend omponent mt −mt−d

and a stationary term Yt−Yt−d. If now mt is a polynomial of order k, mt−mt−d is also a

polynomial and so an be removed by taking di�erenes of the appropriate order as above.

Another approah to removing a polynomial trend is to estimate the polynomial �rst,

and then subtrat it. e.g. suppose

Xt = a+ bt + ct2 + Yt,

where Yt is stationary and we have observations of Xt for 1 ≤ t ≤ N . We an obtain

estimators (â, b̂, ĉ) by looking for the minimizers of the funtion

f(u1, u2, u3) =
N∑

t=1

(Xt − u1 − u2t− u3t
2)2

and then simply work with the subtrated time series

Xt − â− b̂t− ĉt2.

1.5 L2−spae and mean square onvergene

This non-examinable setion ontains a number of results that are useful for a rigor-

ous understanding of the probabilisti issues underlying onvergene results that we need.

Proofs are generally omitted, but an be found in Chapter 2 of Brokwell and Davis.

Consider a probability spae (Ω,F , P ). We say that a random variable X de�ned on Ω
is square integrable if

E(X2) <∞.
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We denote by L2 = L2(Ω,F , P ) the olletion of all square integrable random variables

X de�ned on (Ω,F , P ). Note that L2
is a linear spae, sine if E(X2) < ∞ and a ∈ R,

then

E((aX)2) = a2E(X2) <∞,

so L2
is losed under multipliation. Further, it is losed under addition, sine if E(X2) <

∞,E(Y 2) <∞, then

E((X + Y )2) = E(2X2 + 2Y 2 − (X − Y )2) ≤ 2E(X2) + 2E(Y 2) <∞.

(This is the parallelogram law.)

Two square integrable random variables X and Y are said to be orthogonal if

E(XY ) = 0.

A square integrable random variable X is alled orthogonal to a set of {Y, Z, . . .} square

integrable random variables if

E(XY ) = 0, E(XZ) = 0, . . . ,

i.e., if X is orthogonal to any element of the set.

Note that we an also de�ne the norm ‖X‖ by

‖X‖2 = E(X2).

If Xn, n ≥ 1, and X are square integrable random variables and

‖Xn −X‖2 = E(Xn −X)2 → 0, as n→ ∞,

then we say that the sequene Xn, n ≥ 1, onverges to X in mean square.

Theorem 1.2 If {Xn} is a Cauhy sequene, i.e., ‖Xn −Xm‖ → 0, as n,m→ ∞, then

there exists X ∈ L2
, suh that Xn → X in mean square as n→ ∞.

This theorem states that L2
is omplete, whih is to say that L2

is an example of a Hilbert

spae.

Proposition 1.3 If Xn, Yn ∈ L2, n ≥ 1, X, Y ∈ L2
and Xn → X, Yn → Y in mean

square as n→ ∞, then

E(XnYn) → E(XY ),

as n→ ∞.

Lemma 1.1 Let Yk, k ≥ 1, be a sequene of independent random variables with zero

mean and E(Y 2
k ) = σ2

k suh that

∞∑

k=1

σ2
k <∞, (1)

then the sequene of random variables Sn =
∑n

k=1 Yk, n ≥ 1, onverges in L2
.
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Proof. By Theorem 1.2 it su�es to show that Sn =
∑n

k=1 Yk, n ≥ 1, is Cauhy sequene

in L2
. Assuming n > m we get by diret omputation that

E((Sn − Sm)
2) =

n∑

k=m+1

σ2
k

hene E((Sn − Sm)
2) → 0 as n,m → ∞, by assumption (1). Therefore Sn, n ≥ 1,

onverges in L2
. The limit is, of ourse, the in�nite sum S∞ =

∑∞
k=1 Yk. Also, observe

that

E(S2
∞) =

∞∑

k=1

σ2
k.

Theorem 1.3 (Consisteny of the sample mean.) Let {Xt, t ∈ Z} be a stationary

stohasti proess with mean µ and the autoovariane funtion γ(k), k ∈ Z. If γ(k) → 0
as k → ∞, then X → µ in mean square as n→ ∞.
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2 ARMA (Autoregressive Moving Average) proesses

2.1 MA (moving average) proesses

We have already enountered the MA(1) proess, satisfying

Xt = Zt + βZt−1,

where the variables Zt are white noise, i.e. i.i.d with E(Zt) = 0.

It is often onvenient to write suh de�nitions in terms of the bakward shift operator B.
This ats on a time series as follows

BXt = Xt−1,

and powers of B are de�ned by

BkXt = Xt−k.

In terms of this operator, the de�ning equation of the MA(1) proess is just

Xt = (1 + βB)Zt.

The moving average proess of order q (MA(q) proess) is de�ned analogously:

Xt = Zt + β1Zt−1 + · · ·+ βqZt−q, (2)

or, more ompatly:

Xt = (1 + β1B + β2B
2 + . . .+ βqB

q)Zt,

where Zt is white noise with Var(Zt) = σ2 <∞. It will be of use to abbreviate this even

further to

Xt = θ(B)Zt,

with θ(λ) = 1 + β1λ+ . . .+ βqλ
q
.

It is lear that this proess is weakly stationary for any {βk}. Indeed, de�ning for onve-
niene β0 = 1, we ompute that

EXt = 0

γ(0) = Var(Xt) = σ2

q∑

i=0

β2
i ,

both of whih are independent of t. Now onsidering γ(k) for k > 0,

γ(k) = Cov(Xt, Xt+k) = Cov(Zt+β1Zt−1+ . . .+βqZt−q, Zt+k+β1Zt+k−1+ . . .+βqZt+k−q).

12



Time

m
a.

si
m

0 50 100 150 200

−2
−1

0
1

2
3

Figure 1: Plot of 200 simulated realizations of MA(1) proess with β = 0.5

Note that if k > q, there is no overlap in the indies t, t− 1, . . . , t− q and t + k, t + k −
1, . . . , t+ k − q, so that γ(k) = 0. However, if 0 ≤ k ≤ q, then

γ(k) = Cov(Xt, Xt+k) =

q−k∑

i=0

βiβi+kE(Z
2
t−i) =

q−k∑

i=0

βiβi+kσ
2.

Sine γ(k) is an even funtion of lag, this ompletes the alulation.

The a.f. of the above MA(q) proess an now be written as

ρ(k) =





0 k > q,
1 k = 0,
q−k∑
i=0

βiβi+k/
q∑

i=0

β2
i k = 1, . . . , q,

ρ(−k) k < 0.

An important property when trying to reognise an MA(q) proess is that its a.f uts

o� after q lags.

(I don't think I got to the example below, but it is worth noting, and I will mention it

brie�y when time permits.)

Note that it is possible to exhibit di�erent weakly stationary MA proesses with the same

a.f.

Model I: MA(1) proess Xt = Zt + βZt−1, with a.f

ρ(k) =





0 |k| > 1,
1 k = 0,
β/(1 + β2) k = −1, 1
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Model II: MA(1) proess Xt = Zt + β−1Zt−1, with a.f.

ρ(k) =





0 |k| > 1,
1 k = 0,
β/(1 + β2) k = −1, 1

So, if β 6= 1, then we have two di�erent MA(1) proesses with the same a.f. (this is an

example of the last assertion of Theorem 1.1). We will onsider only MA(1)-proesses

with |β| < 1, beause they are invertible. Invertibility will be disussed shortly!

2.2 AR (autoregressive) proesses

The AR(p) proess satis�es the following equation

Xt = α1Xt−1 + α2Xt−2 + . . .+ αpXt−p + Zt, (3)

where Zt is white noise. This an be written in terms of the bakward shift operator as

φ(B)Xt = Zt.

What onditions on φ are needed for Xt as de�ned above to be stationary? Consider the

ase of the AR(1) proess �rst, with de�ning equation

Xt = αXt−1 + Zt, (4)

where α ∈ R and {Zt, t ∈ Z} is white noise.

1) Assume �rst that |α| < 1. Substituting into the equation (4) k times we obtain

Xt = α(αXt−2 + Zt−1) + Zt

= . . .

= α2(αXt−3 + Zt−2) + +αZt−1 + Zt

= Zt + αZt−1 + · · ·+ αkZt−k + αk+1Xt−k−1.

If {Xt, t ∈ Z} is a stationary solution, then E(X2
t ) is onstant and α

k+1Xt−k−1 onverges

to zero in mean square as k → ∞. This means that Xt −
∑k

j=0 α
jZt−j also onverges to

zero in mean square. Therefore, if |α| < 1, the stohasti proess

Xt =

∞∑

j=0

αkZt−j (5)

is the unique stationary solution of equation (4).

This an be expressed quite neatly in B-notation as follows.

(1− αB)Xt = Zt
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and so

Xt = Zt/(1− αB)

= (1 + αB + α2B2 + · · · )Zt

= Zt + αZt−1 + α2Zt−2 + · · ·

By working diretly with the representation (5), it is lear that

E(Xt) = 0,

Var(Xt) = σ2
∞∑

k=0

α2k =
σ2

(1− α2)
<∞,

We an now alulate the autoovariane funtion γ(k) diretly from the de�ning equation

(4). This foreshadows the approah we will take for higher order AR(p) proesses. First,

multiply both sides of (4) by Xt−k and then take expetations.

E(XtXt−k) = E(αXt−1Xt−k) + E(ZtXt−k).

Note that E(ZtXt−k) = 0, as an be seen by onsidering the representation (5) for Xt−k.

Now

E(XtXt−k) = E(αXt−1Xt−k) = αCov(Xt−1, Xt−k) = αCov(Xt−1, Xt−1−(k−1)).

This gives

E(XtXt−k) = αCov(Xt−1, Xt−1−(k−1)) = αCov(X0, Xk−1) = αγ(k − 1),

using stationarity and the fat that γ is an even funtion of k. This shows that γ(k) =
αγ(k − 1). Iterating this argument then gives

γ(k) = αkγ(0) =
αkσ2

1− α2
.

Note that we ould also obtain the same result from the representation (5) as follows.

Taking k ≥ 0,

γ(k) = E(XtXt+k) = E

((
∞∑

i=0

αiZt−i

)(
∞∑

i=0

αiZt+k−i

))
= σ2

∞∑

i=0

αiαk+j =
αkσ2

(1− α2)
.

By normalizing by the variane of the proess, the a.f. is seen to be.

ρ(k) = α|k|, k ∈ Z

Note that the a.f. of an AR(1)-proess deays exponentially.

2) Assume now that |α| > 1. In this ase the series (5) does not onverge in L2
, but the

equation (4) an be rewritten as follows

Xt = −α−1Zt+1 + α−1Xt+1.
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Figure 2: Simulated realization of a stationary proess (AR(1) with α = 0.7, 200 values)

This proess an be repeated to gives

Xt = −α−1Zt+1 − · · · − α−kZt+k + α−k−1Xt+k+1.

By the same arguments as before we obtain that

Xt =
∞∑

k=1

α−kZt+k

is the unique stationary solution of (4).

We have seen that the AR(1) proess with |α| < 1: an be represented as an MA(∞)-

proess, i.e., in terms of Zk, k ≤ t. Suh a proess is alled ausal or future-independent

AR-proess. In onstrast, the AR(1) proess with |α| > 1 is future-dependent, so is

regarded as unnatural and is not used in modelling stationary times series.

|α| = 1 is a degenerate ase. If, say, α = 1, then

Xt = Xt−1 + Zt

is not stationary (we have already seen that the random walk is not stationary). In this

ase, there is no stationary solution. Higher order AR(p) proesses will be disussed in a

later setion.

2.3 De�nition of the general ARMA proess

De�nition 2.1 The proess {Xt, t ∈ Z}, is said to be an ARMA(p,q) proess if it is

weakly stationary and satis�es the following linear di�erene equation

Xt = α1Xt−1 + . . .+ αpXt−p + Zt + β1Zt−1 + · · ·+ βqZt−q, t ∈ Z

16



where {αi, i = 1, . . . , p, βj , j = 1, . . . , q} are real numbers, and {Zt, t ∈ Z}, is a white

noise proess with �nite variane Var(Zt) = σ2
.

In terms of the operator B, the equation for an ARMA(p,q) proess an be written in

the form

φ(B)Xt = θ(B)Zt

where φ(B) and θ(B) are polynomials of order p, q respetively

φ(B) = 1− α1B − · · · − αpB
p

is the harateristi polynomial of the AR part, and

θ(B) = 1 + β1B + · · ·+ βqB
q

is the harateristi polynomial of the MA part.
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Figure 3: The sample a.f.for the MA(1) sample plotted in Fig. 1

2.4 Invertibility and ausality

Let {Zt, t ∈ Z} be a white noise proess with zero mean and variane σ2 < ∞ and let

{Xt, t ∈ Z} be an ARMA(p,q) proess de�ned by the following equation

φ(B)Xt = θ(B)Zt, t ∈ Z, (6)

where φ(B) and θ(B) are the harateristi polynomials given after (2.1).

De�nition 2.2 An ARMA(p,q) proess {Xt, t ∈ Z} de�ned by equation (6) is said to be

invertible if there exists a sequene of onstants {ai, i ∈ Z+} suh that

∑ |ai| <∞ and

Zt =
∞∑

i=0

aiXt−i.

17



Invertibility means that the inverse operator

a(B) =
φ(B)

θ(B)
= θ−1(B)φ(B),

exists, therefore

Zt =
φ(B)

θ(B)
Xt = a(B)Xt.

Sine φ and θ are polynomials with α0 = β0 = 1 the a(B) an be written as

a(B) = 1−
∑

j≥1

ajB
j ,

provided

∑
|aj| <∞ (so that this formal power series expansion onverges), and

Zt = Xt −
∞∑

j=1

ajXt−j .

As an illustration, onsider the MA(1) proess

Xt = Zt + βZt−1 = (1 + βB)Zt.

Here φ(B) = 1 and θ(B) = 1 + βB. For |β| < 1, the MA(1) proess is invertible and

Zt = (1 + βB)−1 = Xt − βXt−1 + β2Xt−2 − · · ·
Invertibility means that an AR(∞)-representation of the proess Xt is valid

Zt =
φ(B)

θ(B)
Xt = Xt −

∞∑

j=1

ajXt−j

or

Xt =

∞∑

j=1

ajXt−j + Zt

this representation is often helpful, e.g. when alulating the a.f of a proess, as we shall

see later.

De�nition 2.3 An ARMA(p,q) proess de�ned by equation (6) is said to be ausal, if

there exists a sequene of onstants {ci, i ∈ Z+} suh that

∑
|ci| <∞ and

Xt =

∞∑

i=0

ciZt−i.

Causality means that the inverse operator

c(B) =
θ(B)

φ(B)
= φ−1(B)θ(B)

18



exists, therefore

Xt =
θ(B)

φ(B)
Zt = c(B)Zt.

Sine φ and θ are polynomials with α0 = β0 = the inverse operator an be written as

c(B) = 1 +

∞∑

j=1

cjZt−j ,

Theorem 2.1 Assume that the polynomials θ(λ) and φ(λ), λ ∈ C, do not have ommon

roots. Then the ARMA(p,q) proess

Xt = α1Xt−1 + . . .+ αpXt−p + Zt + β1Zt−1 + · · ·+ βqZt−q

1) is invertible, if and only if all roots of the harateristi polynomial θ(λ) (orresponding
to its MA part) lie outside the unit dis {z ∈ C : |z| ≤ 1}, i.e., the absolute value of any

root is greater than 1.
2) is ausal, if and only if all roots of the harateristi polynomial φ(λ) (orresponding
to its AR part) lie outside the unit dis {z ∈ C : |z| ≤ 1}, i.e., the absolute value of any

root is greater than 1.

Reall the earlier example of the MA(1) proess Xt = Zt + βZt−1. Its harateristi

polynomial is θ(λ) = 1+βλ, with root λ = −1/β, whih is a real number and lies outside

the unit dis provided |β| < 1.

For the AR(1) proess Xt−αXt−1 = Zt, the harateristi polynomial is φ(λ) = 1−αλ =
0, with root λ = 1/α, whih is a real number and lies outside the unit dis provided

|α| < 1.

Example 2.1 Show that the ARMA(1,1) proess Xt − 0.6Xt−1 = Zt − 0.2Zt−1 is both

invertible and ausal, and �nd its MA representation.

First note that φ(λ) = 1− 0.6λ and θ(λ) = 1− 0.2λ. This means that the root of the AR

harateristi polynomial is λ = 10
6
> 1 and the root of the MA harateristi polynomial

is λ = 5 > 1. These values are outside the unit dis, hene the proess is both invertible

and ausal.

Xt =
θ(B)

φ(B)
Zt =

(1− 0.2B)

(1− 0.6B)
Zt = (1−0.2B)

(
∞∑

i=0

0.6iBi

)
Zt = Zt+

∞∑

i=1

0.4×0.6i−1Zt−i

2.5 Computation of the a.f. for ARMA(p,q) proesses

2.5.1 Computation by using MA(∞)-representation

Suppose the ARMA(p,q) proess

Xt = α1Xt−1 + . . .+ αpXt−p + Zt + β1Zt−1 + · · ·+ βqZt−q
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is ausal. How an we ompute the autoovariane funtion and the autoorrelation

funtion of this proess?

If we an solve

c(B) =
θ(B)

φ(B)
= φ−1(B)θ(B),

i.e., ompute oe�ients in the expansion

Xt =
∞∑

j=0

cjZt−j ,

then we an ompute

γ(k) = Cov(Xt, Xt+k) = σ2
∞∑

j=0

cjcj+k, k > 0,

and the problem is theoretially solved.

However, it an be di�ult to ompute the oe�ients ci and only in partiular ases an

the oe�ients be omputed expliitly. For instane, we an ompute the oe�ients for

an ARMA(1,1) proess. Indeed, onsider

(1− αB)Xt = (1 + βB)Zt, (7)

where |α| < 1 and |β| < 1.

Xt =
1 + βB

1− αB
Zt = (1− αB)−1(1 + βB)Zt,

whih gives

Xt =

(
∞∑

k=0

αkBk

)
(1 + βB)Zt =

∞∑

k=0

αkBk(1 + βB)Zt.

This then simpli�es to

Zt + (α+ β)
∞∑

k=1

αk−1Zt−k (8)

This proess is a linear �lter of the time series Zt, and the sum onverges sine |α| < 1.

This representation now allows us to alulate the a.f of the general ARMA(1,1) proess.

We �rst set up some useful preliminary results. Multiplying (8) by Zt, taking expetations

and using independene of Zi and Zj, when i 6= j we obtain

E(ZtXt) = E(Z2
t ) = σ2.

Further, multiplying (8) by Zt−1 gives

E(Zt−1Xt) = αE(Xt−1Zt−1) + E(ZtZt−1) + βE(Z2
t−1) = σ2(α + β).
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On multiplying (7) by Xt we �nd that

γ(0) = αγ(1) + σ2 + β(α+ β)σ2.

Moreover, multiplying (7) by Xt−1 and taking expetation gives

E(XtXt−1) = αE(X2
t−1) + E(ZtXt−1) + βE(Zt−1Xt−1).

Now E(ZtXt−1) = 0 (by onsidering a similar MA representation for Xt−1), so we get the

following equation

γ(1) = αγ(0) + βσ2.

We now have two equations in the two unknowns γ(0) and γ(1). Solving them we get

γ(0) = σ21 + β2 + 2αβ

1− α2

γ(1) = σ2 (1 + αβ)(α+ β)

1− α2
.

To obtain the equations for γ(k), k ≥ 2, we again multiply the equation for Xt by

Xt−k, k ≥ 2 and take expetations:

E(XtXt−k) = αE(Xt−1Xt−k) + E(ZtXt−k) + βE(Zt−1Xt−k).

By onsidering the MA representation for Xt−k, it is lear that E(ZtXt−k) = 0 and

E(Zt−1Xt−k) = 0. Hene
γ(k) = αγ(k − 1), k ≥ 2.

So, �nally

γ(0) = σ21 + β2 + 2αβ

1− α2

γ(1) = σ2 (1 + αβ)(α+ β)

1− α2

γ(k) = αγ(k − 1), k ≥ 2,

γ(k) = γ(−k), if k < 0.

and we have the following system of equations for the a.f.

ρ(0) = 1

ρ(1) =
(1 + αβ)(α+ β)

1 + β2 + 2αβ

ρ(k) = αρ(k − 1), k ≥ 2,

ρ(k) = ρ(−k), if k < 0.

The orrelations of an ARMA(1,1) proess deays exponentially; the same is true for any

ARMA(p,q) proess.
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2.5.2 The Yule-Walker equations for an AR(2) proess

Consider an AR(2)-proess

Xt = α1Xt−1 + α2Xt−2 + Zt, t ∈ Z (9)

and suppose that it is ausal.

Multiplying both sides of the equation (9) by Xt−k, where k ≥ 0, and taking expetations,
we obtain the following equations

E(XtXt−k) = α1E(Xt−1Xt−k) + α2E(Xt−2Xt−k) + E(ZtXt−k).

The proess Xt an be expressed as an MA proess of in�nite order

Xt = Zt + c1Zt−1 + c2Zt−2 + · · ·

with some oe�ients ci. Therefore, if k > 0, then Xt−k and Zt are independent and we

have that E(ZtXt−k) = 0, hene

γ(−k) = α1γ(−k + 1) + α2γ(−k + 2), k > 0, (10)

If k = 0, then the equation will be

γ(0) = α1γ(1) + α2γ(2) + σ2.

Using the fat that γ is an even funtion, we an rewrite these equations as follows

γ(0)− α1γ(1)− α2γ(2) = σ2

γ(1)− α1γ(0)− α2γ(1) = 0

γ(2)− α1γ(1)− α2γ(0) = 0

γ(k)− α1γ(k − 1)− α2γ(k − 2) = 0, k ≥ 3.

These are the Yule Walker equations for an AR(2) proess.

It is lear that the �rst three equations form a losed system of equations for γ(0), γ(1)
and γ(2), so we an obtain the form of γ(0), γ(1) and γ(2) expliitly.

If we divide all equations (10) by the proess variane, i.e., by γ(0), and use the fat

that ρ(k) = ρ(−k), then we get the following system of equations for the autoorrelation

funtion ρ(k), k ∈ Z, of the proess

ρ(0) = 1

ρ(1)− α1 − α2ρ(1) = 0

ρ(k)− α1ρ(k − 1)− α2ρ(k − 2) = 0, k ≥ 2.

For k = 1 we an �nd from the seond equation that

ρ(1) =
α1

1− α2
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therefore we get the following system of equations for the a.f. of the AR(2) proess

ρ(0) = 1

ρ(1) =
α1

1− α2

ρ(k) = α1ρ(k − 1) + α2ρ(k − 2), k ≥ 2,

ρ(k) = ρ(−k), k < 0.

We an, in priniple, ompute reursively ρ(k) for any k > 0 (and for k < 0 similarly),

one by one.

Another way to ompute ρ(k), k ≥ 0 is to note that the equations above are linear

di�erene equations, for whih there is a systemati method of solution. Some terminology

from the theory of di�erene equations is useful here: given an AR(p) proess

Xt − α1Xt−1 − . . .− αpXt−p = θ(B)Xt = Zt

with harateristi polynomial

φ(λ) = 1− α1λ− . . .− αpλ
p,

the auxiliary polynomial is de�ned as

λp − α1λ
p−1 − . . .− αp.

If πi, i = 1, . . . , p are the zeroes of the auxiliary polynomial, then π−1
i , i = 1, . . . , p are

the zeros of the harateristi polynomial. The AR(p)-proess is ausal if and only if

|πi| < 1, i = 1, . . . , p.

If πi, i = 1, 2, are the zeroes of the auxiliary polynomial for the AR(2)-proess, i.e.,

πi, i = 1, 2, are the roots of the following equation

λ2 − α1λ− α2 = 0,

then a general solution of Yule-Walker equations for ρ is given by the following formula

ρ(k) = A1π
|k|
1 + A2π

|k|
2 , k ≥ 0,

in the ase when the roots are di�erent and by a slightly di�erent formula, if they oin-

ide. The onstants Ai are determined by the initial onditions.

For the AR(2) proess, the ausality-stationarity ondition |πi| < 1, i = 1, 2 takes the

form ∣∣∣∣∣
α1 ±

√
α2
1 + 4α2

2

∣∣∣∣∣ < 1.

It an be shown (by onsidering arefully all possible hoies of αi) that these onditions

are equivalent to the following simple onditions on oe�ients α1 and α2

α1 + α2 < 1

α1 − α2 > −1

α2 > −1
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Assume that the oe�ients αi satisfy the above onditions. We will onsider the di�er-

ent possible ases in turn.

I. Real roots. If α2
1 + 4α2 > 0, the roots πi are real. To �nd the onstants Ai in the

formula

ρ(k) = A1π
|k|
1 + A2π

|k|
2

we use the equations for k = 0 and k = 1. Setting k = 0, we get the �rst equation for

determining A1 and A2

ρ(0) = 1 = A1 + A2.

If k = 1, then

ρ(1) =
α1

1− α2

so, we get the seond equation for determining A1 and A2

ρ(1) = A1π1 + A2π2.

Solving the system

A1 + A2 = 1

A1π1 + A2π2 =
α1

1− α2

we �nd

A1 =
α1(1− α2)

−1 − π2
π1 − π2

A2 = 1− A1

II. Coinident roots. If α2
1 + 4α2 = 0, then the roots oinide, πi = α1/2, they are real,

and the solution takes the form

ρ(k) = (A+Bk)(α1/2)
k, k ≥ 0,

Using the initial onditions ρ(0) = 1 and ρ(1) = α1/(1− α2) we �nd that

A = 1, B =
1 + α2

1− α2
.

III. Complex roots. If α2
1 + 4α2 < 0, then the roots are a omplex onjugate pair

π1 = reiϕ, π2 = re−iϕ,

where i is an imaginary unit, r =
√−α2 > 0 and ϕ = tan−1((−α2

1 − 4α2)/α1), to be

interpreted as lying in the range π/2 to π if α1 is negative. A general (omplex-valued)

solution an be written then in the form

ρ(k) = rk(A1e
ikϕ + A2e

−ikϕ), k ≥ 0,

where A1, A2 ∈ C are omplex numbers. We are looking for a real-valued solution, so the

hoie of A1 and A2 must give

ρ(k) = rk(A cos(kϕ) +B sin(kϕ)), k ≥ 0,

where A and B are real numbers. Using again the initial onditions ρ(0) = 1 and

ρ(1) = α1/(1− α2) we an ompute the oe�ients A and B.
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Example 2.2 Consider the AR(2) proess Xt = Xt−1 − 0.5Xt−2 + Zt. This is a ausal

stationary proess, and its a.f. is

ρ(k) =

(
1√
2

)k (
cos

(
πk

4

)
+

1

3
sin

(
πk

4

))
, k ≥ 0.
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3 Integrated ARMA or ARIMA models

De�nition 3.1 A stohasti proess {Xt, t ∈ Z}, is alled an ARIMA(p,d,q) proess if

its dth di�erene Wt = (1−B)dXt is a ausal and invertible ARMA(p,q) proess of order

p,q, i.e.,

φ(B)Wt = θ(B)Zt,

φ(B)(1− B)dXt = θ(B)Zt.

Note that the ARIMA(p,d,q) proess is not a stationary stohasti proess for d > 0
sine its harateristi polynomial is φ(λ)(1 − λ)d,whih has a (multiple, if d > 1) zero
on the unit irle {z ∈ C : |z| = 1}. There is no (ausal or not) stationary solution of

the equation

φ(B)(1− B)dXt = θ(B)Zt.

Example 3.1 The ARIMA(0,1,0) proess

(1− B)Xt = Zt

Xt = Xt−1 + Zt

is a random walk.

Example 3.2 ARIMA(1,1,0) proess

(1− 0.7B)(1− B)Xt = Zt

Xt = 1.7Xt−1 − 0.7Xt−2 + Zt
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4 Time series predition

One of the main goals of time series analysis is to predit the future evolution of a time

series given past observations.

4.1 Best linear predition in L2

Example 4.1 Let X1, X2 and Y be square integrable random variables de�ned on the

same probability spae. The problem: Find the linear ombination Ŷ = b1X1 + b2X2 that

minimizes the mean squared error (m.s.e.)

m.s.e. = E(Y − b1X1 − b2X2)
2.

Solution.I. Minimize the funtion

f(b1, b2) = E(Y − b1X1 − b2X2)
2 = E(Y 2) + b21E(X

2
1 ) + b22E(X

2
2 )

− 2b1E(Y X1)− 2b2E(Y X2) + b1b2E(X1X2)

of two real variables by alulus.

Solution.II. Find a linear ombination Ŷ = b1X1 + b2X2 suh that

E((Y − Ŷ )X1) = 0

E((Y − Ŷ )X2) = 0,

so, Y − Ŷ is orthogonal to both X1 and X2, and, therefore, orthogonal to any linear

ombination a1X1 + a2X2.

In both ases the oe�ients minimizing the m.s.e. must satisfy the equations

b1E(X
2
1 ) + b2E(X2X1) = E(Y X1)

b1E(X1X2) + b2E(X
2
2 ) = E(Y X2).

More generally, onsider random variables X1, . . . , Xn and Y with �nite seond moments

E(Y 2
k ) <∞, k = 1, . . . , n,

E(X2) <∞
de�ned on the same probability spae (Ω,F , P ), i.e., X1, . . . , Xn, Y ∈ L2(Ω,F , P ).

De�nition 4.1 The best linear preditor Ŷ of Y in terms of X1, . . . , Xn is the linear

ombination b1X1 + · · ·+ bnXn suh that

E(|Y − (b1X1 + · · ·+ bnXn)|2) = inf
c1,...,cn

E(|Y − (c1X1 + · · ·+ cnXn)|2).
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Theorem 4.1 Let X1, . . . , Xn, and Y be an arbitrary square integrable random variables

de�ned on the same probability spae (Ω,F , P ). If the oe�ients bi ∈ R, i = 1, . . . , n
satisfy the predition equations

b1E(X1Xk) + . . .+ bnE(XnXk) = E(Y Xk), k = 1, . . . , n, (11)

then

Ŷ = b1X1 + · · ·+ bnXn

is the best linear preditor of Y in terms of X1, . . . , Xn.

Proof. Let bi, i = 1, . . . , n be a solution of the predition equations. Consider an arbitrary
linear ombination of X1, . . . , Xn

Ỹ = a1X1 + · · ·+ anXn, ai ∈ R, i = 1, . . . , n.

Diret omputation gives

E((Y − Ỹ )2) = E((Y − Ŷ + Ŷ − Ỹ )2)

= E((Y − Ŷ )2) + E((Ŷ − Ỹ )2) + 2E((Y − Ŷ )(Ŷ − Ỹ )

= E((Y − Ŷ )2) + E



(

n∑

i=1

(bi − ai)Xi

)2

 + 2E

(
(Y − Ŷ )

n∑

i=1

(bi − ai)Xi

)

= E((Y − Ŷ )2) + E



(

n∑

i=1

(bi − ai)Xi

)2

 + 2

n∑

i=1

(bi − ai)E
(
(Y − Ŷ )Xi

)

= E((Y − Ŷ )2) + E



(

n∑

i=1

(bi − ai)Xi

)2



sine

E

(
(Y − Ŷ )Xi

)
= 0, i = 1, . . . , n

by de�nition of bi ∈ R, i = 1, . . . , n. Therefore

E((Y − Ỹ )2) = E((Y − Ŷ )2) + E



(

n∑

i=1

(bi − ai)Xi

)2

 ≥ E((Y − Ŷ )2)

The theorem is proved. �

This means that the best linear preditor of Y in terms of X1, . . . , Xn is a projetion in

L2
of Y onto

Lin{X1, . . . , Xn} = {c1X1 + · · ·+ cnXn, ci ∈ R}, (12)

the linear subspae generated by X1, . . . , Xn.

Notation: Π(Y |X1, . . . , Xn) denotes the best linear predition (BLP) of Y in terms of

X1, . . . , Xn.

The projetion is a linear operator:

Π(Y + Z|X1, . . . , Xn) = Π(Y |X1, . . . , Xn) + Π(Z|X1, . . . , Xn).
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Corollary 4.1 Let {Xt, t ∈ Z} be a weakly stationary stohasti proess with zero mean.

If the oe�ients bi, i = 0, . . . , t− 1 are solutions of the following system of equations

γ(h+ k) =

t−1∑

i=0

biγ(k − i), k = 0, . . . , t− 1,

or, equivalently,

ρ(h + k) =
t−1∑

i=0

biρ(k − i), k = 0, . . . , t− 1,

where γ(·) and ρ(·) are the autoovariane and the autoorrelation funtion of the proess,

then

X̂t+h =

t−1∑

i=0

biXt−i

is the best linear preditor of of Xt+h in terms of X1, . . . , Xt.

The equations in the orollary are the predition equations written in this partiular ase

in terms of the autoovariane funtion.

If

X̂t+h =

t−1∑

i=0

biXt−i = bt−1X1 + . . .+ b0Xt.

then the predition equations take the following form

E((Xt+h − X̂t+h)Xk′) = 0, k′ = 1, . . . , t.

Or,

E((Xt+hXk′) = b0E(XtXk′) + . . .+ bt−1E(X1Xk′), k
′ = 1, . . . , t.

In terms of the autoovariane funtion we have

γ(t + h− k′) = γ(t + h− k′) = b0γ(t− k′) + . . .+ bt−1γ(1− k′), k′ = 1, . . . , t.

If k′ ∈ {1, ..., t}, then t− k′ ∈ {0, ..., t− 1}. Denote k = t− k′ then

γ(h+k) = b0γ(k)+ b1γ(k−1)+ . . .+ bt−1γ(k− (t−1)) =

t−1∑

i=0

biγ(k− i), k = 0, 1, ..., t−1.

Note that the mean-square error is de�ned as follows

m.s.e. = E((Xt+h − X̂t+h)
2).
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4.2 Examples of best linear predition for ARMA-proesses

4.2.1 AR(1)-proess

Theorem 4.2 Consider an AR(1)-proess

Xt = αXt−1 + Zt

with |α| < 1, where Var(Zt) = σ2
. Then, for any t ≥ 2 and h ≥ 1, αhXt is the best linear

preditor of Xt+h in terms of X1, . . . , Xt.

Proof. Xt is a ausal stationary proess, sine |α| < 1. We have omputed its autoo-

variane funtion as

γ(k) = E(XtXt+k) = σ2 α|k|

1− α2
.

Looking at the predition equations then gives, for k ∈ {1, . . . t},

E
[
(Xt+h − αhXt)Xk

]
= E [Xt+hXk]− αh

E [Xt+hXk] =
σ2

1− α2

(
αt+h−k − αhαt−k

)
= 0.

This shows that Xt+h − αhXt is orthogonal to any Xk, k = 1, . . . , t. By Theorem 4.1,

αhXt is the best linear preditor of Xt+h in terms of X1 . . . , Xt.

We ould also see this more diretly from the MA(∞) representation, by using linearity

of the projetion. For this proess, we have shown that the MA(∞) representation is

given by

Xt =

∞∑

k=0

αkZt−k.

This formula an be rewritten as follows

Xt = Zt + αZt−1 + · · ·+ αk−1Zt−k+1 + αkXt−k,

for any given k. Therefore

Xt+h = Zt+h + αZt+h−1 + · · ·+ αh−1Zt+1 + αhXt.

Using linearity of projetion now gives

Π(Xt+h|X1, . . . , Xt) = Π(Zt+h + αZt+h−1 + · · ·+ αh−1Zt+1 + αhXt|X1, . . . , Xt)

= αhΠ(Xt|X1, . . . , Xt) = αhXt,

sine Π(Zt+h + αZt+h−1 + · · ·+ αh−1Zt+1|X1, . . . , Xt) = 0 by ausality. �

We an ompute the m.s.e. of this foreast. By de�nition

m.s.e. = E((Xt+h − αhXt)
2) = E((Zt+h + αZt+h−1 + . . .+ αh−1Zt+1)

2)

= σ2(1 + α2 + . . .+ α2h−2) = σ21− α2h

1− α2
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4.2.2 MA(1) proess

Consider a MA(1)-proess

Xt = Zt + βZt−1.

where we take β < 1 for invertibility. It is lear that if h ≥ 2, then X̂t+h = 0. This is

beause

E(Xt+hZk) = 0, k = 1, . . . , t.

If h = 1, then

Π(Xt+1|X1, . . . , Xt) = Π(Zt+1 + βZt|X1, . . . , Xt) = βẐt,

Note that Zt is not observable. This means that we need to estimate it.

If all past observations Xk, k = t, t− 1, ... were available, then by invertibility

Zt = Xt − βXt−1 + β2Xt−2...,

i.e. the exat formula for Zt are given as as a linear funtion of the X variables, so this

would give a foreast for Zt in terms of the past values of the proess.

If only Xt, Xt−1, ..., X1 are available, then by Corollary 4.1, the oe�ients bi, i = 1, . . . , t
determining the best linear preditor, an be found by solving the system of linear equa-

tions

ρ(k + 1) =
t−1∑

i=0

biρ(k − i), k = 0, . . . , t− 1.

Therefore the bi an be written in matrix notation as




b0
.

.

.

bt−1


 = P−1

t




ρ(1)
.

.

.

ρ(t)


 = P−1

t




a
0
.

.

.

0




Where the t× t matrix Pt, whih an be shown to be invertible, is given by

Pt =




1 a 0 0 . . . 0
a 1 a 0 . . . 0
0 a 1 a 0 0
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 . . . 1 a
0 0 0 . . . a 1




where a = β/(1 + β2) = ρ(±1).

For general ARMA(p,q) models, the solutions of the predition equations do not have nie

expliit forms. They an however be alulated using an e�ient reursion (the Durbin-

Levinson algorithm), whih is beyond our urrent sope. Further details are available in

Setion 8.2 of Brokwell and Davis.
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4.3 Minimum mean squared error predition

4.3.1 Conept

Suppose the random variables z1, . . . , zn and y are de�ned on the same probability spae

(Ω,F , P ), and have �nite seond moments.

De�nition 4.2 The minimum mean squared error predition of y in terms of z1 . . . zn is

the funtion m(z1, . . . , zn) suh that

E
[
{y −m (z1 . . . zn)}2

]
= inf

f
E
[
{y − f (z1 . . . zn)}2

]
.

It an be shown that m(z1 . . . zn) = E(y|z1 . . . zn).

4.3.2 Foreast for general ARIMA(p,d,q) proesses

In what follows, we'll see a reursive approah to alulating the minimum mean square

error preditor of Xt+h based on X1 . . .Xt only.

Suppose we have a ausal and invertible ARIMA(p,d,q) proess

φ(B)(1− B)dXt = θ(B)Zt,

and only Xk, k = 1 . . . t are available. We want to predit Xt+h.

Let

φ(B)(1−B)d = 1−
p+d∑

j=1

αjB
j , θ(B) = 1+

q∑

j=1

βjB
j , Xt = (Xt, . . . , X1)

T , X̂t+h = E(Xt+h|Xt).

We have

Xt =

p+d∑

j=1

αjXt−j + Zt +

q∑

j=1

βjZt−j (13)

and

X̂t+h = E(Xt+h|Xt) =

p+d∑

j=1

αjE(Xt+h−j|Xt) +

q∑

j=1

βjE(Zt+h−j |Xt) h ≥ 1.

To simplify this, note that

X̂t+h−j = E(Xt+h−j|Xt) = Xt+h−j, j ≥ h. (14)

Further, ausality gives Ẑt+h−j = 0 for j < h.
This then gives

X̂t+h =
h−1∑

j=1

αjX̂t+h−j +

p+d∑

j=h

αjXt+h−j +

q∑

j=h

βjẐt+h−j, h ≥ 1.
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The estimators Ẑk for k ≤ t an be obtained through rearranging the de�ning equation

of the proess, (13) and again using (14):

Ẑk = Xk −
p+d∑

j=1

αjXk−j −
q∑

j=1

βjẐk−j, (15)

with initial values set to

Ẑl = 0, l = 1, . . . ,max(p+ d, q).

Example Consider the ARIMA(1,2,1) proess

(1− 0.5B)(1− B)2Xt = (1 + 0.2B)Zt (16)

This proess is the same as

(1− 2.5B + 2B2 − 0.5B3)Xt = (1 + 0.2B)Zt,

whih is

Xt = 2.5Xt−1 − 2Xt−2 + 0.5Xt−3 + Zt + 0.2Zt−1.

The predition of Xt+2 is

X̂t+2 = 2.5X̂t+1 − 2Xt + 0.5Xt−1

with

X̂t+1 = 2.5Xt − 2Xt−1 + 0.5Xt−2 + 0.2Ẑt.

Notie that (16) an be written as

Zt = Xt − 2.5Xt−1 + 2Xt−2 − 0.5Xt−3 − 0.2Zt−1.

max{p + d, q} here is 3. So, we set the initial values Ẑ1 = Ẑ2 = Ẑ3 = 0, and obtain the

remaining Ẑk for k ≤ t, through

Ẑk = Xk − 2.5Xk−1 + 2Xk−2 − 0.5Xk−3 − 0.2Ẑk−1, 3 < k ≤ t.

On substituting bak through, this gives a reursive foreast for Xt.

4.4 Foreast for general ARMA(p,q) proesses

4.5 The partial a.f.

Given two random variables ξ and η, denote

Corr(ξ, η) =
Cov(ξ, η)√

Var(ξ)
√
Var(η)

,

i.e., the usual orrelation oe�ient.
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The partial a.f. of a zero mean stationary proess Xt, t ∈ Z is de�ned by

a(k) = Corr(Xk+1 − Π(Xk+1|X2, . . . , Xk), X1 − Π(X1|X2, . . . , Xk)), k ≥ 2

and by onvention a(1) = ρ(1). This is another important harateristi of a weakly

stationary stohasti proess.

Example 4.2 The partial autoorrelation funtion of the white noise proess oinides

with the autoorrelation funtion of the proess. This an be seen by onsidering the pre-

dition equations, whih in this ase give Π(Xk+1|X2, . . . , Xk) = 0 and Π(X1|X2, . . . , Xk) =
0.

An equivalent de�nition of the partial autoorrelation funtion is given below. Proving

equivalene is algebraially involved, and ertainly not examinable. For ompleteness, a

derivation of the equivalene of the two de�nitions an be found in Brokwell and Davis,

Corollary 5.2.1.

Let bki, i = 1, . . . , k, k ≥ 1 be the oe�ients in the representation

Π(Xk+1|X1, . . . , Xk) =

k∑

i=1

bkiXk+1−i

From the predition equations

E((Xk+1 − Π(Xk+1|X1, . . . , Xk))Xi) = 0, i = 1, . . . , k

we obtain that the oe�ients bki an be found from the following system of equations

k∑

i=1

bkiρ(j − i) = ρ(j), j = 1, . . . , k (17)

Then the partial a.f. at lag k ≥ 2 is

a(k) = bkk.

4.6 The partial autoorrelation funtion for AR(p) proesses

For the AR(p) proess, it an be shown that

a(k) = 0, k > p.

Indeed, onsider for simpliity a zero mean AR(1) proess

Xt = αXt−1 + Zt,

where |α| < 1.
By de�nition

a(1) = Corr(αX1 + Z2, X1) = ρ(1) = α.
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Let k ≥ 2, then, as we know from the predition setion,

Π(Xk+1|X2, . . . , Xk) = αXk.

A similar diret argument using the predition equations shows that

Π(X1|X2, . . . , Xk) = αX2.

Therefore

a(k) = Corr(Xk+1 − αXk, X1 − αX2) = Corr(Zk+1, X1 − αX2) = 0, k > 1,

beause the proess Xt is unorrelated with future values of the white noise proess.

Similar omputations an be done for an arbitrary AR(p) proess. In brief, if Xt is a

ausal AR(p) proess,

Xt = α1Xt−1 + . . .+ αpXt−p + Zt,

then it an be shown that for k > p,

Π(Xk+1|Xk . . .X2) = α1Xk + . . .+ αpXk−p+1.

Then

a(k) = Corr(Xk+1 −Π(Xk+1|Xk . . .X2), X1 − Π(X1|X2, . . . , Xk))

= Corr(Zk+1, X1 −Π(X1|X2, . . . , Xk)),

whih is zero sine the righthand orrelation argument is a linear ombination ofX1 . . .Xk,

eah of whih is unorrelated with Zk+1.

4.7 Summary of af and paf behaviour for ARMA proesses

The following table summarizes the behaviour of the autoorrelation funtion and partial

autoorrelation funtions of the di�erent lasses of proess.

AR(p) MA(q) ARMA(p,q)

ACF Tails o� Cuts o� after lag q Tails o�

pACF Cuts o� after lag p Tails o� Tails o�

Note that tailing o� an inlude damped osillatory behaviour.

4.8 The sample partial autoovariane funtion

The sample autoovariane funtion is a point estimator of the a.f. of a stationary

stohasti proess. The sample partial a.f. ak, k ∈ Z, is used as a point estimator of

the partial a.f. of a stohasti proess and is de�ned as follows. First, estimate the a.f.

using the sample a.f. and then alulate the estimates of the partial a.f. by replaing

the autoorrelations ρ(k) in the equation (17) with the sample autoorrelations rk, to
give the system

k∑

i=1

b̂kirj−i = rj , j = 1, . . . , k

whih is then solved for b̂ki and de�ning ak = b̂kk.
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5 Elements of statistial inferene for time series

5.1 Model seletion, parameter estimation and veri�ation

5.1.1 The Box-Jenkins methodology for model building

Suppose that we have been presented with a time series, for whih we seek an adequate

model (e.g. for predition). Assume that all neessary preliminary transformations have

been made and any yli omponent has been removed. If data still appear to be non-

stationary and it is due to a trend, then we remove the trend by di�erening. In pratie,

one or two di�erenes often su�es. Then we �t an ARMA model to the stationary time

series Yt = Xt − µ, where E(Xt) = µ.

Xt − µ = α1(Xt−1 − µ) + . . .+ αp(Xt−p − µ) + Zt + β1Zt−1 + · · ·+ βqZt−q.

Overdi�erening Note that in seeking to obtain a stationary series, it is important

not to overdi�erene time series data. Though the di�erene of a stationary proess is a

stationary proess, overdi�erening introdues unneessary orrelations and ompliates

the model. For example, suppose the time series Xt is a random walk,

Xt = Xt−1 + Zt

then its �rst di�erene is

Zt = Xt −Xt−1

the white noise proess. But the seond di�erene

Yt = Zt − Zt−1

is a non invertible MA(1) proess.

The Box-Jenkins methodology is an iterative model-building proedure, whih onsists of

the following four steps.

1. Identi�ation: deide on reasonable values for p, d and q.

2. Estimation: using the values of p and q, estimate the unknown parameters: α1, . . . , αp, β1, . . . , βq,
µ and σ2

.

3. Diagnosti heking: hek the model against historial data to see whether it

aurately desribes the underlying proess that generates the series.

4. If the model doesn't �t well, repeat earlier steps using an improved model. If the

model �t is adequate, begin foreasting.
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5.1.2 Model seletion/identi�ation

The main tools in model identi�ation are the sample a.f. rk and the sample partial

a.f. ak.

Typial patterns of rk and ak for MA proesses:

• The a.f. funtion of a MA(q) proess uts o� after lag q.

• The partial a.f. of a MA(q) proess is, in general, a mixture of exponentials

and damped sine waves (i.e., its asymptoti behaviour at in�nity is similar to the

asymptoti behaviour of the a.f. of an AR(p) proess).

• If an MA proess is thought to be appropriate for a given data set, then the order

of the proess is usually evident from the sample a.f.

Typial patterns pf rk and ak of AR proesses:

• The a.f. of an AR(p) proess is, in general, a mixture of exponentials and damped

sine waves, and is usually of little help in identifying the proess order.

• The partial a.f. funtion of an AR(p) proess uts o� after lag p.

• If an AR proess is thought to be appropriate for a given set of data, then the order

of the proess is usually evident from the sample partial a.f.

It an be proved that for an underlying AR(p) proess, the approximate sampling distri-

bution of eah ak with k > p is normal with zero mean and variane 1/N . Hene

P{|ak| ≤ 1.96/
√
N} = 0.95

Therefore the on�dene limits ±1.96/
√
N ≈ ±2/

√
N an be used to detet the ut o�

e�et in the sample partial orrelogram for an AR proess. A similar result holds for the

autoorrelation oe�ients rk of a MA(q) proess.

Observed oe�ients that fall outside these limits are signi�antly di�erent from zero at

the 5% level. But note that even if a oe�ient should be zero in the true underlying

proess, the probability of getting at least one observed oe�ient outside the on�dene

limits inreases with the number of oe�ients plotted.

In pratie: Consider a sample from a white noise proess. If, say, the �rst 20 values of

rk are plotted, then we an expet one signi�ant value (at 5% level) on average. So,

if just one or oe�ients are signi�ant, the size and lag of these oe�ients must be

taken into aount when deiding if a set of data is random. A single oe�ient just

outside the 95% on�dene limits may be ignored (onsistent with being a realisation of

a white noise proess), but two or more values well outside the limits an be onsidered

as an indiation of signi�ant autoorrelation (or partial autoorrelation) at the lags in

question.

�Reipe� for visual inspetion:
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• A orrelogram that deays to zero suggests that the series is stationary and one an

searh for an appropriate ARMA model;

• if there is a sharp ut-o� in the orrelogram, i.e., all rk with k > q for some q
are within ±2/

√
N limits, then the behaviour of the sample partial a.f. an be

negleted and an MA(q) proess an be used as a possible model for the data;

• if there is a sharp ut-o� in the partial orrelogram, i.e., all rk with k > p for some

p are within ±2/
√
N limits, then an AR(p) proess an be used as a possible model

for the data;

• if neither orrelogram nor partial orrelogram uts o� then possibly a mixed ARMA(p,q)

should be taken as a model. Usually, ARMA(1,1) is tested �rst.

For example:

• If r1 is signi�antly di�erent from zero but all subsequent values of rk are all lose

to zero, then the behaviour of the sample partial a.f. an be negleted and an

MA(1) proess an be used as a possible model for the data.

• If rk appear to be dereasing exponentially and the partial orrelogram uts o� at

lag 1, then an AR(1) may be appropriate.

Example 5.1 Given a data set with 120 observations (of a stationary times series), the

following values of the sample a.f. was omputed

k 0 1 2 3 4 5 6
Sample a.f. 1 −0.52 −0.04 0.13 −0.09 −0.01 0.1

Find a suitable ARMA model for the data.

Answer: A 95%CI is (−2/
√
N, 2/

√
N) = (−0.183, 0.183). It is easy to see that the sample

a.f. uts at lag 2. This might indiate that an MA(1) model an be taken a possible

andidate.

Example 5.2 Given a data set with 120 observations (of a stationary times series), the

following values of the sample a.f. and the sample partial a.f. were omputed

k 0 1 2 3 4 5 6
Sample a.f. 1 −0.52 −0.04 0.13 −0.09 −0.01 0.1

Sample partial a.f. 1 −0.52 −0.43 −0.21 −0.2 −0.23 −0.1

Find a suitable ARMA model for the data.

Answer. For both the sample a.f. and the sample partial a.f. a 95%CI is (−2/
√
N, 2/

√
N) =

(−0.183, 0.183). It is easy to see that the sample a.f. uts at lag 2 and that the sample

partial a.f. deays. This might indiate that an MA(1) model an be taken a possible

andidate.

Example 5.3 Given a data set with 100 observations (of a stationary times series), the

following values of the sample a.f. and the sample partial a.f. were omputed
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k 0 1 2 3 4 5 6
Sample a.f. 1 0.9 0.81 0.729 0.657 0.59 0.532

Sample partial a.f. 1 0.9 0.1 0.12 0.07 0.062 0.03

Find a suitable ARMA model for the data.

Answer. For both the sample a.f. and the sample partial a.f. a 95%CI is (−2/
√
N, 2/

√
N) =

(−0.2, 0.2). It is easy to see that the sample a.f. deays exponentially (∼ 0.9k) and the

sample partial a.f. uts at lag 2. Therefore, one an try to �t AR(1) proess to this data

set.

Example 5.4 Given a data set with 100 observations (of a stationary times series), the

following values of the sample a.f. and the sample partial a.f. were omputed

k 0 1 2 3 4 5 6
Sample a.f. 1 0.9 0.8 0.6 0.5 0.3 0.22

Sample partial a.f. 1 0.9 0.5 0.1 0.03 0.07 0.04

Find a suitable ARMA model for the data.

Answer. For both the sample a.f. and the sample partial a.f. a 95%CI is (−2/
√
N, 2/

√
N) =

(−0.2, 0.2). It is easy to see that the sample a.f. deays exponentially and the sample

partial a.f. uts at lag 3. Therefore, one an try to �t AR(2) proess to this data set.

5.2 Estimating parameters of an ARMA proess

5.2.1 Method of moments

For reasonably large samples, we expet the sample moments to be lose to their theoret-

ial population values. This gives a method of estimating parameters of the underlying

proess: we equate theoretial values of the moments in terms of parameters to the ob-

served sample values, and solve to obtain parameter estimates. The idea should be lear

after seeing a few examples.

Example The moment estimator of the proess mean of a stationary time series Xt is

µ̂ = X =
1

N

N∑

i=1

Xi.

Example Consider a zero-mean AR(2) proess: Xt = α1Xt−1 + α2Xt−2 + Zt.

The Yule-Walker equations for ρ(1) and ρ(2) are

ρ(1) = α1 + α2ρ(1)

ρ(2) = α1ρ(1) + α2

Replaing ρ(1) and ρ(2) by their sample equivalents r1 and r2 we get the equations

r1 = α1 + α2r1

r2 = α1r1 + α2.
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Solving these equations we get

α̂1 =
r1(1− r2)

1− r21

α̂2 =
r2 − r21
1− r21

.

Example Consider a zero-mean invertible MA(1) proess: Xt = Zt+βZt−1. We have seen

already that ρ(1) = β
1+β2 , therefore, replae ρ(1) by the orresponding sample oe�ient

r1 =
β

1 + β2

and solve this quadrati equation for β.

β̂ =
1±

√
1− 4r21
2r1

.

Invertibility means that we must selet the negative root, to ensure |β| < 1.
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5.2.2 Least-squares estimation for AR proesses

Consider a stationary AR(p) proess

Xt − µ = α1(Xt−1 − µ) + . . .+ αp(Xt−p − µ) + Zt. (18)

Given N observations x1, . . . , xN , the parameters µ, α1, . . . , αp may be estimated by min-

imizing

S(µ, α1, . . . , αp) =
N∑

t=p+1

(xt − µ− α1(xt−1 − µ)− . . .− αp(xt−p − µ))2.

Consider in detail the ase p = 1.

S(µ, α) =

N∑

t=2

(xt − µ− α(xt−1 − µ))2.

The values µ̂ and α̂ that minimise the quadrati from S(µ, α) an be found as solutions

of the following system of equations

∂S(µ, α)

∂µ
= 0,

∂S(µ, α)

∂α
= 0

This gives

2(1− α̂)

N∑

t=2

(xt − µ̂− α̂(xt−1 − µ̂)) = 0,

−2
N∑

t=2

(xt−1 − µ̂)(xt − µ̂− α̂(xt−1 − µ̂)) = 0.

Note that α̂ annot be equal to 1, therefore from the �rst equation we get that

N∑

t=2

(xt − µ̂− α̂(xt−1 − µ̂)) = 0.

Simple algebra gives

µ̂ =
N

N − 1
x+ dN ,

where

x =
1

N

N∑

t=1

xt

and

dN =
α̂xN − x1

(N − 1)(1− α̂)
.
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For large N , dN → 0 and so

µ̂ ≈ x

in the sense that µ̂/x→ 1 as N → ∞.

From the equation ∂S/∂α = 0 we get

N∑

t=2

(xt−1 − µ̂)(xt − µ̂)− α̂
N−1∑

t=1

(xt − µ̂)2 = 0.

From this we an �nd

α̂ =

∑N−1
t=1 (xt − µ̂)(xt+1 − µ̂)
∑N

t=1(xt − µ̂)2
1

vN

where

vN = 1− (xN − µ̂)2
∑N

t=1(xt − µ̂)2

(NB An error in the de�nition of vN from an earlier version of the notes has been or-

reted.)

It an be shown that vN → 1 (in a ertain sense) as N → ∞. Realling that

r1 =

∑N−1
t=1 (xt − x)(xt+1 − x)
∑N

t=1(xt − x)2

and using the approximation µ̂ ≈ x for large N , we get that asymptotially

α̂ ≈ r1

in the sense that α̂/r1 → 1 as N → ∞.

Similar omputations an be done for an arbitrary AR(p) proess For example, if p = 2,
then we (approximately) reover the moment estimators omputed in the previous setion:

µ̂ ≈ x, α̂1 ≈ r1(1− r2)/(1− r21), α̂2 ≈ (r2 − r21)/(1− r21).

For the general AR(p) proess (18), we seek the minimizer (µ̂, α̂1, . . . , α̂p) of

S(µ, α1 . . . αp) =

N∑

t=p+1

{xt − µ− α1(xt−1 − µ)− . . .− (xt−p − µ)}2.

Let Y = (xp+1, . . . , xN )
T
, ζ =

(
µ(1−

∑p
j=1 αj), α1, . . . , αp

)
and

H =




1 xp xp−1 · · · x2 x1
1 xp+1 xp · · · x3 x2
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

1 xN−1 xN−2 · · · xN−p+1 xN−p
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Then S an be written as a quadrati form

S(µ, α1 . . . αp) = (Y −Hζ)T (Y −Hζ),

whose minimiser is an be found by di�erentiation to be

ζ̂ =
(
H

T
H
)−1

H
T
Y.

The form of this expression should be familiar from linear models.

5.2.3 Least square estimation for MA proesses

LSE is not so straightforward for MA proesses as for AR proesses. Consider, for

example, a MA(1) proess

Xt = µ+ βZt−1 + Zt.

Given observations x1, . . . , xN we would like to write the residual sum of squares

∑
z2t in

terms of observed x1, . . . , xn and parameters µ and β, as we did in the ase of the AR(1)

proess. This is not possible here, so the expliit least squares estimates annot be found.

Instead, the following iterative proedure is used:

• selet suitable starting values for µ and β, for example µ̂ = x = (
∑N

k=1 xk)/N and

β̂ a solution of the moment equation

r1 =
β

1 + β2
,

where r1 is the value of the sample a.f. at lag 1, (one must hoose the solution

|β̂| < 1),

• taking z0 = 0, alulate z1 = x1 − µ̂, then z2 = x2 − µ̂ − β̂z1, and so on until

zN = xN − µ̂− β̂zN−1, and �nally alulate the residual sum

∑N
t=1 z

2
t for hosen µ̂

and β̂,

• repeat the proedure for the other neighbouring values of µ and β so that the

residual sum of squares

∑N
t=1 z

2
t is omputed on a grid of points in the (µ, β) plane,

• determine by visual inspetion of otherwise (by an iterative optimization proe-

dure) the values of µ and β that minimize

∑N
t=1 z

2
t . These values are least square

estimates.

5.3 Maximum likelihood estimation for Gaussian ARMA(p,q)

proesses

Consider a ausal, invertible ARMA(p,q) proess Xt, t ∈ Z,

Xt − µ =

p∑

k=1

αk(Xt−k − µ) + Zt +

q∑

k=1

βkZt−k, (19)
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where Zt, t ∈ Z, are independent random variables with zero mean and variane σ2
.

If Zt, t ∈ Z, are normally distributed, then the proess Xt, t ∈ Z, is said to be a

Gaussian ARMA proess. In this ase, for any t1, . . . , tn ∈ Z the probability distri-

bution of the random vetor (Xt1 , . . . , Xtn) is a multivariate normal distribution (see

de�nition 5.1 below) with mean µ = (µ, . . . , µ) and ovariane matrix Σ with entries

Σij = Cov(Xti , Xtj ) = γ(ti − tj).

De�nition 5.1 The random vetor Y = (Y1, . . . , Yn)
T
is said to be multivariate normal

if there exist a olumn vetor µ, a (n×n)-matrix B and a random vetor η = (η1, . . . , ηn)
T

with independent standard normal omponents suh that

Y = µ+Bη.

The mean of Y is the vetor µ with entries µi = E(Yi) and the ovariane matrix of Y is

Σ = BBT
, with entries Σij = Cov(Yi, Yj). Provided that det(Σ) > 0, the density funtion

of Y = (Y1, . . . , Yn)
T
is

f(y) =
1

(2π)n/2(det(Σ))1/2
exp

(
−1

2
(y − µ)TΣ−1(y − µ)

)
, y = (y1, . . . , yn)

T ∈ Rn.

Taking the proess (19) to be Gaussian, we would like to arry out maximum likelihood

estimation of the parameters µ, σ2
, αj for j = 1 . . . p and βk for k = 1 . . . q. The

likelihood funtion is just the joint density of (X1 . . .XN )
T
, onsidered as a funtion of

the parameters, for �xed observations. For general ARMA models, it is di�ult to express

the likelihood as an expliit funtion of the parameters. In the setion that follows we

will show how to obtain a onditional maximum likelihood estimator, whih will be lose

to the full maximum likelihood estimator for su�iently large sample sizes.

5.3.1 Conditional MLE

By working with Yt = Xt − µ, it is enough to develop maximum likelihood estimation

for a zero-mean proess. It is straightforward to inorporate µ as an additional parameter.

De�ne

Yt = (Yt . . . Y1), θ = (α1 . . . αp, β1 . . . βq).

The onditional density funtion of Yt given Yt−1 is denoted f(yt|yt−1, θ, σ
2), and the

density funtion of Yp is f(yp|θ, σ2). The likelihood, whih is just the joint density of

YN , an then be written as follows, by using laws of onditional probability.

L(YN |θ, σ2) = f(yp|θ, σ2)f(yp+1 . . . yN |yp, θ, σ
2)

= f(yp|θ, σ2)f(yN |yN−1, θ, σ
2)f(yN−1|yp, θ, σ

2)

= . . .

= f(yp|θ, σ2)
N∏

t=p+1

f(yt|yt−1, θ, σ
2)
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The expression

N∏

t=p+1

f(yt|yt−1, θ, σ
2),

whih will be denoted L∗(yN , θ, σ
2), is known as the onditional likelihood funtion of µ,

σ2
and θ.

An important property of the multivariate normal distribution is that its onditional

distributions are also multivariate normal (see Appendix C3 of Shumway and Sto�er for

more details). Moreover, a multivariate normal distribution is determined by its mean

vetor and ovariane matrix. This means that to determine the density f(yt|yt−1, θ, σ
2),

it is enough to work out E(Yt|Yt−1) and Var(Yt|Yt−1).

We begin by making the assumption that

Z1 = Z2 = . . . = Zq = 0,

whih will be reasonable in any pratial situation where estimation is required.

Now, assume that Y1 . . . Yt−1 are known. From the de�ning equation it an be seen that

Yt =

p∑

k=1

αkYt−k + Zt +

q∑

k=1

βkZt−k,

and the values of Zi for i = q + 1 . . . t− 1 an be obtained reursively from

Zi = Yi −
p∑

k=1

αkYi−k −
q∑

k=1

βkZi−k,

as in (15) when omputing foreasts for general ARMA proesses. This means that the

onditional expetation and variane of Yt are given in terms of known quantities as

E(Yt|Yt−1) =

p∑

k=1

αkYt−k +

q∑

k=1

βkZt−k

Var(Yt|Yt−1) = Var(Zt|Yt−1) = σ2.

It is onvenient to denote E(Yt|Yt−1) by Ŷt|t−1, and de�ne the innovation at t to be

ǫt(θ) = yt − Ŷt|t−1.

This means that we an write the onditional likelihood in terms of the innovations as

L∗(yN , θ, σ
2) = (2πσ2)−(N−p)/2 exp

{
− 1

2σ2

N∑

t=p+1

ǫ2t (θ)

}
,

so that the full likelihood is given by

L(YN |θ, σ2) = f(yp|θ, σ2)(2πσ2)−(N−p)/2 exp

{
− 1

2σ2

N∑

t=p+1

ǫ2t (θ)

}
. (20)
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Maximizing (20) is a non-linear optimization problem, whih is omputationally expensive

in general. In pratie it is often enough to maximize the onditional likelihood L∗
. To

maximize L∗
, it is enough to �nd θ suh that the sum of squares

N∑

t=p+1

ǫ2t (θ)

is minimal. The onditional maximum likelihood estimator of σ2
is then given by

σ̂2 =
1

N − p

N∑

t=p+1

ǫ2t (θ̂).

Note that for reasonably large samples, the onditional MLEs and full MLEs will be

typially be very lose.

5.4 Model veri�ation or diagnosti heking

One an ARIMA(p,d,q) model has been �tted to a time series X1 . . .XN , the next step is

to assess how well the model �ts the data. We do this by analysing the residuals z1, . . . , zN ,
whih an be obtained from the reursive algorithm given in (15). For Wt = (1−B)dXt,

the residuals are

Ẑt = Wt −
p∑

j=t

α̂jWt−j −
q∑

k=1

β̂kẐt−k, t > max{p+ d, q},

and Ẑt = 0 for t ≤ max{p+ d, q}.

For a �good� model �t, the sequene of residuals z1, . . . , zN should behave like a realisation

of a white noise proess. This means that we should expet:

• the mean of the residuals should be lose to zero

z1 + . . .+ zN
N

≈ 0

• the spread of the residuals around the mean is onstant over time

• autoorrelations between residuals are negligible, i.e.,

rz,k =

∑N−k
t=1 ((zt − z)(zt+k − z)
∑N

t=1(zt − z)2

Under assumption that the residuals are unorrelated, approximate 95% on�dene limits

are ±2/
√
N . If we observe signi�ant autoorrelations, i.e., there are values of rz,k whih

are well outside these limits, then it is worth exploring other plausible models.

46



5.4.1 The Ljung-Box statisti

The Ljung-Box statisti an be used to test whether or not the autoorrelation funtion

of a stationary proess is zero. For a sample X1 . . .Xt from a stationary proess with

sample autoorrelation rk at lag k, the Ljung-Box statisti is de�ned as

Q = t(t + 2)

m∑

k=1

r2k
t− k

,

where the integer m is hosen arbitrarily. Under the null hypothesis that the model �t

is adequate (so that the residuals are essentially white noise), the test statisti Q has an

asymptoti χ2
distribution with m − p − q degrees of freedom. This means that for Q

larger than some ritial value, we rejet the null hypothesis

H0 : ρ(k) = 0, k 6= 0.

5.4.2 Over�tting

After speifying and �tting the model one an try to �t a more general model. As an

example, suppose that we �t an AR(2) model and estimated the parameters µ, α1, α2.

Then repeat the estimation proedure assuming AR(3) model. If

• additional parameter α3 ≈ 0

• α1,new ≈ α1,old and α2,new ≈ α2,old,

then it is reasonable to onlude that there is no need to replae the initial model AR(2)

by a more general one. You will notie this priniple in use in the solutions to lab lass

3. Another approah is to use the Akaike Information Criterion (AIC) - see setion 2.2

of Shumway and Sto�er for more details.
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Figure 4: Good model �t for an ARIMA(2,1,2) model. No patterns in the residuals, and no signi�ant

p-values for the Ljung-Box statisti
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Figure 5: Fitting an AR(2) model to a dataset simulated with higher order autoorrelation. Note the

signi�ant autoorrelation in the residuals and signi�ant p-values for the Ljung-Box test. This suggests

some struture in the residuals remains unmodelled.
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6 Spetral analysis

A time series an be onsidered to be a noisy observation of a urve at a set of time

points. We an onsider the urve as being made up of sine and osine waves of di�erent

frequenies. (You may reall this idea from Fourier analysis). Fitting a model to a time

series essentially means estimating the amplitude of the sine and osine omponents at

di�erent frequenies. The periodogram is of use in this task.

6.1 The periodogram

Let X1 . . .XN be a sample from a stationary time series, with N = 2q+1, an odd number.
Write

Xt = A0 +

q∑

i=1

Ai cos(2πfit) +Bi sin(2πfit) + et,

where fi =
i
N
. Least squares estimates of Ai and Bi, denoted with the orresponding

lower ase letters, an be obtained as follows

a0 = X̄, ai =
2

N

N∑

t=1

Xt cos(2πfit) bi =
2

N

N∑

t=1

Xt sin(2πfit), i = 1 . . . q.

(21)

This is a saturated model, i.e. N parameters are being estimated with N observations,

so that we annot obtain residuals êt.

The periodogram is the set of q intensity values

I(fi) =
N

2
(a2i + b2i ), i = 1 . . . q.

Note that if instead N = 2q is even, the values aq and bq have to be hanged to

aq =
1

N

N∑

t=1

(−1)tXt, bq = 0.

Note: If the frequeny fi is indeed a omponent of the urve, the intensity I(fi) is

expeted to be relatively large.

6.2 The spetrum and spetral density funtion

Suppose X1 . . .XN is a sample from a stationary time series with autoovariane funtion

γ(·) and autoorrelation funtion ρ(·).

The sample spetrum For any frequeny 0 ≤ f ≤ 0.5, de�ne

I(f) =
N

2
(a2f + b2f ),
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where af and bf are obtained by replaing fi by f in (21). I(f) is alled the sample

spetrum of (Xt). It an be shown that

I(f) = 2

[
c0 + 2

N−1∑

k=1

ck cos(2πfk)

]
, 0 ≤ f ≤ 0.5,

where ck is the sample autoovariane at lag k.

The power spetrum The power spetrum is de�ned as

p(f) = lim
N→∞

E [I(f)] = 2

[
γ(0) + 2

∞∑

k=1

γ(k) cos(2πfk)

]
0 ≤ f ≤ 0.5.

Note that

∑∞
k=1 |γ(k)| < ∞ is a su�ient ondition for the onvergene of the power

spetrum. This is beause | cos(x)| ≤ 1 for real x, giving

|p(f)| ≤ 2

[
|γ(0)|+ 2

∞∑

k=1

|γ(k)|
]
.

By integrating term-by-term and using the fat that

∫ 0.5

0
cos(2πfk) df = 0 for k 6= 0, it

is lear that

γ(0) =

∫ 0.5

0

p(f) df.

The spetral density funtion This is just a normalization of the power spetrum,

whih an therefore be expressed in terms of the autoorrelation funtion:

g(f) =
p(f)

γ(0)
= 2

[
1 + 2

∞∑

k=1

ρ(k) cos(2πfk)

]
0 ≤ f ≤ 0.5.

Clearly

∫ 0.5

0
g(f) df = 1.

The spetral density funtion shows the frequenies that dominate the variability in a

time series, and guide preliminary hoies of parametri models.

Example Let Zt, t = 1, 2, . . . be white noise with Var(Zt) = 1. Consider two series

Series I: Xt = 10 + Zt + Zt−1.

Xt has autoovariane funtion given by

γ(k) =





2 k = 0,
1 k = 1,
0 k ≥ 2.

Its spetral density funtion is

g(f) = 2

[
1 + 2

∞∑

k=1

ρ(k) cos(2πfk)

]
= 2(1 + cos(2πf)).
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Series II: Xt = 10 + Zt − Zt−1.

Xt has autoovariane funtion given by

γ(k) =





2 k = 0,
−1 k = 1,
0 k ≥ 2.

Analogously, its spetral density funtion is

g(f) = 2(1− cos(2πf)).

These two proesses are dominated by di�erent types of variation, as an be seen from

the time plots, and the plots of the spetral densities.
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Figure 6: Spetral density funtions for series I and II.

Theorem 6.1 If

∑∞
k=0 |γ(k)| <∞, then

γ(k) =

∫ 0.5

0

cos(2πfk) p(f) df.

This says that the autoovariane funtion an be reovered if the power spetrum is

known.
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6.2.1 Spetral density of a linear �lter

Let {Yt, t ∈ Z} be a stationary proess with power spetrum pY (f). If Xt is a linear �lter

of Yt, i.e.,

Xt =
∞∑

j=−∞

ψjYt−j,

where

∞∑

j=−∞

|ψj | <∞,

Then {Xt, t ∈ Z} is also a stationary proess with power spetrum

pX(f) = |ψ(e−2πfi)|2pY (f), 0 ≤ f ≤ 0.5,

where i is the imaginary unit and

ψ(e−i2πf ) =

∞∑

j=−∞

ψje
−ij2πf .

The funtion ψ(e−i2πf ) is alled the frequeny response funtion or the transfer funtion

of the �lter. The funtion |ψ(e−i2πf )|2 is alled the power transfer funtion or the gain of

the �lter.

6.3 Computations of spetral density funtions for some ARMA(p,q)

proesses

Example 6.1 Purely random proesses. Let {Zt, t ∈ Z}, be a zero mean white noise

proess with variane σ2
. Then

γ(k) =

{
σ2 k = 0
0 k 6= 0

and

g(f) = 2 0 ≤ f ≤ 0.5.

Example 6.2 MA(1) proesses.

For the MA(1) proess Xt = Zt+βZt−1 we have two non-zero values of the autoovariane

funtion: γ(0) = (1 + β2)σ2
and γ(1) = βσ2

, hene

p(f) = 2σ2(1 + β2 + 2β cos(2πf))

g(f) = 2

(
1 + 2

β cos(2πf)

1 + β2

)

Example 6.3 AR(1) proesses

For the AR(1) proess Xt = αXt−1+Zt, |α| < 1. We an rearrange the de�ning equation

to write
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Zt = Xt − αXt−1,

so that white noise is expressed as a linear �lter of the proess Xt, with ψ0 = 1, ψ1 = −α
and ψk = 0 for k 6= 0, 1. The transfer funtion is

ψ(e−i2πf ) = 1− αe−i2πf ,

and the gain is just the magnitude of this,

1− 2α cos(2πf) + α2.

Using the result on linear �lters from above, this means that

2σ2 = (1− 2α cos(2πf) + α2)pX(f),

so that (on normalizing)

gX(f) =
2(1− α2)

1− 2α cos(2πf) + α2
.

Now, suppose {Xt, t ∈ Z} is an ARMA(p,q) proess

Xt − α1Xt−1 − . . .− αpXt−p = Zt + β1Zt−1 + . . .+ βqZt−q

or,

φ(B)Xt = θ(B)Zt

where

φ(B) = 1− α1B − . . .− αpB
p

and

θ(B) = 1 + β1B + . . .+ βqB
q.

If φ and θ do not have ommon zeroes and φ does not have zeroes on the unit irle, then

pX(f) = 2σ2 |θ(e−i2πf)|2
|φ(e−i2πf)|2 , 0 ≤ f ≤ 0.5.

Example 6.4 ARMA(1,1) proess Xt − αXt−1 = Zt + βZt−1.

pX(f) =
2σ2(1 + 2β cos(2πf) + β2)

1− 2α cos(2πf) + α2
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7 State-spae models and the Kalman �lter

7.1 Univariate state-spae models

7.1.1 General form

De�nition 7.1 A univariate state-spae model is a stohasti proess {Xt, t ≥ 1; θt, t ≥
0}, suh that

• Xt ∈ R,

• θTt = (θt,1, . . . , θt,k), for some �xed k ≥ 1,

and

Xt = hT θt + nt, t ≥ 1, (22)

θt = Gθt−1 + wt, t ≥ 1, (23)

θ0 = θ, (24)

where

• G = (Gij) is a known (k × k) matrix,

• h is a known (k × 1) olumn vetor, hT = (h1, . . . , hk), so

hT θt = h1θt,1 + . . .+ hkθt,k,

• {nt, t ∈ Z+} and {wT
t = (wt,1, . . . , wt,k), t ∈ Z+}, are independent zero-mean white

noise proesses, with the variane σ2
n and the ovariane matrix

W = E(wtw
T
t ) = (Cov(wt,i, wt,j))

k
i,j=1 (25)

respetively,

the initial value θ0 is unorrelated with the noise proesses (might be a onstant vetor).

Terminology: Xt is the observation at time t; θt is the state vetor, a vetor of state vari-
ables, a non-observable target proess. Equation (22) is alled the observation equation,

equation (23) is alled the state or transition equation.

Appliations of the state-spae models:

• Navigation

• Traking missiles

• Extrating an objet motion from video

• Computer vision appliations

• Eonomis: foreasting eonomi indiators

The main problem in all these appliations is predition of unobservable state variable θt
given observations X1, . . . , Xt. The Kalman �lter is a reursive algorithm for omputing

the best linear preditor θ̂t of θt in terms of observations X1, . . . , Xt.
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7.1.2 The loal level model

Xt = θt + nt (26)

θt = θt−1 + wt (27)

Here, equation (26) is the transition equation, and the state vetor θt onsists of a single

variable θt ∈ R whih is alled the loal level. The unobservable loal level θt is assumed to

follow a random walk. Here h = G = 1. The noise proess {nt, t ∈ Z+} and {wt, t ∈ Z+}
are assumed to be unorrelated with zero means and respetive varianes σ2

n and σ2
w. If

σ2
w = 0, then θt = θ is onstant and we get a onstant-mean model

Xt = θ + nt (28)

Proposition 7.1 The �rst di�erene ∇Xt of the loal level model is a weakly stationary

proess with the a.f. as the following MA(1) model

Yt = Zt + βZt−1, t ≥ 0,

with β = −1 + (
√
c2 + 4c− c)/2, where c = σ2

w/σ
2
n.

Proof This follows by diret omputation.

∇Xt = θt − θt−1 + nt − nt−1.

= wt + nt − nt−1.

We �rst ompute the variane of ∇Xt:

γ(0) = Var(∇Xt) = Var(wt + nt − nt−1) = σ2
w + 2σ2

n,

sine the white noise terms are unorrelated.

Now

γ(k) = Cov(wt + nt − nt−1, wt+k + nt+k − nt+k−1)

Note that if k > 1, there are no ommon indies in the left and right terms of the

ovariane, so that γ(k) = 0 for k > 1, as for the MA(1) proess. For k = 1, we get

γ(1) = Cov(wt + nt − nt−1, wt+1 + nt+1 − nt) = −σ2
n.

This then gives

ρ(1) =
−σ2

n

σ2
w + 2σ2

n

= − 1

c + 2
.

Sine ρ(1) = β
1+β2 for the MA(1) proess, setting the above expressions equal and solving

the resulting quadrati gives the stated value for β.
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7.1.3 Linear growth model

The linear growth model is spei�ed by these three equations

Xt = µt + nt (29)

µt = µt−1 + βt−1 + w1,t (30)

βt = βt−1 + w2,t (31)

Equation (29) is the observation equation, two other equations are transition/state equa-

tions. The state vetor θTt = (µt, βt) has two omponents whih are interpreted as follows:

µt is the loal level, βt is the loal trend. Comparing these equations with the general

form of the state-spae model we obtain that hT = (1, 0) and

G =

(
1 1
0 1

)

, whih are learly onstant through time.

The omponents of the proess wT
t = (w1,t, w2,t) are assumed to be independent, so the

ovariane matrix of the proess is

W =

(
σ2
1 0
0 σ2

2

)
.

If w1,t and w2,t have zero varianes, then the trend is deterministi

Xt = µt + nt (32)

µt = µt−1 + β = µ0 + βt. (33)

The model is alled a global linear trend model in this ase. "Loal linear trend" means

that the trend is allowed to hange.

Proposition 7.2 The seond di�erene ∇2Xt of the linear growth model is a weakly

stationary stohasti proess and its a.f. has the same struture as the a.f. of an

MA(2) model, i.e., ρ(0) = 1, ρ(±1) 6= 0, ρ(±2) 6= 0 and ρ(k) = 0, if |k| > 2.

Proof. Again, this follows by diret omputation with ∇2Xt.

7.2 The Kalman �lter

Let θ̂t be the best linear preditor of the state variable θt based on observationsX1, . . . , Xt.

The Kalman �lter is a reursive algorithm for omputing θ̂t reursively from θ̂t−1 and the

last observation Xt.

Xt = hT θt + nt (34)

θt = Gθt−1 + wt (35)

Given X1, . . . , Xt we want to ompute

θ̂t = C1X1 + · · ·+ CtXt
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suh that the mean square error

E((θt − θ̂t)
T (θt − θ̂t)) = min

D1,...,Dt∈R
k
E



(
θt −

t∑

i=1

DiXi

)T (
θt −

t∑

i=1

DiXi

)


(36)

is minimized.

The following theorem is implied by Theorem 4.1.

Theorem 7.1 If θ̂t = C1X1 + · · ·+ CtXt is suh that

E((θt − θ̂t)Xi) = 0, i = 1, . . . , t

then θ̂t is the best linear preditor of θt based on X1, . . . , Xt.

Let Ct = (C1, . . . , Ct) and XT
t = (X1, . . . , Xt). The solution to this system an be

obtained as an orthogonal projetion, as in Chapter 4:

Ct = E
[
θtX

T
t

] {
E
(
XtX

T
t

) }−1
.

In pratie, however, this representation is not an e�ient way to ompute Ct, sine

omputing

{
E
(
XtX

T
t

) }−1
is expensive. The Kalman �lter is an algorithm that allows

θ̂t to be omputed reursively from θ̂t−1 and the most reent observation Xt.

7.2.1 Predition stage of the Kalman �lter

At the predition stage of the Kalman �lter, a foreast θ̂t|t−1 of θt is made from the ob-

servable data up to time t− 1.

De�ne

Pt = Pt|t = E

[
(θt − θ̂t)(θt − θ̂t)

T
]

and

Pt|t−1 = E

[
(θt − θ̂t|t−1)(θt − θ̂t|t−1)

T
]
,

known as the error ovariane matries of θ̂t and θ̂t|t−1, respetively. Assume that at time

t− 1 we know θ̂t−1 and the ovariane matrix Pt−1 of the orresponding error θt−1 − θ̂t−1.

Lemma 7.1 θ̂t|t−1, the best linear preditor of θt based on X1, . . . , Xt−1, is given in terms

of θ̂t−1 as

θ̂t|t−1 = Gθ̂t−1, (37)

and the ovariane matrix of the orresponding error θt − θ̂t|t−1 is

Pt|t−1 = GPt−1G
T +W (38)

where W is the ovariane matrix de�ned by (25).
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Proof. This essentially follows beause of linearity of projetion.

θ̂t|t−1 = E
[
θtX

T
t−1

] {
E
(
Xt−1X

T
t−1

) }−1
Xt−1

= E
[
(Gθt−1 + wt)X

T
t−1

] {
E
(
Xt−1X

T
t−1

) }−1
Xt−1

= Gθ̂t−1.

Note that XT
t−1 is assumed known.

Now to ompute the ovariane matrix Pt|t−1. Denote ηt−1 = G(θt−1 − θ̂t−1). Sine

θt = Gθt−1 + wt, we obtain that

Pt|t−1 = E

[
(θt −Gθ̂t−1)(θt −Gθ̂t−1)

T
]

= E
[
(ηt−1 + wt)(ηt−1 + wt)

T
]

= E(ηt−1η
T
t−1) + E(wtw

T
t ) + E(ηt−1w

T
t ) + E(wtη

T
t−1)

= E(ηt−1η
T
t−1) + E(wtw

T
t ) = GPt−1G

T +W.

Note that we used above that E(ηt−1w
T
t ) = 0 and E(wtη

T
t−1) = 0.

Equations (37) and (38) are alled the predition equations of the Kalman �lter.

Denote by X̂t the best linear preditor of Xt based on X1, . . . , Xt−1.

Lemma 7.2

X̂t = hT θ̂t|t−1.

Proof.

Again, this is essentially linearity of the projetion.

X̂t = E
[
XtX

T
t−1

] {
E
(
Xt−1X

T
t−1

) }−1
Xt−1

= E
[
(hT θt + nt)X

T
t−1

] {
E
(
Xt−1X

T
t−1

) }−1
Xt−1

= hTE
[
θtX

T
t−1

] {
E
(
Xt−1X

T
t−1

) }−1
Xt−1 = hT θ̂t|t−1.

7.2.2 Updating stage

When the observation at time t, namely, Xt, beomes available, it an be taken into

aount to modify the estimator for θt. Let

et = Xt − X̂t = Xt − hT θ̂t|t−1,

be the error of the predition based on X1, . . . , Xt−1.

Lemma 7.3 The optimal estimator θ̂t and its ovariane matrix Pt an be found by

means of the following updating equations

θ̂t = θ̂t|t−1 +Ktet = θ̂t|t−1 +Kt(Xt − hT θ̂t|t−1) (39)

Pt = Pt|t−1 −Kth
TPt|t−1 (40)

where

Kt =
(
hTPt|t−1h+ σ2

n

)−1
Pt|t−1h (41)

the (k × 1) matrix (vetor) Kt is alled the Kalman gain matrix.
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Proof.

Let Xt = (X1 . . .Xt−1, Xt)
T = (XT

t−1, Xt)
T
.

Beause

θ̂t = E
[
θtX

T
t

] {
E
(
XtX

T
t

) }−1
Xt = (E(θtX

T
t−1),E(θtXt))

{
E
(
XtX

T
t

) }−1
(

Xt−1

Xt

)

and the matrix E
(
XtX

T
t

)
an be written as follows

E
(
XtX

T
t

)
=

(
E
(
Xt−1X

T
t−1

)
E (Xt−1Xt)

E (Xt−1Xt) E(X2
t )

)
=

(
D11 D12

D2
12 D22

)
.

The inverse of this matrix an be shown (by diret omputation) to be

(
D11 D12

D2
12 D22

)−1

=

(
D−1

11 +D−1
11 D12(D22 −DT

12D
−1
11 D12)

−1DT
12D

−1
11 −D−1

11 D12(D22 −DT
12D

−1
11 D12)

−1

−(D22 −DT
12D

−1
11 D12)

−1DT
12D

−1
11 (D22 −DT

12D
−1
11 D12)

−1.

)

We an now ompute that

DT
12D

−1
11 Xt−1 = E

[
XT

t−1Xt

] {
E
(
Xt−1X

T
t−1

) }−1
Xt−1 = X̂t = hT θ̂t|t−1,

D22 −DT
12D

−1
11 D12 = E(X2

t )− E(XT
t−1Xt)

{
E
(
Xt−1X

T
t−1

) }−1
E(Xt−1Xt)

= E(Xt −XT
t−1

{
E
(
Xt−1X

T
t−1

) }−1
E(Xt−1Xt))

2

= E(hT θt + nt − hT θ̂t|t−1)
2 = σ2

n + hTPt|t−1h,

and

E(θtX
T
t−1)D

−1
11 Xt−1 = θ̂t|t−1, D−1

11 D12 =
{
E
(
Xt−1X

T
t−1

) }−1
E(Xt−1θ

T
t )h.

Hene we have

θ̂t = θ̂t|t−1+(σ2
n+h

TPt|t−1h)
−1
[
E(θtθ

T
t )− E(θtX

T
t−1)

{
E
(
Xt−1X

T
t−1

) }−1
E(Xt−1θ

T
t )
]
h(Xt−hT θ̂t|t−1).

Now onsider Pt|t−1:

Pt|t−1 = E

[
(θ̂t|t−1 − θt)(θ̂t|t−1 − θt)

T
]

= E

[
(E(θtX

T
t−1)

{
E
(
Xt−1X

T
t−1

) }−1
Xt−1 − θt)(E(θtX

T
t−1)

{
E
(
Xt−1X

T
t−1

) }−1
Xt−1 − θt)

T
]

= E(θtθ
T
t )− E(θtX

T
t−1)

{
E
(
Xt−1X

T
t−1

) }−1
E(Xt−1θ

T
t ),

so that

θ̂t = θ̂t|t−1 + (σ2
n + hTPt|t−1h)

−1Pt|t−1h(Xt − hT θ̂t|t−1).
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We an now ompute Pt

Pt = E

[
(θt − θ̂t)(θt − θ̂t)

T
]
= E

[
(θt − θ̂tt|t−1 −Ktet)(θt − θ̂tt|t−1 −Ktet)

T
]

= E

[
(θt − θ̂tt|t−1)(θt − θ̂tt|t−1)

T
]
−KtE

[
et(θt − θ̂t|t−1)

T
]
− E

[
(θt − θ̂t|t−1)et

]
KT

t +KtE(e
2
t )K

T
t

= Pt|t−1 −Kth
TPt|t−1 − Pt|t−1hK

T
t +Kt(h

TPt|t−1h + σ2
n)K

T
t = Pt|t−1 −Kth

TPt|t−1.

As required.

7.3 The Kalman �lter for the loal level model

7.3.1 Predition and updating stages

Reall the observation and transition equations for the loal level model.

Xt = θt + nt

θt = θt−1 + wt.

Here, h = G = 1, {nt, t ∈ Z} and {wt, t ∈ Z} are zero mean mutually independent white

noise proesses:

E(nt) = E(wt) = 0, Var(nt) = σ2
n, Var(wt) = σ2

w, Cov(wt, nt′) = 0, t, t′ ∈ Z+.

Let θ̂t be the BLP of θ given X1, . . . , Xt and Pt = E((θt − θ̂t)
2).

The predition stage: θ̂t|t−1 is the BLP of θt given X1, . . . , Xt−1

θ̂t|t−1 = Gθ̂t−1 = θ̂t−1

the variane of the orresponding error is given by

Pt|t−1 = E(θt − θ̂t|t−1)
2 = Pt−1 + σ2

w.

The updating stage:

et = Xt − hT θ̂t|t−1 = Xt − θ̂t−1

X̂t = hT θ̂t|t−1 = θ̂t−1.

We ompute the Kalman gain as follows

Kt =
Pt|t−1

Pt|t−1 + σ2
n

=
Pt−1 + σ2

w

Pt−1 + σ2
w + σ2

n

.

Now for the updating stage:

θ̂t = θ̂t|t−1 +Ktet = θ̂t−1 +Ktet

Pt = Pt|t−1 −KtPt|t−1 = Pt−1 + σ2
w −Kt(Pt−1 + σ2

w)
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Using the expliit formula for Kt in this ase we an write

θ̂t = θ̂t−1 +
Pt−1 + σ2

w

Pt−1 + σ2
w + σ2

n

et.

This equation an be rewritten as follows

θ̂t = (1−Kt)θ̂t−1 +KtXt.

The error ovariane matrix is

Pt = Pt|t−1 −KtPt|t−1 = (1−Kt)(Pt−1 + σ2
w) =

(Pt−1 + σ2
w)σ

2
n

Pt−1 + σ2
w + σ2

n

.

7.3.2 Long-time behaviour and steady state

It an be shown that the sequene Pt onverges to a ertain limit as t→ ∞. We say that

the Kalman �lter onverges to a steady state.

Assuming that the steady state limit exists it an be omputed as follows. We have from

the updating equation, that

Pt = Pt−1 + σ2
w −Kt(Pt−1 + σ2

w)

= Pt−1 + σ2
w − (Pt−1 + σ2

w)
2

Pt−1 + σ2
w + σ2

n

Passing to the limit in this equation we get that the limit P must be the solution of the

following equation

P = P + σ2
w − (P + σ2

w)
2

P + σ2
w + σ2

n

whih an be rewritten in the following quadrati form

P 2 + σ2
wP − σ2

wσ
2
n = 0

This equation has two roots, P is the non-negative one (as a limit of non-negative se-

quene)

P =
−σ2

w +
√
σ4
w + 4σ2

wσ
2
n

2

Denoting c = σ2
w/σ

2
n the formula for P an be rewritten as follows

P =
σ2
n

2
(−c +

√
c2 + 4c). (42)

A diret omputation shows that onvergene of Pt to the limit (42) yields that

Kt → K =
1

2

(√
c2 + 4c− c

)
, as t→ ∞.
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7.3.3 State-spae models of ARIMA proesses

ARIMA proesses have state spae representations, and in general these representations

are not unique. In what follows, we will give a state spae representation of an AR(p)

proess.

Suppose we have an AR(p) proess

Yt = α1Yt−1 + . . .+ αpYt−p + Zt

Let the state vetor be

θTt = (Yt, . . . , Yt−p+1),

and let the p× p matrix

G =




α1 α2 . . . αp−1 αp

1 0 . . . 0 0
0 1 0 0
.

.

.

.

.

.

.

.

.

.

.

.

0 0 . . . 1 0




the p×1matrix hT = (1, 0, . . . , 0), the white noise proesses nt = 0 and wT
t = (Zt, 0, . . . , 0) ∈

R

p
. The observation variable is Xt = Yt ∈ R, so we have is a univariate model.

The observation equation is

Xt = hT θt,

and the state equation is

θt = Gθt−1 + wt.

State-spae representations for ARIMA proesses allow us to use the general results

relating to state-spae models (though these are not always helpful).
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