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1 Time series as stochastic processes

1.1

Introduction

A time series is a collection of repeated observations of a system, made sequentially
through time.
Examples occur in a variety of real life applications, ranging from economics to engineer-

ing.

1.2

Economic and financial time series: share prices on successive days, economic in-
dexes such as FTSE 100, export totals in successive months, average incomes in
successive months, company profits in successive years etc.

Physical time series, e.g. in meteorology, marine science and geophysics: rainfall on
successive days, air temperature measured on successive hours (days or months)

Marketing time series: sales figures in successive days or weeks, monetary receipts,
advertising costs and so on.

Demographic time series (in study of population change): population of Canada
measured annually, monthly birth totals in England.

Binary processes, a special type of time series when observations can take one of
only two values: in computer science, in biology (e.g. ion channel kinetics).
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1.3 Stationary stochastic processes
1.3.1 Definitions and some examples

Let T' C R.

Definition 1.1 A stochastic process is a collection of random variables { X; = X;(w), t €
T} ={X;, t € T}, defined on a probability space (Q, F,P).

In this course we consider only discrete time stochastic process, i.e., T'=Z or T =7Z,.

Definition 1.2 Given w € Q) the function Xy y(w), w € Q is known as a realisation or
a sample path of the process { Xy (w), t € Z}.

Example 1.1 A sequence {Z;, t € Z} of i.i.d. random variables is a stochastic process.

An ii.d. sequence with zero mean E(Z;) = 0) is often called a purely random process or
white noise.

Example 1.2 A random walk. Let {Z;,t € Z.}, be a sequence of i.i.d. random vari-
ables. A random walk is a stochastic process {X;, t € Z, U{0}}, defined as follows

X():O
X=X 1+ 2, t > 1

Example 1.3 The MA(1)-process (Moving Average process of order 1) is defined by the
equation
Xt — Zt —|— Bthh t c Z7

where {Zy, t € Z}, is a sequence of i.i.d. random variables and § € R.

The joint distribution function F'(xy,...,x;) of a random vector (&, ..., &) is defined as

follows
F(xl,...,xk):P{§1gxl,...,gkgxk}, X GR,jIL...,]{Z.

Definition 1.3 The finite dimensional distribution functions of a stochastic process
{Xy, t € T} are the functions {Fy, 4, (z1,...,2,), t; € T)x; € Rii=1,...,n} defined as
follows

Foo (1, 0 x) =P{Xy, <mq,..., Xy, <x,},

i.e., By 4 (x1,...,2) is a joint distribution function of (X, ..., Xy,).
Definition 1.4 A stochastic process Xy, t € T is said to be strictly stationary if for any

t1,...,t, € T and 7 such that ty + 7,...,t, + 7 € T the joint distribution function of
(X4, ..., Xy,) is the same as the joint distribution function of (X 1ry ., Xt 1r)-

Example 1.4 A sequence {Z, t € Z} of i.i.d. random variables is a strictly stationary
process.

Recall that for a a random variable &, the kth moment is defined to be E(¢), and we say
that the kth moment exists if E(|£|*) < oo.



Definition 1.5 A stochastic process Xy, t € T, is said to be a weakly stationary or
second-order stationary if its first and second moments are finite and

E(X};) = const,
(i.e., the process mean is a constant function) and
Cov(Xy, Xpir) = E((Xy — EXy)(Xiir — EXiir)) = 7(7),

(i.e., the process autocovariance function depends only on lag ) for any t and 7 € T,
such thatt+71 € T.

Example 1.5 A random walk
X=Xy 1+ 2,

where {Z;, t € ZY}, is i.i.d. sequence with E(Z;) = 0, E(Z?) = 0® < oo, t € Z, is not a
weakly stationary stochastic process, but its first difference

VXy =Xy =Xy, t 2 1,

15 weakly stationary.

To see this, use the bilinear properties of covariance and the independence of the variables
Z; to note that

t t+1 t
Cov(Xy, Xpir) = Cov() 723, Y Zi) =Y Cov(Zi, Zi) = ot,
=1 i=1 i=1

which depends on t. The first difference is just Z;, which is clearly stationary.

For a process with finite first and second moments, strict stationarity implies weak sta-
tionarity. But by constructing a process whose variables have first and second moments
that fail to be finite, it is possible to exhibit a strictly stationary process that is not
weakly stationary.

Example 1.6 Let {X;, t € Z}, be i.i.d. random variables with the Cauchy distribution.
This process is strictly stationary by construction, because the variables are i.i.d. but it
fails to be weakly stationary because the kth moment of the Cauchy distribution does not
exist for any k > 1.

(NB the preceding example was only hinted at in lectures - it is not examinable.)

Note also that weak stationarity (as the name suggests) does not imply strict stationarity.

Example 1.7 Consider a sequence of independent random variables Xyt € Z,, such
that Xy is uniformly distributed on [—1,1] when t is odd and normally distributed with
zero mean and variance 1/3 when t is even. Xy, t € Z,, is weakly stationary, but is not
strictly stationary.

Remark. In the rest of the course, by a stationary stochastic process we mean a weakly
stationary stochastic process.



1.3.2 Awutocovariance and autocorrelation functions

Two main characteristics of a weakly stationary stochastic process { X, t € Z} are the
mean g = E(X;) (constant function of t) and the autocovariance function

’y(kf) = COV(Xt,Xt+k), k c Z.

The process autocorrelation function (ac.f.)

_ (k)
p<k)_W7 /{ZEZ,

is just its autocovariance function standardized by dividing it by the variance of the
process.

Example 1.8 {Z;, t € Z}, a sequence of uncorrelated random variables with E(Z;) =
0, E(Z?) = 0? < 0o, t € Z, is a weakly stationary stochastic process with

1, k=0,
M@_{O,k#ﬂ
To see this, note that y(k) = Cov(Z;, Zivx) = 0 for k # 0, because the variables Z; are
uncorrelated, while v(0) = Cov(Z;, Z;) = 0. Normalising gives the required result.

Example 1.9 The MA(1)-process is weakly stationary stochastic process with

0, |k| > 1,
p(k) =4 1, k=0,
6/(1_'_62)7 k:_lul

This can be seen from the defining equation of the MA(1) process as follows.

’Y(k) = COV(Xu Xt+k) = COV(Zt + 8211, Ziyi + 5Zt+k—1)
= Cov(Zy, Zyi) + BCoV(Zy, Zysr1) + BCOV(Zy_1, Zyii) + B*Cov(Zy—1, Zyrk).

For |k| > 1, the indicest — 1, t, t + k — 1, t + k are all distinct, so that v(k) = 0 because
the variables Z; are independent.

For k=0,

7(0) = Var(Z,) + B*Var(Z;_1) = (1 + %)o”.

For k=1,

v(1) = BCov(Z,, Z;) = Bo?,
and symmetrically, v(—1) = Bo®. Normalizing gives the result for p(k).



We see that the ac.f for an MA(1) process cuts off after the first lag. It is typically the
case that (k) decays exponentially to 0 as k — oo for stationary processes.

Theorem 1.1 1) The autocovariance function (t), t € Z, is a non-negative definite
function, i.e., for any real numbers a;,i = 1,...,n, and any timest; € Z,i=1,...,n,

Z CLﬂlj’V(lfi - tj) Z 0.

ij=1

2) Both the autocovariance and the autocorrelation function are even functions of lag

1) = (=),

TEZ.
3) lp(r]| <1, 7€ Z

4) The ac.f. does not uniquely identify the underlying stochastic process.

Proof.

1) Indeed

n

Z aiaj'y(ti — t]) = Var(alth + 4 (lnth) Z 0.

ij=1

2) Check this property for the autocovariance function
v(1) = Cov(Xy, Xitr) = Cov( Xy 7, X)) = Cov(Xy, Xy ) = y(—7);
the same property for the autocorrelation function follows immediately.

3) Indeed
0 < Var(A X, + XoXiir) = (A2 4+ A2 (0) + 20 Aoy(7).

If Ay = X2 = 1, then (1) > —~v(0), so that p(t) > —1. If \y = 1, Ay = —1, then
v(0) > ~(7), so that p(7) < 1. Thus |p(7)| < 1 as required. This property is also an
immediate consequence of the Cauchy-Schwartz inequality.

|Cov(Xy, Xiir)| < v/Var(X,)y/Var(X,,.).

4) Examples will be given later. [J



1.3.3 The sample mean and the sample autocovariance function

Let {X;, t € Z} be a weakly stationary process with mean p and the autocovariance
function ~(+).

The sample mean
n

— 1

X =— X,
is used as an unbiased point estimator for y. If mean is estimated, then usually the zero
mean process Y; = X; — pu is considered. Subtracting the mean does not change the
process autocorrelation function.

Given x1,...,xy observations of a stationary process, the sample autocovariance is de-
fined as follows

. ¢ is the usual estimator of the theoretical autocovariance coefficient (k) at lag k. Note
the following properties of the sample covariance function:

o E(cy) # v(k), i.e., it is a biased estimator.

e E(cx) — v(k) as N — oo, i.e., it is an asymptotically unbiased estimator.

The sample ac.f. is defined by

_ % ii‘l'“(xt —T)(Tpyr — T)
T = — =

o Zi\;(xt —T)?

We often look at plots of r, as a function of time. This is known as a correlogram.

1.3.4 Linear filters

Given a time series {X;, t € Z} one can apply to it a linear operator or linear filter
o0

Y = Z ap Xk,

k=—o00

specified by fixed (i.e. non-random) coefficients ay, k € Z. In general this is an infinite
sum, therefore its convergence in some probabilistic sense has to be justified (e.g., mean
square convergence, to be discussed later).

We have already encountered several processes that were defined implicitly as linear fil-
ters, e.g. the MA(1)-process, which is obtained by applying a linear filter with two
nonzero coefficients ag = 1 and a; =  to a white noise process.

We can sometimes use a linear filter to transform a non-stationary time series into a
stationary one.



1.3.5 Differencing as a linear filter

Define the first difference of the stochastic process X; at lag d to be

VdXt - Xt - thd-

This is a linear filter with two non-zero coefficients ap = 1 and a; = —1. Note that VX,
will always be denoted VXj.

Further, for 7 > 1, the jth difference at lag d is defined to be
VX = Va (ViXy)

An important property of differencing is that it preserves stationarity.

Proposition 1.1 If {X,, t € Z} is a stationary stochastic process with nonzero mean
and autocovariance function (1), T € Z, then its first difference at lag d, V4X;, is a
stationary stochastic process with zero mean and autocovariance function

(k) = 2vy(k) —y(k +d) —v(k —d), k € Z

Proof. 1t is clear that
E(X: — Xiq) =0.
Compute the autocovariance function of {Y; = X, — X, 4, t € Z},
COV(Y;&, Y2+k) = COV(Xt — Xi—aq, Xigp — Xt+kfd)
= COV(Xt, Xt+k) — COV(Xt_d, Xt+k) — COV(Xt, Xt-i—k—d) + COV(Xt_d, Xt+k—d)
= 29(k) = v(k + d) — v(k — d).

This depends only on k, hence the process is stationary (with zero mean).[

More generally, it is the case that if X; is stationary, the linear filter

oo

Y = Z ap X

k=—00

is also stationary, so long as Y - |ag| < oo.

1.4 Removal of trend and seasonal components

A polynomial trend can be removed by taking differences of an appropriate order. A
seasonal component can also be removed, by taking differences of an appropriate lag.



Proposition 1.2 If m, = Z?:o a;t!, t € Z then
VEm, = klag.

Corollary 1.1 If X; = Zf:o ajt! + Y, t € Z, where k > 1, a, #0 and {Y;, t € Z} is a
stationary process, then

VX, = kla, + V*Y,

s a stationary process with mean klay.
This means that we can remove any polynomial trend.
Suppose we now consider a time series
Xy =my + 5, +Y,,
where {S,, t € Z} has period d, i.e., S; = S;_4 for any t. Applying V, gives
ViXi =Xy = Xy g=my —my_q+ Y — Y4

which gives a decomposition of the difference VX, into a trend component m; — m;_4
and a stationary term Y; —Y,_4. If now m, is a polynomial of order k, m; —m;_,4 is also a
polynomial and so can be removed by taking differences of the appropriate order as above.

Another approach to removing a polynomial trend is to estimate the polynomial first,
and then subtract it. e.g. suppose

X, =a+bt+ct> +Y,,

where Y; is stationary and we have observations of X; for 1 <t < N. We can obtain
estimators (a, b, ¢) by looking for the minimizers of the function

N
f(ul, Ua, U3) = Z(Xt — U — UQt — U3t2)2
t=1
and then simply work with the subtracted time series

X, —a— bt — &t2.

1.5 L?—space and mean square convergence

This non-examinable section contains a number of results that are useful for a rigor-
ous understanding of the probabilistic issues underlying convergence results that we need.
Proofs are generally omitted, but can be found in Chapter 2 of Brockwell and Davis.

Consider a probability space (€2, F, P). We say that a random variable X defined on 2
is square integrable if
E(X?) < <.



We denote by L? = L*(2, F, P) the collection of all square integrable random variables
X defined on (€, F, P). Note that L? is a linear space, since if E(X?) < co and a € R,
then

E((aX)?) = a’E(X?) < o0,

so L? is closed under multiplication. Further, it is closed under addition, since if E(X?) <
00, E(Y?) < oo, then

E(X +Y)?) = E(2X? +2Y? — (X —Y)?) < 2E(X?) 4 2E(Y?) < 0.
(This is the parallelogram law.)
Two square integrable random variables X and Y are said to be orthogonal if
E(XY) =0.

A square integrable random variable X is called orthogonal to a set of {Y, Z,...} square
integrable random variables if

E(XY)=0EXZ2)=0,...,
i.e., if X is orthogonal to any element of the set.

Note that we can also define the norm || X || by
X2 = E(X?).
If X,,, n>1, and X are square integrable random variables and
1X, — X|?=E(X,—X)?—=0, as n— oo,
then we say that the sequence X,, n > 1, converges to X in mean square.

Theorem 1.2 If {X,} is a Cauchy sequence, i.e., | X,, — X,,|| = 0, as n,m — oo, then
there exists X € L2, such that X,, — X in mean square as n — oo.

This theorem states that L? is complete, which is to say that L? is an example of a Hilbert
space.

Proposition 1.3 If X,,, Y, € L?>, n > 1, X, Y € L? and X, — X, Y, — Y in mean
square as n — oo, then

E(X,Y,) — E(XY),

as n — 0.

Lemma 1.1 Let Yy, k > 1, be a sequence of independent random variables with zero
mean and E(Y}?) = o such that

[ee]
Zag < 00, (1)
k=1

then the sequence of random variables S, = >, _ Y, n > 1, converges in L*.

10



Proof. By Theorem 1.2 it suffices to show that S, = >, Yi, n > 1, is Cauchy sequence
in L2, Assuming n > m we get by direct computation that

E((Sn - Sm)2) = Z 0’;3

k=m+1

hence E((S, — Sin)?) — 0 as n,m — oo, by assumption (1). Therefore S,, n > 1,
converges in L?. The limit is, of course, the infinite sum S, = Y 7=, Yi. Also, observe

that -
E(S2) =) o
k=1

Theorem 1.3 (Consistency of the sample mean.) Let {X;,t € Z} be a stationary
stochastic process with mean pi and the autocovariance function y(k), k € Z. If y(k) — 0
as k — oo, then X — p in mean square as n — oco.

11



2 ARMA (Autoregressive Moving Average) processes
2.1 MA (moving average) processes
We have already encountered the MA(1) process, satisfying

Xt = Zt + BZt—17

where the variables Z; are white noise, i.e. i.i.d with E(Z;) = 0.

It is often convenient to write such definitions in terms of the backward shift operator B.
This acts on a time series as follows

BXy = X,
and powers of B are defined by

BFX, = X, ;.

In terms of this operator, the defining equation of the MA(1) process is just

The moving average process of order ¢ (MA(q) process) is defined analogously:
Xe =2+ B1Zvr + -+ ByZiyg, (2)
or, more compactly:

X, =1+ BB+ BB+ ...+ 3,BY)Z;,

where Z; is white noise with Var(Z;) = 0 < oo. It will be of use to abbreviate this even
further to

Xt — H(B)Zt,
with 0(\) = 1+ B\ + ...+ B,\%

It is clear that this process is weakly stationary for any {f;}. Indeed, defining for conve-
nience By = 1, we compute that

EXtZO

7(0) = Var(X,) = 0> 3 32,

=0

both of which are independent of . Now considering (k) for £ > 0,

’y(kf) = COV(Xt, Xt-i—k‘) = COV(Zt +/81Zt_1 +... +/8th_(1, Zt-i—k‘ + 61Zt+k‘—1 +...+ Bth+k_q).

12



ma.sim

T T T
50 100 150 200

(=}

Time

Figure 1: Plot of 200 simulated realizations of MA(1) process with 3 = 0.5

Note that if k > ¢, there is no overlap in the indices t,t —1,...,t —qgand t + k, t + k —
1,...,t+ k —q, so that v(k) = 0. However, if 0 < k < ¢, then

q—Fk

q—k
v(k) = Cov(Xy, Xopyi) = ZﬁiﬁiJrkE(Zt{i) = ZﬁzBHkO'Q-
i=0 i=0
Since (k) is an even function of lag, this completes the calculation.

The ac.f. of the above MA(q) process can now be written as

0 k> q,

1 k=0,
k) = q—k q

p(—k) k < 0.

An important property when trying to recognise an MA(q) process is that its ac.f cuts
off after ¢ lags.

(I don’t think I got to the example below, but it is worth noting, and I will mention it
briefly when time permits.)

Note that it is possible to exhibit different weakly stationary MA processes with the same
ac.f.
Model T: MA(1) process X; = Z; + Z;_1, with ac.f

0 k| > 1,
plk) =4 1 k=0,
B/(1+ 6% k=-1,1

13



Model IT: MA(1) process X; = Z; + 371 Z; 4, with ac.f.

0 |k| > 1,
p(k) =4 1 k=0,
B/(1+3%) k=-1,1

So, if B # 1, then we have two different MA(1) processes with the same ac.f. (this is an
example of the last assertion of Theorem 1.1). We will consider only MA(1)-processes
with || < 1, because they are invertible. Invertibility will be discussed shortly!

2.2 AR (autoregressive) processes

The AR(p) process satisfies the following equation
Xt = alXt—l + OéQXt_Q + ...+ apXt—p -+ Zta (3)
where Z; is white noise. This can be written in terms of the backward shift operator as

O(B)X, = Z,.

What conditions on ¢ are needed for X; as defined above to be stationary? Consider the
case of the AR(1) process first, with defining equation

Xy =aXy 1+ 7, (4)
where o € R and {Z;, t € Z} is white noise.
1) Assume first that |a] < 1. Substituting into the equation (4) k times we obtain

Xy =a(aXy o+ Zi 1) + Z,

= ®(aXi_ 3+ Zi-2) + +aZy1 + Z4
=Zi+aZi g+ 4" Z "X .

If {X;, t € Z} is a stationary solution, then E(X?) is constant and o™X, ; ; converges
to zero in mean square as k — oo. This means that X, — Zf:o o’ Z,_; also converges to
zero in mean square. Therefore, if |a| < 1, the stochastic process

Xt = ZOszt,j (5)
7=0

is the unique stationary solution of equation (4).

This can be expressed quite neatly in B-notation as follows.

(1 — O[B)Xt = Zt

14



and so

Xt Zt/<1—0{B)
= (1+aB+a*B*+---)Z,
=Zi+aZy s+ 0P Zy oy + -

By working directly with the representation (5), it is clear that
E(Xt) - 0,

VarXt—a Za 1_a2)<oo,

We can now calculate the autocovariance funct10n ~(k) directly from the defining equation
(4). This foreshadows the approach we will take for higher order AR(p) processes. First,
multiply both sides of (4) by X; , and then take expectations.
E(XtXt—k) = E(OéXt_lXt_k) + E(ZtXt—k‘)'

Note that E(Z;X; 1) = 0, as can be seen by considering the representation (5) for X, .
Now

E(XtXt,k) = E(&thlxt,k) = aCOV<Xt,1,Xt,k) = OéCOV(Xt,b Xt—l—(k—l))-
This gives

E(X:Xik) = aCov(Xi—1, Xy 1-(k-1)) = aCov(Xo, Xj—1) = ay(k — 1),

using stationarity and the fact that « is an even function of k. This shows that v(k) =
avy(k — 1). Tterating this argument then gives

ako?

(k) = a*y(0) = T a2

Note that we could also obtain the same result from the representation (5) as follows.
Taking k > 0,

— _ 7 3 i k:+ . g
’y(kf) = E(XtXt-i-k‘) = E (( E « Zt—i) (ZEO (6% Zt-i—k‘—i)) = O' E o J TOZQ)
By normalizing by the variance of the process, the ac.f. is seen to be.

p(k) = ol¥l, kel

Note that the ac.f. of an AR(1)-process decays exponentially.

2) Assume now that |a| > 1. In this case the series (5) does not converge in L?, but the
equation (4) can be rewritten as follows

Xy =—a "Zyy + o Xy

15



AR1.sim

T T T T T
o 50 100 150 200

Time

Figure 2: Simulated realization of a stationary process (AR(1) with o = 0.7, 200 values)

This process can be repeated to gives
Xo=—-a'"Zy——a " Zp a7 X .

By the same arguments as before we obtain that
o0
X = Z o " Zk
k=1

is the unique stationary solution of (4).

We have seen that the AR(1) process with |a| < 1: can be represented as an MA (0c0)-
process, i.e., in terms of Z, k < t. Such a process is called causal or future-independent
AR-process. In constrast, the AR(1) process with |a| > 1 is future-dependent, so is
regarded as unnatural and is not used in modelling stationary times series.

|a] =1 is a degenerate case. If, say, @ = 1, then
X=X+ 4

is not stationary (we have already seen that the random walk is not stationary). In this
case, there is no stationary solution. Higher order AR(p) processes will be discussed in a
later section.

2.3 Definition of the general ARMA process

Definition 2.1 The process {X;, t € Z}, is said to be an ARMA (p,q) process if it is
weakly stationary and satisfies the following linear difference equation

Xi=aXo g+ +pXy p+ 2+ 5121+ Byl t€EZ

16



where {coy, i = 1,...,p, B;, 7 = 1,...,q} are real numbers, and {Z;,t € Z}, is a white

noise process with finite variance Var(Z;) = o?.

In terms of the operator B, the equation for an ARMA((p,q) process can be written in

the form
¢(B) Xy = 0(B)Z,

where ¢(B) and 0(B) are polynomials of order p, g respectively
¢p(B)=1—-ayB—---—a,B"

is the characteristic polynomial of the AR part, and
0B)=1+/B+ -+ p,B?

is the characteristic polynomial of the MA part.

Series ma.sim

ACF
0.6 0.8 1.0
|

0.2
|

0.0

-0.2

Lag

Figure 3: The sample ac.f.for the MA(1) sample plotted in Fig. 1

2.4 Invertibility and causality

Let {Z;,t € Z} be a white noise process with zero mean and variance o < oo and let
{Xi,t € Z} be an ARMA(p,q) process defined by the following equation

¢(B)Xy =0(B)Z, t € Z, (6)
where ¢(B) and 0(B) are the characteristic polynomials given after (2.1).

Definition 2.2 An ARMA ((p,q) process { Xy, t € Z} defined by equation (6) is said to be
invertible if there exists a sequence of constants {a;, i € Z,} such that >’ |a;| < oo and

(e e]

Zt = Z aiXt—i-

1=0

17



Invertibility means that the inverse operator

o(B) = % — 67 (B)o(B),

exists, therefore

¢(B)
Zi= g5t = a(B)X,.

Since ¢ and 6 are polynomials with ay = 5y = 1 the a(B) can be written as
a(B)=1-— Zaij,
j>1
provided > |a;| < oo (so that this formal power series expansion converges), and

o0

Zt = Xt — Zant_j.

J=1

As an illustration, consider the MA(1) process

Xt — Zt + Bthl = (1 + BB>Zt
Here ¢(B) =1 and §(B) = 1+ B. For || < 1, the MA(1) process is invertible and

Zy=(1+pB)" =Xy = Xy 1+ Xy 0 — -
Invertibility means that an AR(co)-representation of the process X; is valid
6(B) N
Zt = th = Xt — Za,th_j

J=1
or

Xt = Zant,j + Zt

Jj=1

this representation is often helpful, e.g. when calculating the ac.f of a process, as we shall
see later.

Definition 2.3 An ARMA(p,q) process defined by equation (6) is said to be causal, if
there exists a sequence of constants {c;, i € Z,} such that Y_ |¢;| < oo and

[e.9]

Xt = Z CiZt—i~

1=0

Causality means that the inverse operator
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exists, therefore
0(B)

¢(B)

Since ¢ and 6 are polynomials with ag = Sy = the inverse operator can be written as

Xt:

Zt = C(B)Zt

C(B) = ]_ + ZCth_j’
j=1

Theorem 2.1 Assume that the polynomials O(\) and ¢(\), A € C, do not have common
roots. Then the ARMA (p,q) process

Xi=a Xy a+ .+ apXe y + 2+ P12+ -+ ByZi—yg

1) is invertible, if and only if all roots of the characteristic polynomial 6(\) (corresponding
to its MA part) lie outside the unit disc {z € C': |z| < 1}, i.e., the absolute value of any
root is greater than 1.
2) is causal, if and only if all roots of the characteristic polynomial ¢(N\) (corresponding
to its AR part) lie outside the unit disc {z € C': |z| < 1}, i.e., the absolute value of any
root is greater than 1.

Recall the earlier example of the MA(1) process X; = Z, + 7, 1. Its characteristic
polynomial is #(\) = 1+ S\, with root A = —1/f, which is a real number and lies outside
the unit disc provided |5] < 1.

For the AR(1) process X; —aX; | = Z;, the characteristic polynomial is ¢(\) = 1 —aX =
0, with root A = 1/«, which is a real number and lies outside the unit disc provided
la] < 1.

Example 2.1 Show that the ARMA(1,1) process X; — 0.6X, 1 = Z; — 0.27;_4 is both
invertible and causal, and find its MA representation.

First note that () =1 — 0.6\ and O(\) = 1 — 0.2\. This means that the root of the AR
characteristic polynomial is A\ = 1670 > 1 and the root of the MA characteristic polynomial
1s A =5 > 1. These values are outside the unit disc, hence the process is both invertible
and causal.

(1—0.2B) N - -
X, = 7, = Z, = (1-0.2B 0.6'B"| Z, = Z 0.4x0.6"1Z,_;
T BT (1—06B)" ( ) z; ! t+; 8 '

2.5 Computation of the ac.f. for ARMA(p,q) processes
2.5.1 Computation by using MA (co)-representation
Suppose the ARMA(p,q) process

Xi=a Xy + .+ apXe y+ 2+ P12+ -+ ByZiy
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is causal. How can we compute the autocovariance function and the autocorrelation
function of this process?
If we can solve

_B) _
(B) = S = ¢ (B)(B),

i.e., compute coefficients in the expansion

[e.e]

Xt = Z Cth_j,

=0
then we can compute
v(k) = Cov(Xy, Xiyp) = 0” Z CiCipk, k>0,
=0

and the problem is theoretically solved.

However, it can be difficult to compute the coefficients ¢; and only in particular cases can
the coefficients be computed explicitly. For instance, we can compute the coefficients for
an ARMA(1,1) process. Indeed, consider

(1-aB)X, = (1+pB)Z, (7)
where |a| < 1 and |f| < 1.

1+ BB

X, =
T 1 _aB

Zy=(1—aB) ' (1+BB)Z,

which gives

:<§)fm>1+53a }:Myq+5m
k=0
This then simplifies to
(a+ ) Z "7 (8)
k=1
This process is a linear filter of the time series Z;, and the sum converges since |a| < 1.

This representation now allows us to calculate the ac.f of the general ARMA(1,1) process.
We first set up some useful preliminary results. Multiplying (8) by Z;, taking expectations
and using independence of Z; and Z;, when i # j we obtain

E(Z:X,) = E(Z?) = o”.
Further, multiplying (8) by Z, ; gives

E(Z,.1X,) = aE(X,_1Z,_1) + E(Z,Z,_1) + BE(Z% ) = o*(a + B).
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On multiplying (7) by X; we find that
7(0) = ay(1) + o* + Bla + B)o>.
Moreover, multiplying (7) by X;_; and taking expectation gives
E(X: X 1) = aE(X} ) + E(Z:Xi-1) + BE(Zi1.X41).

Now E(Z;X;_1) = 0 (by considering a similar MA representation for X; 1), so we get the
following equation
7(1) = ay(0) + Bo.

We now have two equations in the two unknowns (0) and y(1). Solving them we get

021+ﬁ2+2aﬂ

7(0) = o
7(1) — 0_2 (1 +(1Iﬁ_)(ao;+ﬁ)

To obtain the equations for v(k), k& > 2, we again multiply the equation for X; by
Xi_r, k> 2 and take expectations:

E(Xtthk) = OéE(thlthl.;;) -+ E(Ztthk) -+ BE(thlxt,k).

By considering the MA representation for X, j, it is clear that E(Z,X; ) = 0 and
E(Z;,-1X;_x) = 0. Hence
v(k)=avy(k—1), k> 2.

So, finally
1+ 5%+ 2af
10) = o
1+af)(a+p
(k) =ay(k—-1), k=2,

v(k) =~v(—k), if k <O.

0)=1

_ (d+ap)(a+p)
p1) = L+ B2+ 2ap
(k)
(k)

The correlations of an ARMA(1,1) process decays exponentially; the same is true for any
ARMA (p,q) process.
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2.5.2 The Yule-Walker equations for an AR(2) process

Consider an AR(2)-process
Xi=a1 X1+ X o+ Zt, teZ (9)

and suppose that it is causal.

Multiplying both sides of the equation (9) by X;_, where k > 0, and taking expectations,
we obtain the following equations

E(X: X k) = aE(Xi1 X k) + aoE( Xy 2 Xy k) + E(Z: X k).
The process X; can be expressed as an MA process of infinite order
Xe=Zi+ a1z +caly o+

with some coefficients ¢;. Therefore, if & > 0, then X;_, and Z; are independent and we
have that E(Z;X;_1) = 0, hence

Y(=k) =oy(=k+ 1)+ axy(—k+2), k>0, (10)
If £ =0, then the equation will be
7(0) = ary(1) + azy(2) + 0*.

Using the fact that v is an even function, we can rewrite these equations as follows

7(0) —eny(1) —ay(2) = o
7(1) = 1y(0) = azy(1) = 0
7(2) —ary(1) — aey(0) = 0
v(k) —ary(k —1) —aoy(k —2) =0, k > 3.

These are the Yule Walker equations for an AR(2) process.

It is clear that the first three equations form a closed system of equations for v(0),~(1)
and v(2), so we can obtain the form of 7(0),~(1) and (2) explicitly.

If we divide all equations (10) by the process variance, i.e., by 7(0), and use the fact
that p(k) = p(—k), then we get the following system of equations for the autocorrelation
function p(k), k € Z, of the process
p(0) =1
p(1) — a1 —azp(l) =0
p(k) —aip(k —1) — agp(k —2) =0, k > 2.
For k = 1 we can find from the second equation that

o

D=1
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therefore we get the following system of equations for the ac.f. of the AR(2) process
p(0) =1
aq
1) =
p1) = 1—

p(k) = anp(k — 1) + asp(k — 2), k = 2,
p(k) = p(=k), k <0.

We can, in principle, compute recursively p(k) for any k£ > 0 (and for k£ < 0 similarly),
one by one.

Another way to compute p(k), k& > 0 is to note that the equations above are linear
difference equations, for which there is a systematic method of solution. Some terminology
from the theory of difference equations is useful here: given an AR(p) process

Xi—a X1 — ... — Xy, =0(B)X, = Z,
with characteristic polynomial
PA) =1—agA— ... — o\,
the auxiliary polynomial is defined as
N — o NP — Q.
If mj, i« = 1,...,p are the zeroes of the auxiliary polynomial, then 7r;1, 1=1,...,p are

the zeros of the characteristic polynomial. The AR(p)-process is causal if and only if
m| <1,i=1,...,p.

If m,i = 1,2, are the zeroes of the auxiliary polynomial for the AR(2)-process, i.e.,
7,1 = 1,2, are the roots of the following equation
AN — o\ —as =0,
then a general solution of Yule-Walker equations for p is given by the following formula
p(k) = A17T‘1k| + A27T|2k‘, k>0,

in the case when the roots are different and by a slightly different formula, if they coin-
cide. The constants A; are determined by the initial conditions.

For the AR(2) process, the causality-stationarity condition |m;| < 1, i = 1,2 takes the

form

a; + /a2 + 4das
2

It can be shown (by considering carefully all possible choices of «;) that these conditions
are equivalent to the following simple conditions on coefficients a; and as

a1ty <1
ap — oy > —1

O[2>—1
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Assume that the coefficients «a; satisfy the above conditions. We will consider the differ-
ent possible cases in turn.

I. Real roots. If af + 4ay > 0, the roots m; are real. To find the constants A; in the
formula

p(k) = Ayl ApmlM
we use the equations for £k = 0 and £ = 1. Setting £ = 0, we get the first equation for
determining A; and A,

p(0) =1=A; + As.

If £ =1, then
o

p(1)

so, we get the second equation for determining A; and A,

:1—042

p(1) = Aymy + Agms.
Solving the system

Al -+ A2 - 1
(631
Ay + Aoy =
1—0[2
we find
Al _ Oél(l — Oég)il — 79
T — To
A2 - 1 - Al

II. Coincident roots. If a2 + 4 = 0, then the roots coincide, m; = /2, they are real,
and the solution takes the form

p(k) = (A + Bk)(a1/2)", k >0,
Using the initial conditions p(0) = 1 and p(1) = a3 /(1 — az) we find that

1"—0(2
1—0[2.

A=1, B=

III. Complex roots. If a3 + 4 < 0, then the roots are a complex conjugate pair
T =7re¥, my=re ",

where i is an imaginary unit, r = \/—ay > 0 and ¢ = tan~'((—a} — 4az)/a1), to be
interpreted as lying in the range 7/2 to 7 if «; is negative. A general (complex-valued)
solution can be written then in the form

p(k) = r¥(Ae™® + Aye *%) |k >0,

where Ay, A; € C are complex numbers. We are looking for a real-valued solution, so the
choice of A; and As must give

p(k) = r¥(Acos(ky) + Bsin(kp)), k > 0,

where A and B are real numbers. Using again the initial conditions p(0) = 1 and
p(1) = a1 /(1 — ap) we can compute the coefficients A and B.
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Example 2.2 Consider the AR(2) process Xy = Xy—1 — 0.5X,_o + Z;. This is a causal
stationary process, and its ac.f. is

(k) = (%)k (cos (%’“) + %sin (%’“)) k>0,
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3 Integrated ARMA or ARIMA models

Definition 3.1 A stochastic process { Xy, t € Z}, is called an ARIMA (p,d,q) process if
its dth difference W; = (1 — B)?X; is a causal and invertible ARMA (p,q) process of order

p,q, i-e.,
(b(B)Wt — H(B)Zt,

6(B)(1— BY'X, = 0(B)Z.

Note that the ARIMA(p,d,q) process is not a stationary stochastic process for d > 0
since its characteristic polynomial is ¢(\)(1 — A\)%,which has a (multiple, if d > 1) zero
on the unit circle {z € C : |z| = 1}. There is no (causal or not) stationary solution of

the equation
o(B)(1 - B)'X, =0(B)Z,.

Example 3.1 The ARIMA(0,1,0) process
(1 - B)Xt - Zt

Xi=Xi1+ 7%

18 a random walk.
Example 3.2 ARIMA(1,1,0) process

Xt - 1.7Xt,1 - 0-7Xt72 -+ Zt
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4 Time series prediction

One of the main goals of time series analysis is to predict the future evolution of a time
series given past observations.

4.1 Best linear prediction in L?

Example 4.1 Let X;, Xy and Y be square integrable random variables defined on the
same probability space. The problem: Find the linear combination Y = by X1 + by X5 that
minimizes the mean squared error (m.s.e.)

m.s.e. = E(Y — b1X1 — bQXQ)z.
Solution.I. Minimize the function

Fby,bs) = E(Y — b1 X — by X5)? = E(Y?) + BE(X?) + B2E(X2)
— 2b1E(YX1) — QbQE(YXQ) + bleE(XlXQ)

of two real variables by calculus. R
Solution.Il. Find a linear combination Y = b; X + by X5 such that

E(Y -Y)X1) =0

E(Y —Y)Xy) =0,

so, Y — Y is orthogonal to both X; and X,, and, therefore, orthogonal to any linear
combination a1 X7 + a>Xs.
In both cases the coefficients minimizing the m.s.e. must satisfy the equations

More generally, consider random variables X1, ..., X,, and Y with finite second moments
EY?) <oo, k=1,...,n,
E(X?) < o0
defined on the same probability space (2, F, P), i.e., X1,...,X,,,Y € L*(Q, F, P).

Definition 4.1 The best linear predictor Y of Y in terms of X1,..., X, is the linear
combination by X1 + - - - + 0, X,, such that

E(JY — (X1 + -+ 0, X)) = inf E(|Y — (1. X1+ -+ . X)) ?).

Cl,..,Cn
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Theorem 4.1 Let X4,..., X, and Y be an arbitrary square integrable random variables
defined on the same probability space (0, F, P). If the coefficients b; € R, i = 1,...,n
satisfy the prediction equations

then

A~

15 the best linear predictor of Y in terms of Xq,..., X,.

Proof. Let b;, 1 = 1,...,n be a solution of the prediction equations. Consider an arbitrary
linear combination of X1,..., X,

?:a1X1—|—~-~+aan, a; € R,o=1,...,n.
Direct computation gives
E(Y —Y)?)=E(Y =Y +Y —YV)?)
—E(Y = Y))+E(Y =Y))) +2E((Y =Y)(Y = Y)

—E(Y -Y)}) +E (i(bl- - al-)Xi) +2E ((Y ~Y) i(bi - ai)Xl->

i=1

—E(Y —YV)}) +E (i(bl- - ai)XZ) +9 i(bi — ;)E <(Y - }A/)XZ-)

since

E<(Y—§7)X,~) —0,i=1,....n
by definition of b; € R, i = 1,...,n. Therefore

n

E(Y - Y)") =E((Y = ¥)*) +E (Z(b@- - ai>Xi> > E((Y -Y)?)

i=1
The theorem is proved. []

This means that the best linear predictor of Y in terms of Xy,..., X, is a projection in
L? of Y onto
L’LTL{Xl,,Xn} = {01X1+"'+Can, C; € R}, (12)

the linear subspace generated by Xi,..., X,,.

Notation: II(Y|Xq,..., X)) denotes the best linear prediction (BLP) of Y in terms of
Xy, X,

The projection is a linear operator:

(Y + Z|X1,..., X)) =Y |X1,..., X)) + (Z| Xy, ..., X,).
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Corollary 4.1 Let {X;, t € Z} be a weakly stationary stochastic process with zero mean.
If the coefficients b;, i = 0,...,t — 1 are solutions of the following system of equations

v(h+k) = Zbﬁ —i), k=0,...,t—1,

or, equivalently,

p(h+ k) = Zblp —i), k=0,...,t—1,

where y(+) and p(+) are the autocovariance and the autocorrelation function of the process,

then
t—1

)?Hh = Z bi X

=0

is the best linear predictor of of X;yp in terms of X1, ..., X;.

The equations in the corollary are the prediction equations written in this particular case
in terms of the autocovariance function.

If

t—1
Xeen =D biXei = baXo+ .+ X,
1=0

then the prediction equations take the following form
E(Xpon — Xeon)Xp) =0, K =1,... 1.

Or,
E((XtJthk/) - boE(Xth/) + ...+ btflE(Xle/), k/ = 1, ey t.

In terms of the autocovariance function we have
Yt +h—K)=~v{t+h—k)=boy(t —K)+...+b1y(1 —F), K =1,... ¢

If £ € {1,...,t}, then t — k' € {0, ...,t — 1}. Denote k =t — k’ then

y(h+k) = byy(k)+byy(k—1)+. .. +b_yy(k— Zbﬂ —i), k=0,1,...,t—1.

Note that the mean-square error is defined as follows

m.s.e. = E(Xppn — Xein)?).
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4.2 Examples of best linear prediction for ARMA-processes
4.2.1 AR(1)-process
Theorem 4.2 Consider an AR(1)-process

Xie=aXy 1+ 2

with |a| < 1, where Var(Z;) = 0. Then, for any t > 2 and h > 1, "X, is the best linear
predictor of Xy p in terms of Xq, ..., X;.

Proof. X, is a causal stationary process, since || < 1. We have computed its autoco-
variance function as

N
1—a?

Looking at the prediction equations then gives, for k € {1,...t},

(k) = E(X; Xy yr) = 02

0.2

1—a2

E [(Xesn — " Xo) Xi] = E[ X1 Xy] — o"E [ Xy, X)) = (2l —alal=F) =0,

This shows that X, — o"X, is orthogonal to any X,k = 1,...,t. By Theorem 4.1,
a" X, is the best linear predictor of X, in terms of X, ..., X,.

We could also see this more directly from the MA(co) representation, by using linearity
of the projection. For this process, we have shown that the MA(oo) representation is
given by

Xt = Z O[th_k.
k=0

This formula can be rewritten as follows
Xe=Zi+aZiq+ -+ Z 0+ " Xy,
for any given k. Therefore
Xih = Zign + aZpppa + -+ " Zy + "X,
Using linearity of projection now gives
M(Xpn| X1, oo, X)) = I Zpyn + @Zpypa + -+ + " 2 + OéhXt|X17 Xy
= a"I(X;| X, ..., X;) = a" X,
since (Zyyp + aZyyp 1+ +a" 1 Z,1| X1, ..., X;) = 0 by causality. OJ

We can compute the m.s.e. of this forecast. By definition

m.Ss.e. = E((Xt+h — O[hXt)Q) = E((Zt+h + (IZt+h_1 + e + O[h_1Zt+1)2)

1_&2h

2 2 2h—2 2
c(l+a*+...+a™ ") =0 o
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4.2.2 MA(1) process

Consider a MA(1)-process
Xy =2+ B2

where we take S < 1 for invertibility. It is clear that if A > 2, then )?Hh = 0. This is
because
E(Xt+th) :0, k/' - 1,...,t.

If h =1, then
(X, 1| X, ... X)) = 1(Z + BZ) X1, ..., X)) = BZ,,

Note that Z; is not observable. This means that we need to estimate it.

If all past observations Xy, k =t,t — 1,... were available, then by invertibility
Zy =X — BXi1 + B Xia.,

i.e. the exact formula for Z; are given as as a linear function of the X variables, so this
would give a forecast for Z; in terms of the past values of the process.

If only X;, X;_1,..., X7 are available, then by Corollary 4.1, the coefficients b;, 1 = 1,...,t
determining the best linear predictor, can be found by solving the system of linear equa-
tions

t—1
plk+1)=> bip(k—i), k=0,...t—1
=0

Therefore the b; can be written in matrix notation as

a
= Pt_l = Pt_l .
b1 p(t) 0

Where the ¢t x ¢t matrix P;, which can be shown to be invertible, is given by

1 0O 0 ... 0
al a 0 ... 0
0 a 1 a 0 O
pP=1 . .
00 O 1
00 O a 1

where a = 8/(1+ %) = p(£1).

For general ARMA (p,q) models, the solutions of the prediction equations do not have nice
explicit forms. They can however be calculated using an efficient recursion (the Durbin-
Levinson algorithm), which is beyond our current scope. Further details are available in
Section 8.2 of Brockwell and Dayvis.
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4.3 Minimum mean squared error prediction
4.3.1 Concept

Suppose the random variables zq, ..., 2z, and y are defined on the same probability space
(Q, F, P), and have finite second moments.

Definition 4.2 The minimum mean squared error prediction of y in terms of z1 ...z, is
the function m(z, ..., z,) such that

E{y—m(z1...2,)}°] = iI}fE {y—f(z...2)}].

[t can be shown that m(z;...2,) = E(y|z1...2,).

4.3.2 Forecast for general ARIMA (p,d,q) processes

In what follows, we’ll see a recursive approach to calculating the minimum mean square
error predictor of X, ., based on X;...X; only.

Suppose we have a causal and invertible ARIMA (p,d,q) process
$(B)(1 — B)'X, = §(B)Z,
and only X, k= 1...t are available. We want to predict X;,,.

Let

p+d

q
$(B)(1-B)' =1-Y a;B’, 0(B)=1+Y BB, Xe=(X;,....X))", Xpon = E(Xpin]Xe).
j=1 =1

We have
p+d q
Xt = Z Oéthfj + Zt + Z Bth,j (13)
j=1 j=1
and
N p+d q
Xion = E(Xin|Xe) = Y gE(Xipn 1 Xe) + Y BiE(Zipn1Xe) h > 1.
j=1 j=1
To simplify this, note that
)?Hhﬁ‘ = E(Xinj|X¢) = Xeyn—y, J2h (14)

Further, causality gives ZM,J- =0 for j < h.
This then gives

h—1 p+d q
Xoyn = Z a; Xypn—j+ Z a; Xiihj+ Z BiZisn—j, h=>1
j=1 j=h Jj=h
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The estimators ng for £ <t can be obtained through rearranging the defining equation
of the process, (13) and again using (14):

p+d q
Zy = Xp — Z%’kaj - Zﬁjzkfja (15)
j=1 j=1

with initial values set to

Z =0, [=1,... max(p+d,q).
Example Consider the ARIMA(1,2,1) process

(1-05B)(1 - B)*X, = (1+0.2B)7, (16)
This process is the same as
(1—-25B+2B*—-0.5B* X, = (1+0.2B)Z,
which is
Xt = 2'5Xt—1 - 2Xt—2 + O.5Xt_3 + Zt + 0'2Zt—1'

The prediction of X;,» is

)?t+2 - 2-5)?t+1 - 2Xt + O.5Xt,1
with

X1 = 25X, — 2X,_1 + 05X, + 0.2Z,.

Notice that (16) can be written as

Zt = Xt - 2'5Xt—1 + 2Xt—2 - 0'5Xt—3 - O.2Zt_1.
max{p + d, q} here is 3. So, we set the initial values 7y =y = 23 = 0, and obtain the
remaining 7 for k <t, through
Zn =Xy — 25X, 1 +2X5 50— 05Xy 3—027, 1, 3<k<t

On substituting back through, this gives a recursive forecast for Xj.

4.4 Forecast for general ARMA (p,q) processes
4.5 The partial ac.f.

Given two random variables ¢ and 7, denote

Cov(€,n)
Corr(&,m) = ,
= () Nar)

i.e., the usual correlation coefficient.
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The partial ac.f. of a zero mean stationary process X;, t € Z is defined by
a(k) = Corr(XkJrl - H(Xk+1|X27 s 7Xk)7X1 - H<X1‘X27 s 7Xk>>7 k > 2

and by convention a(1) = p(1). This is another important characteristic of a weakly
stationary stochastic process.

Example 4.2 The partial autocorrelation function of the white noise process coincides
with the autocorrelation function of the process. This can be seen by considering the pre-
diction equations, which in this case give II(Xy1|Xo, ..., Xi) = 0 and I(X1]Xo, ..., Xy) =
0.

An equivalent definition of the partial autocorrelation function is given below. Proving
equivalence is algebraically involved, and certainly not examinable. For completeness, a
derivation of the equivalence of the two definitions can be found in Brockwell and Davis,
Corollary 5.2.1.

Let by;, i =1,...,k, kK > 1 be the coefficients in the representation

k
(Xpia| Xy, .., X)) = Z bri Xpy1—i
=1

From the prediction equations
E((Xk-i-l - H(Xk+1|X17 s an))XZ) = 0’ L= 15 RS k

we obtain that the coefficients by; can be found from the following system of equations

D bupli =) = p(i).j = L.k (17)

Then the partial ac.f. at lag k > 2 is
a(k) = byy.
4.6 The partial autocorrelation function for AR(p) processes
For the AR(p) process, it can be shown that
a(k) =0, k>np.
Indeed, consider for simplicity a zero mean AR(1) process
X, = aX, 1+ %,

where |a] < 1.
By definition
a(l) = Corr(aX; + Z5, X1) = p(1) = .
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Let k£ > 2, then, as we know from the prediction section,
I Xgi1| Xy oo, Xi) = a X

A similar direct argument using the prediction equations shows that

M(Xq]| Xy, ..., Xx) = aXs.
Therefore

a(k) = Corr(Xpy1 — aXy, X1 — aXs) = Corr(Zpy1, X1 —aXy) =0, k>1,
because the process X; is uncorrelated with future values of the white noise process.
Similar computations can be done for an arbitrary AR(p) process. In brief, if X, is a
causal AR(p) process,
Xe=o X+ ..o+ Xe )+ 72,
then it can be shown that for & > p,
(X1 | X oo Xo) = an X + .+ ap Xppia-

Then

a(k:) = COI’F(Xk_H — H(Xk+1|Xk .. .XQ), X1 — H(X1|X2, e ,Xk))
= Corr(Zp41, Xu — (X4 [ Xo, ..., Xi)),

which is zero since the righthand correlation argument is a linear combination of X7 ... X},
each of which is uncorrelated with Z; ;.

4.7 Summary of acf and pacf behaviour for ARMA processes

The following table summarizes the behaviour of the autocorrelation function and partial
autocorrelation functions of the different classes of process.

AR(p) MA(q) ARMA (p.q)
ACF Tails off Cuts off after lag ¢ Tails off
pACF | Cuts off after lag p Tails off Tails off

Note that tailing off can include damped oscillatory behaviour.

4.8 The sample partial autocovariance function

The sample autocovariance function is a point estimator of the ac.f. of a stationary
stochastic process. The sample partial ac.f. ai, k € Z, is used as a point estimator of
the partial ac.f. of a stochastic process and is defined as follows. First, estimate the ac.f.
using the sample ac.f. and then calculate the estimates of the partial ac.f. by replacing
the autocorrelations p(k) in the equation (17) with the sample autocorrelations 7, to
give the system

k
Z/b\kirjfi:'rj;j: 1,...,]{}
i=1
which is then solved for Em and defining a; = Ekk
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5 Elements of statistical inference for time series

5.1 Model selection, parameter estimation and verification
5.1.1 The Box-Jenkins methodology for model building

Suppose that we have been presented with a time series, for which we seek an adequate
model (e.g. for prediction). Assume that all necessary preliminary transformations have
been made and any cyclic component has been removed. If data still appear to be non-
stationary and it is due to a trend, then we remove the trend by differencing. In practice,
one or two differences often suffices. Then we fit an ARMA model to the stationary time
series Y; = X; — p, where E(X;) = pu.

Xi—p=01(Xeoy —p)+ ...+ op(Xop — ) + Zo + 1 Ze1 + - -+ By 21—y,

Overdifferencing Note that in seeking to obtain a stationary series, it is important
not to overdifference time series data. Though the difference of a stationary process is a
stationary process, overdifferencing introduces unnecessary correlations and complicates
the model. For example, suppose the time series X; is a random walk,

Xe=Xe 1+ 2,

then its first difference is
Zy =Xy — Xy

the white noise process. But the second difference
Yi=2i— Zi
is a non invertible MA(1) process.

The Boz-Jenkins methodology is an iterative model-building procedure, which consists of
the following four steps.

1. Identification: decide on reasonable values for p, d and q.

2. Estimation: using the values of p and g, estimate the unknown parameters: oy, ..., oy, 51, ...

p and o2,

3. Diagnostic checking: check the model against historical data to see whether it
accurately describes the underlying process that generates the series.

4. If the model doesn’t fit well, repeat earlier steps using an improved model. If the
model fit is adequate, begin forecasting.
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5.1.2 Model selection/identification

The main tools in model identification are the sample ac.f. r, and the sample partial
ac.f. a.

Typical patterns of r; and a; for MA processes:
e The ac.f. function of a MA(q) process cuts off after lag g.

e The partial ac.f. of a MA(q) process is, in general, a mixture of exponentials
and damped sine waves (i.e., its asymptotic behaviour at infinity is similar to the
asymptotic behaviour of the ac.f. of an AR(p) process).

e If an MA process is thought to be appropriate for a given data set, then the order
of the process is usually evident from the sample ac.f.

Typical patterns pf r, and a, of AR processes:

e The ac.f. of an AR(p) process is, in general, a mixture of exponentials and damped
sine waves, and is usually of little help in identifying the process order.

e The partial ac.f. function of an AR(p) process cuts off after lag p.

e If an AR process is thought to be appropriate for a given set of data, then the order
of the process is usually evident from the sample partial ac.f.

It can be proved that for an underlying AR(p) process, the approximate sampling distri-
bution of each ay with k > p is normal with zero mean and variance 1/N. Hence

P{|ax| < 1.96/V'N} = 0.95

Therefore the confidence limits +1.96/v/N ~ +2/v/N can be used to detect the cut off
effect in the sample partial correlogram for an AR process. A similar result holds for the
autocorrelation coefficients r of a MA(q) process.

Observed coefficients that fall outside these limits are significantly different from zero at
the 5% level. But note that even if a coefficient should be zero in the true underlying
process, the probability of getting at least one observed coefficient outside the confidence
limits increases with the number of coefficients plotted.

In practice: Consider a sample from a white noise process. If, say, the first 20 values of
) are plotted, then we can expect one significant value (at 5% level) on average. So,
if just one or coefficients are significant, the size and lag of these coefficients must be
taken into account when deciding if a set of data is random. A single coefficient just
outside the 95% confidence limits may be ignored (consistent with being a realisation of
a white noise process), but two or more values well outside the limits can be considered
as an indication of significant autocorrelation (or partial autocorrelation) at the lags in
question.

“Recipe” for visual inspection:
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A correlogram that decays to zero suggests that the series is stationary and one can
search for an appropriate ARMA model;

e if there is a sharp cut-off in the correlogram, i.e., all r, with & > ¢ for some ¢
are within j:2/\/N limits, then the behaviour of the sample partial ac.f. can be
neglected and an MA(q) process can be used as a possible model for the data;

e if there is a sharp cut-off in the partial correlogram, i.e., all r, with k& > p for some
p are within £2/+4/N limits, then an AR(p) process can be used as a possible model
for the data;

e if neither correlogram nor partial correlogram cuts off then possibly a mixed ARMA (p,q)
should be taken as a model. Usually, ARMA(1,1) is tested first.

For example:

e [f ry is significantly different from zero but all subsequent values of r; are all close
to zero, then the behaviour of the sample partial ac.f. can be neglected and an
MA(1) process can be used as a possible model for the data.

e If r, appear to be decreasing exponentially and the partial correlogram cuts off at
lag 1, then an AR(1) may be appropriate.

Example 5.1 Given a data set with 120 observations (of a stationary times series), the
following values of the sample ac.f. was computed

k 0 1 2 3 4 5 6
Sample ac.f. | 1| —0.52 | —0.04 | 0.13 | —0.09 | —0.01 | 0.1

Find a suitable ARMA model for the data.

Answer: A 95%Clis (—=2/v/N,2/v/N) = (—0.183,0.183). It is easy to see that the sample
ac.f. cuts at lag 2. This might indicate that an MA(1) model can be taken a possible
candidate.

Example 5.2 Given a data set with 120 observations (of a stationary times series), the
following values of the sample ac.f. and the sample partial ac.f. were computed

k 0 1 2 3 4 5 6
Sample ac.f. 1|-052|—-0.04| 0.13 | —0.09 | —0.01 | 0.1
Sample partial ac.f. | 1| —0.52 | —0.43 | —0.21 | —=0.2 | —0.23 | —0.1

Find a suitable ARMA model for the data.

Answer. For both the sample ac.f. and the sample partial ac.f. a 95%Clis (—2/v'N,2/v/N) =
(—0.183,0.183). It is easy to see that the sample ac.f. cuts at lag 2 and that the sample
partial ac.f. decays. This might indicate that an MA(1) model can be taken a possible
candidate.

Example 5.3 Given a data set with 100 observations (of a stationary times series), the
following values of the sample ac.f. and the sample partial ac.f. were computed
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k 0] 1 2 3 4 5 6
Sample ac.f. 11091081 0.729 | 0.657 | 0.59 | 0.532
Sample partial ac.f. | 1109 | 0.1 | 0.12 | 0.07 | 0.062 | 0.03

Find a suitable ARMA model for the data.

Answer. For both the sample ac.f. and the sample partial ac.f. a 95%Clis (—2/v/N,2/v/N) =
(—0.2,0.2). Tt is easy to see that the sample ac.f. decays exponentially (~ 0.9%) and the
sample partial ac.f. cuts at lag 2. Therefore, one can try to fit AR(1) process to this data
set.

Example 5.4 Given a data set with 100 observations (of a stationary times series), the
following values of the sample ac.f. and the sample partial ac.f. were computed

k 0] 1 2 | 3 4 5 6
Sample ac.f. 1109108|06] 05 | 0.3 ]0.22
Sample partial ac.f. | 1109 (0.5 |0.1|0.03]0.07 | 0.04

Find a suitable ARMA model for the data.

Answer. For both the sample ac.f. and the sample partial ac.f. a 95%Clis (—2/v'N,2/v/N) =
(—0.2,0.2). Tt is easy to see that the sample ac.f. decays exponentially and the sample
partial ac.f. cuts at lag 3. Therefore, one can try to fit AR(2) process to this data set.

5.2 Estimating parameters of an ARMA process
5.2.1 Method of moments

For reasonably large samples, we expect the sample moments to be close to their theoret-
ical population values. This gives a method of estimating parameters of the underlying
process: we equate theoretical values of the moments in terms of parameters to the ob-
served sample values, and solve to obtain parameter estimates. The idea should be clear
after seeing a few examples.

Example The moment estimator of the process mean of a stationary time series X; is
| N
p=X= N ; Xi.

Example Consider a zero-mean AR(2) process: X; = oy Xy 1 + ao Xy 2 + Z;.

The Yule-Walker equations for p(1) and p(2) are

p(1) = a1+ azp(1)
p(2) = a1p(l) + o

Replacing p(1) and p(2) by their sample equivalents 7 and ry we get the equations

1= Q1+ Qory

o = Q11 + Qo.

39



Solving these equations we get

~ _7’1(1—7’2)
Oz1—72
. ro—r1}
g = .
1—1r?

Example Consider a zero-mean invertible MA(1) process: X; = Z;+37; 1. We have seen

already that p(1) = %, therefore, replace p(1) by the corresponding sample coefficient

and solve this quadratic equation for .

5ol 1— 42

Invertibility means that we must select the negative root, to ensure |3] < 1.

2T1
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5.2.2 Least-squares estimation for AR processes

Consider a stationary AR(p) process

Xe—p=a1(Xeog —p) + .o+ ap(Xeep — 1) + Zs. (18)
Given N observations z1,...,xzy, the parameters 1, ay, . . ., a;, may be estimated by min-
imizing
N
S, o, 0p) = Z (20— p— 1 (21 — ) = oo = (@ — 1))
t=p+1

Consider in detail the case p = 1.

Z —p—a(ziy — p)?

t=2

The values 1@ and @ that minimise the quadratic from S(u, a) can be found as solutions
of the following system of equations

05w ) _
o ’

05w ) _
Oa

This gives

2

1—042 —p—a(xey —p)) =0,

t=2
N
—2 " (wes — i) (e — i = Al — 7)) = 0.
t=2

Note that @ cannot be equal to 1, therefore from the first equation we get that

Simple algebra gives

N N
=y —g7+dv
where
1 N
f:NZ%
t=1
and
do — arN — I
NTUIN=-1D(1-d)



For large N, dy — 0 and so

L ~T
in the sense that i/ — 1 as N — oc.
From the equation 05/0a = 0 we get
N N—1

S = A=) & Y (w— A = 0.

t=2 t=1

From this we can find Nt
Doimy (@ — W) (w1 — ) 1
Sy (e — )2 UN

a=

where 2
(zn — 1)
e —
2@ — 1)
(NB An error in the definition of vx from an earlier version of the notes has been cor-
rected. )

UN =

It can be shown that vy — 1 (in a certain sense) as N — oo. Recalling that

2 (@ =) =)

Zi\;(‘”t —T)?

and using the approximation iz &~ T for large N, we get that asymptotically

a%?‘l
in the sense that a/r; — 1 as N — oc.

Similar computations can be done for an arbitrary AR(p) process For example, if p = 2,
then we (approximately) recover the moment estimators computed in the previous section:

LT, ap~r(l—ry)/(1 —r%), Qo & (1g —Tf)/(l —7‘2).

For the general AR(p) process (18), we seek the minimizer (i1, &y, ..., @,) of
N
S(uyan.ap) = Y Az —p—an(zy —p) = = (wp — @)}
t=p+1

Let Y = (xp+17 - '7xN>T7 C = <,LL(1 - Z?:l &j)7a17 - '7&17) and

Iz, xpq - To T
1 = T e T T
p+1 p 3 2
H=|. . .
1 ay_1 oNn—2 -+ IN—p+1 ITN—p
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Then S can be written as a quadratic form
S(y i -.a,) = (Y — HO)(Y — H),
whose minimiser is can be found by differentiation to be

(= (HTH) 'H"Y.

The form of this expression should be familiar from linear models.

5.2.3 Least square estimation for M A processes

LSE is not so straightforward for MA processes as for AR processes. Consider, for
example, a MA(1) process

Xi=p+ B2+ Z.

Given observations x1, . .., zy we would like to write the residual sum of squares Y 27 in
terms of observed z1, ..., x, and parameters p and 3, as we did in the case of the AR(1)
process. This is not possible here, so the explicit least squares estimates cannot be found.
Instead, the following iterative procedure is used:

e select suitable starting values for p and (3, for example it =7 = (Z]kvz1 x)/N and
[ a solution of the moment equation

B

T1:1+527

where 71 is the value of the sample ac.f. at lag 1, (one must choose the solution

B < 1),

e taking zp = 0, calculate 21 = x1 — JI, then z0 = w9 — 1 — ﬁzl, and so on until
IN = TN — i — ﬁzN 1, and finally calculate the residual sum Zt : for chosen i

and B,

e repeat the procedure for the other neighbouring values of p and § so that the
residual sum of squares Zf;l 2?2 is computed on a grid of points in the (u, 3) plane,

e determine by visual inspection of otherwise (by an iterative optimization proce-
dure) the values of p and  that minimize Zf;l 22. These values are least square
estimates.

5.3 Maximum likelihood estimation for Gaussian ARMA (p,q)
processes

Consider a causal, invertible ARMA (p,q) process X, t € Z,

p q
Xt — ILL = ZO{]C(Xt,k — ,U) + Zt _'_ Zﬁkztfku (19)
k=1 =
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where Z,, t € Z, are independent random variables with zero mean and variance o2

If Z;,t € Z, are normally distributed, then the process X;,t € Z, is said to be a
Gaussian ARMA process. In this case, for any t;,...,t, € Z the probability distri-
bution of the random vector (X, ,...,X; ) is a multivariate normal distribution (see
definition 5.1 below) with mean g = (p,...,u) and covariance matrix ¥ with entries
Yij = Cov( Xy, Xy,) = y(ti — t;).

Definition 5.1 The random vector Y = (Y1,...,Y,)T is said to be multivariate normal
if there exist a column vector w, a (nxn)-matriz B and a random vectorn = (n1,...,n,)"
with independent standard normal components such that

Y =p+ Bn.

The mean of Y is the vector p with entries p; = E(Y;) and the covariance matriz of Y is
> = BBT, with entries 3;; = Cov(Y;,Y;). Provided that det(X) > 0, the density function
of Y = (Yq,..., V)T is

1 1 Tyov—1 - T n
1) = iy 0 (30— 0 S =) ) w = ) € R

Taking the process (19) to be Gaussian, we would like to carry out maximum likelihood
estimation of the parameters p, %, «; for j = 1...p and S for k = 1...q. The
likelihood function is just the joint density of (X;...Xy)?, considered as a function of
the parameters, for fixed observations. For general ARMA models, it is difficult to express
the likelihood as an explicit function of the parameters. In the section that follows we
will show how to obtain a conditional maximum likelihood estimator, which will be close
to the full maximum likelihood estimator for sufficiently large sample sizes.

5.3.1 Conditional MLE

By working with Y; = X; — pu, it is enough to develop maximum likelihood estimation
for a zero-mean process. It is straightforward to incorporate p as an additional parameter.

Define
Y{g:(n}/l% 0:<Oél...04p761...6q).

The conditional density function of Y; given Y; ; is denoted f(y:|y: 1,60,0?), and the
density function of Y, is f(y,|0,0?). The likelihood, which is just the joint density of
Yy, can then be written as follows, by using laws of conditional probability.

L(YN|0> 02) = f(yp|07 Uz)f(yp-i-l . -yN|yp> aa 02)
= f(y,0,0%) f(ynlyn-1,6,0%) f(yn_1ly,, 0,07)

N

= f(y,060,0") [ fwlyi1,0,0%)

t=p+1
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The expression

N
H f(yt|yt—1a 07 02)7

t=p+1

which will be denoted L*(yy, 6, 0?), is known as the conditional likelihood function of p,
0% and 6.

An important property of the multivariate normal distribution is that its conditional
distributions are also multivariate normal (see Appendix C3 of Shumway and Stoffer for
more details). Moreover, a multivariate normal distribution is determined by its mean
vector and covariance matrix. This means that to determine the density f(y|y;_1,0,0?),
it is enough to work out E(Y;|Y;_1) and Var(Y;|Y;_1).

We begin by making the assumption that

Zl ZQ - Zq = O,

which will be reasonable in any practical situation where estimation is required.

Now, assume that Y;...Y; | are known. From the defining equation it can be seen that

p q
=Y oYiu+Ze+ > BiZi,
k=1 k=1

and the values of Z; for: = ¢+ 1...t — 1 can be obtained recursively from

p q
Zi=Yi=Y oYin— Y BiZik,
k=1 k=1

as in (15) when computing forecasts for general ARMA processes. This means that the
conditional expectation and variance of Y; are given in terms of known quantities as

E(Y:Y:—1) ZakY;& k+25th k
Var(V;|Y;—1) = Var(Zt|Yt_1) = 2.

It is convenient to denote E(Y;|Y;_1) by }Afﬂt,l, and define the innovation at t to be

€(0) =y — 2\t—1-

This means that we can write the conditional likelihood in terms of the innovations as

N
1
* 2y _ 2\—(N—p)/2 b 2
L(yN,O,O')—(27TCT) P exp{ 202 Z et(e)}a
t=p+1
so that the full likelihood is given by

N
L(Yy|0,0%) = 6,0°%)(2rc?)~ NP2 ! G 20
( N| 70)_f(yp| 70)( 7T0') CeXp _ﬁt;let( ) : ( )
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Maximizing (20) is a non-linear optimization problem, which is computationally expensive
in general. In practice it is often enough to maximize the conditional likelihood L*. To
maximize L*, it is enough to find @ such that the sum of squares

N

IRAC)

t=p+1

is minimal. The conditional maximum likelihood estimator of o2 is then given by

) 1 S 29
o = N7— €4 (0)
p t=p+1

Note that for reasonably large samples, the conditional MLEs and full MLEs will be
typically be very close.

5.4 Model verification or diagnostic checking

Once an ARIMA (p,d,q) model has been fitted to a time series X ... Xy, the next step is
to assess how well the model fits the data. We do this by analysing the residuals 2y, .. ., 2y,
which can be obtained from the recursive algorithm given in (15). For W; = (1 — B)¢X,,
the residuals are

P q
Zy =Wy — Z a;Wi_; — Zﬁkzt—k, t > max{p +d,q},
j=t k=1

and Z, =0 for t < max{p + d, q}.

For a “good” model fit, the sequence of residuals zq, . . ., zy should behave like a realisation
of a white noise process. This means that we should expect:

e the mean of the residuals should be close to zero
21+ ...+ 2N
N

e the spread of the residuals around the mean is constant over time

e autocorrelations between residuals are negligible, i.e.,

_ SN - D) - 2)
T2k =

7 Ziil(zt —z)?

Under assumption that the residuals are uncorrelated, approximate 95% confidence limits
are £2/v/N. If we observe significant autocorrelations, i.e., there are values of 7, ; which
are well outside these limits, then it is worth exploring other plausible models.
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5.4.1 The Ljung-Box statistic

The Ljung-Box statistic can be used to test whether or not the autocorrelation function
of a stationary process is zero. For a sample X;...X; from a stationary process with
sample autocorrelation 7 at lag k, the Ljung-Box statistic is defined as

Q=t(t+2)) .

k=1

where the integer m is chosen arbitrarily. Under the null hypothesis that the model fit
is adequate (so that the residuals are essentially white noise), the test statistic () has an
asymptotic x? distribution with m — p — ¢ degrees of freedom. This means that for @
larger than some critical value, we reject the null hypothesis

Hy: p(k) =0, k # 0.

5.4.2 Overfitting

After specifying and fitting the model one can try to fit a more general model. As an
example, suppose that we fit an AR(2) model and estimated the parameters p, oy, as.
Then repeat the estimation procedure assuming AR(3) model. If

e additional parameter ag ~ 0
® (1 pew ~ a1 0ld and A2 new ~ Q2 old,

then it is reasonable to conclude that there is no need to replace the initial model AR(2)
by a more general one. You will notice this principle in use in the solutions to lab class
3. Another approach is to use the Akaike Information Criterion (AIC) - see section 2.2
of Shumway and Stoffer for more details.
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Figure 4: Good model fit for an ARIMA(2,1,2) model. No patterns in the residuals, and no significant
p-values for the Ljung-Box statistic
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Figure 5: Fitting an AR(2) model to a dataset simulated with higher order autocorrelation. Note the
significant autocorrelation in the residuals and significant p-values for the Ljung-Box test. This suggests

some structure in the residuals remains unmodelled.
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6 Spectral analysis

A time series can be considered to be a noisy observation of a curve at a set of time
points. We can consider the curve as being made up of sine and cosine waves of different
frequencies. (You may recall this idea from Fourier analysis). Fitting a model to a time
series essentially means estimating the amplitude of the sine and cosine components at
different frequencies. The periodogram is of use in this task.

6.1 The periodogram

Let X5 ... Xy be a sample from a stationary time series, with N = 2¢+1, an odd number.
Write

q
Xy = Ao+ Z A;cos(2m fit) + B;sin(2w fit) + e,
i=1

where f; = % Least squares estimates of A; and B;, denoted with the corresponding

lower case letters, can be obtained as follows

N N
2 2
ag = X, a; = N;Xtcos(%rfit) b = N;Xt sin(27 fit), i=1...q.
(21)
This is a saturated model, i.e. N parameters are being estimated with /N observations,
so that we cannot obtain residuals €.
The periodogram is the set of ¢ intensity values
N
()= S@+8),  i=1.g

Note that if instead N = 2q is even, the values a, and b, have to be changed to

N
1
0=+ D (-1)'X,, by =0.
t=1

Note: If the frequency f; is indeed a component of the curve, the intensity I(f;) is
expected to be relatively large.

6.2 The spectrum and spectral density function

Suppose X7 ... Xy is a sample from a stationary time series with autocovariance function
7(+) and autocorrelation function p(-).

The sample spectrum For any frequency 0 < f < 0.5, define

1) = S} +83)
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where ay and by are obtained by replacing f; by f in (21). I(f) is called the sample
spectrum of (X;). It can be shown that

N—-1

co+2 Z Cre cos(27rfk:)] , 0< f<0.5,
k=1

1() =2

where ¢ is the sample autocovariance at lag k.

The power spectrum The power spectrum is defined as

p(f) = lim E[I(f)] =

N—oo

+227 ) cos( 27‘(‘ka)] 0<f<0.5.

Note that "7, |v(k)| < oo is a sufficient condition for the convergence of the power
spectrum. This is because |cos(z)| < 1 for real z, giving

p(f)l <2 [I7(0)| +2) Iv(k)ll :
k=1

By integrating term-by-term and using the fact that f00'5 cos(2rfk)df = 0 for k # 0, it
is clear that

The spectral density function This is just a normalization of the power spectrum,
which can therefore be expressed in terms of the autocorrelation function:

p(f) _

g(f) = ~(0)

1+2Z,0 ) cos( 27‘(‘ka)] 0<f<0.5.

Clearly [} g(f)df = 1.
The spectral density function shows the frequencies that dominate the variability in a
time series, and guide preliminary choices of parametric models.

Example Let Z;,t = 1,2,... be white noise with Var(Z;) = 1. Consider two series
Series I: Xt = 10 + Zt + thl-

X, has autocovariance function given by
2 k=
yk)=49 1 k
0 k
Its spectral density function is

g(f) 1+22,0 Ycos(2mfk)| = 2(1 + cos(27f)).
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Series II Xt = 10 + Zt — thl-

X, has autocovariance function given by

2 k=0
0 k>2.

Analogously, its spectral density function is

9(f) = 2(1 - cos(2r))).

These two processes are dominated by different types of variation, as can be seen from
the time plots, and the plots of the spectral densities.

Series | Series I
~ ~
[ [ [ [ [ I [ [ [ [ [ I
0 20 40 60 80 100 0 20 40 60 80 100
Time Time
< - <
Al o -
o - o 4
[ [ [ [ [ I [ [ [ [ [ I
00 01 02 03 04 05 00 01 02 03 04 05

Figure 6: Spectral density functions for series I and II.
Theorem 6.1 If > 7 |v(k)| < oo, then

2 (k) = / " cos(2m f%) pl1) df.

This says that the autocovariance function can be recovered if the power spectrum is
known.
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6.2.1 Spectral density of a linear filter

Let {Y;, t € Z} be a stationary process with power spectrum py (f). If X, is a linear filter
of Y;, i.e.,

Xe= > Y,
Jj=—00
where .
Z |1/}J| < 00,
j=—00

Then {X;, t € Z} is also a stationary process with power spectrum

px(f) = (e ) Ppy(f), 0< f<05,

where ¢ is the imaginary unit and

w(e—ﬂﬂf) _ Z wje—ij%rf.

j=—o00

The function ¢(e~"/) is called the frequency response function or the transfer function
of the filter. The function |¢)(e~"*7/)|? is called the power transfer function or the gain of
the filter.

6.3 Computations of spectral density functions for some ARMA (p,q)
processes

Example 6.1 Purely random processes. Let {Z;, t € Z}, be a zero mean white noise

process with variance o®. Then

v(k‘)z{% Z;g

and
g(f)=2 0< f<0.5.

Example 6.2 MA(1) processes.
For the MA(1) process Xy, = Zy+ 7,1 we have two non-zero values of the autocovariance
function: v(0) = (14 %)0? and v(1) = Bo?, hence

p(f) = 20%(1+ B* + 2B cos(2r [))

B cos(27 f ))

g(f):2(1+2T52

Example 6.3 AR(1) processes
For the AR(1) process Xy = aX;_1+ Zy, |a| < 1. We can rearrange the defining equation
to write
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Zy =Xy —aXyq,

so that white noise is expressed as a linear filter of the process X;, with 1y =1, V1 = —«
and Yy = 0 for k £ 0,1. The transfer function is

w(e—i2ﬂf> -1 ae—i27rf’
and the gain is just the magnitude of this,

1 —2acos(2mf) + .

Using the result on linear filters from above, this means that
20% = (1 — 2accos(2mf) + a?)px (f),
so that (on normalizing)

B 2(1 —a?)
1 —2acos(2mf) + a2’

9x(f)

Now, suppose {X;, t € Z} is an ARMA(p,q) process

Xt — alXt—l — ... apXt—p = Zt + /61Zt_1 + ...+ /Bth_q
or,
¢(B)X: = 0(B)Z;
where
o(B)=1—ayB—...—aq,B"
and

0(B) =1+ 3B+ ...+ B3,B"

If » and # do not have common zeroes and ¢ does not have zeroes on the unit circle, then

B
pX(f) =2 |¢(€—i27rf)‘2’

Example 6.4 ARMA(1,1) process X; —aX; 1 = Z;, + Z; 1.

0< f<05.

~ 20%(1+2Bcos(2nf) + (?)
px(f) = 1 —2acos(2nf) + a?
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7 State-space models and the Kalman filter

7.1 Univariate state-space models
7.1.1 General form

Definition 7.1 A univariate state-space model is a stochastic process {X;, t > 1;0;, t >
0}, such that

[ ] Xt € R,
o 0 = (0,1,...,0u1), for some fized k > 1,

and
Xt = hTQt + Ny, t Z ]_, (22)
Qt = G@t_l -+ Wy, t Z 1, (23)
00 - 97 (24)
where

o G =(Gy;) is a known (k x k) matriz,
o his a known (k x 1) column vector, hT = (hy,..., hy), so

hTQt = h19t,1 +...+ hket,ka

o {ny, te Z.} and {w] = (wyy,...,wip), t € Z,}, are independent zero-mean white
noise processes, with the variance o2 and the covariance matriz

W = E(ww) = (Cov(wys, w )y, (25)
respectively,

the initial value 0y is uncorrelated with the noise processes (might be a constant vector).

Terminology: X; is the observation at time t; 6, is the state vector, a vector of state vari-
ables, a non-observable target process. Equation (22) is called the observation equation,
equation (23) is called the state or transition equation.

Applications of the state-space models:
e Navigation
e Tracking missiles
e Extracting an object motion from video
e Computer vision applications

e Economics: forecasting economic indicators

The main problem in all these applications is prediction of unobservable state variable 6,
given observations Xi,..., X;. The Kalman filter is a recursive algorithm for computing
the best linear predictor #; of 6, in terms of observations X, ..., X;.

%)



7.1.2 The local level model
Xt = Qt + Ny (26)
0 = 0,1 +wy (27)

Here, equation (26) is the transition equation, and the state vector 6, consists of a single
variable #; € R which is called the local level. The unobservable local level 8, is assumed to
follow a random walk. Here h = G = 1. The noise process {n;, t € Z, } and {wy, t € Z, }
are assumed to be uncorrelated with zero means and respective variances o2 and o2. If
02 =0, then 6, = 6 is constant and we get a constant-mean model

Xt = 9 + n¢ (28)

Proposition 7.1 The first difference VX, of the local level model is a weakly stationary
process with the ac.f. as the following MA (1) model

}/;f - Zt +/8Zt—17 t Z Oa
with B = —1+ (V2 + 4c — ¢) /2, where ¢ = 02 |o2.
Proof This follows by direct computation.

VX, =0y — 01 +ny —nyq.

=W+ N —Ny_1.
We first compute the variance of V.X;:
7(0) = Var(VX,) = Var(w;, +n, —ny_1) = 02 + 202,
since the white noise terms are uncorrelated.
Now

(k) = Cov(wy + 1y — my—1, Wik + Nyl — Nuto—1)

Note that if £ > 1, there are no common indices in the left and right terms of the
covariance, so that (k) = 0 for k > 1, as for the MA(1) process. For k = 1, we get

v(1) = Cov(wy + 1y — Np—1, Wiy + Npyg — ny) = —cri.
This then gives
—o? 1
p(l) = =

02 +202 c+2

Since p(1) = % for the MA(1) process, setting the above expressions equal and solving

the resulting quadratic gives the stated value for 5.
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7.1.3 Linear growth model

The linear growth model is specified by these three equations

Xt = ,U/t + un (29)
M = fe—1 + Bi—1 + Wiy (30)
By = Br—1 + way (31)

Equation (29) is the observation equation, two other equations are transition/state equa-
tions. The state vector 6 = (u;, 3;) has two components which are interpreted as follows:
1; is the local level, 3, is the local trend. Comparing these equations with the general
form of the state-space model we obtain that h” = (1,0) and

11
i(01)
, which are clearly constant through time.

The components of the process w! = (wy;,ws,) are assumed to be independent, so the
covariance matrix of the process is

2
[ oi O
W= ( 0 o2 ) ’
If wy; and wy, have zero variances, then the trend is deterministic
Xt = W + 1y (32)
e = -1+ B8 = po + BL. (33)

The model is called a global linear trend model in this case. "Local linear trend" means
that the trend is allowed to change.

Proposition 7.2 The second difference V?X, of the linear growth model is a weakly
stationary stochastic process and its ac.f. has the same structure as the ac.f. of an
MA(2) model, i.e., p(0) =1, p(£1) #0, p(£2) # 0 and p(k) =0, if |k| > 2.

Proof. Again, this follows by direct computation with V2X;.

7.2 The Kalman filter

Let é\t be the best linear predictor of the state variable 6, based on observations X, ..., X;.
The Kalman filter is a recursive algorithm for computing 6, recursively from 6;_; and the
last observation Xj.

Xt = hTQt + ng (34)
925 = Getfl + wy (35)
Given X1,..., X; we want to compute

/e\t:ClX1+"“|“CtXt
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such that the mean square error

E((6, — 6,)" (6, —6;)) = min E (@ -3 D,X,) <9t - i DiXZ) (36)

is minimized.
The following theorem is implied by Theorem 4.1.

Theorem 7.1 If@\t =C X+ -+ C.X, is such that
E((, —6,)X,) =0, i=1,... .t
then /0\,5 is the best linear predictor of 0, based on X1, ..., X;.

Let C; = (C4,...,C;) and X! = (Xi,...,X;). The solution to this system can be
obtained as an orthogonal projection, as in Chapter 4:

G, = Efo.x!] (E(x,X1)} "

In practice, however, this representation is not an efficient way to compute C;, since
computing {E (XtXtT) }_1 is expensive. The Kalman filter is an algorithm that allows

0; to be computed recursively from (/9\,5,1 and the most recent observation X;.

7.2.1 Prediction stage of the Kalman filter

At the prediction stage of the Kalman filter, a forecast §t|t,1 of 6, is made from the ob-
servable data up to time ¢ — 1.

Define

~

P, = Py =E (0.~ 0.)(6,— 0" |
and
Pt|t71 =E [(915 - é\t|t71)(0t - ‘/9\15\1571)71:| )

known as the error covariance matrices of 6, and 6;,_, respectively. Assume that at time
t — 1 we know 6,_; and the covariance matrix P, _; of the corresponding error 6, | — 6, ;.

Lemma 7.1 @\t‘t,l, the best linear predictor of 0; based on X4, ..., X;_1, is given in terms
of 0;_1 as R R
et\t—l = Getflu (37)

and the covariance matriz of the corresponding error 6, — é\t‘t_l 18
Py = GP,_G"+W (38)

where W is the covariance matriz defined by (25).
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Proof. This essentially follows because of linearity of projection.
s — E0XT,] {E (X X0 ) } X0y
—E[(GO1 +w) X {E (X XD ) Y X0
=GO, .
Note that X | is assumed known.

Now to compute the covariance matrix Py;—;. Denote ;-1 = G(0—1 — @,1). Since
0; = GO,_1 + w;, we obtain that

Py = E |(6 = GB1) (0, — GO, 1) |
=E [(nt—1 +wy) (-1 + wt)T]
= E(me—1my) + E(wawy) + E(eaw/) + E(winly)
= E(n1my) + E(wawf) = GRLGT + .
Note that we used above that E(n;_jw!) = 0 and E(wnl ) = 0.

Equations (37) and (38) are called the prediction equations of the Kalman filter.

Denote by )?t the best linear predictor of X; based on X,..., X;_;.

Lemma 7.2 R R
Xt — hT0t|t,1.

Proof.
Again, this is essentially linearity of the projection.

X =E[GXD ) {E(X X))V X
— E[(h70, + n) X ) {E(X, 0 X)) VX
—hTE[0, X ) {E (X0 X))} X = B Oy

7.2.2 Updating stage

When the observation at time ¢, namely, X;, becomes available, it can be taken into
account to modify the estimator for 6;. Let

e =Xy — Xy =Xy — hT‘gt\t—la
be the error of the prediction based on X,..., X;_1.

Lemma 7.3 The optimal estimator é\t and its covariance matriz P, can be found by
means of the following updating equations

Oy = Oy 1 + Krep = O 1 + Ki(Xy — D70y, 1) (39)
P, = Pyy — K:h" Py (40)

where )
Kt = (h,TPt‘tflh —+ O'?L)_ Pt|t,1h, (41)

the (k x 1) matriz (vector) K, is called the Kalman gain matriz.
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Proof.
Let Xt = (Xl .. -thlu Xt)T = (Xg;l? Xt)T.
Because

6, = E[0.X]] {E(X.X]) } ' X, = (E(6,X]), E@:X){E (X, X[) } ( {Zl )

and the matrix E (X;X/) can be written as follows

E(Xi 1 XY, E(Xi1Xy) Dy D
Ty _ t—1<4%y_q t—1<\¢ o 11 12
E(X.X[) = < E(X,.1X,) E(X?) T\ D% Dy )

The inverse of this matrix can be shown (by direct computation) to be
-1 _ _ _ _ _ _
Dy Dy _ ( Dy’ + Dy D1a(Day — DY, Dy Dio) ' DYDYyt =Dy Dig(Day — Dy Dy Dia) ™!
D?, Dy —(Dsyy — DI, Dy Dio) ' DY, Dy (D2 — DY, D' Dia) ™t
We can now compute that

DLDE X,y = E[X X {E (X, XE) Y X0 = X, = B0y,

Dy, — DI, D' Dyy = E(X?) — E(XT X){E (X, 1 X)) ) E(X 1 X))
E(X, — X7 {E(X, 0 X)) VE(X 1 X))?
E

(hT‘gt +ny — hT‘/g\t\t71>2 = UZ + hTPt|t—1h7

and

E(0,X] )Di' X,y = Op1, Di'Dyy = {E(X, 1 X))V E(X, 167 )h.

Hence we have
0, = Oy +(02+h" Pyy_yh) ™ [E(@tef) — EO,XT ){E (X XT )} E(X 1 00)] (X =BT By y).
Now consider P;_;:
Py = E | Bges = 0@ — 00" |
_E [(E(GtXtT_l){E (X XD ) Y X — 0)(EOXT ){E (X0 X7 ) VX, — et)T]
= E(0,07) — E(0: X7 ){E (Xia X71) }E(Xaf]),
so that

é:s = é\t|t71 + (02 + hTPt|t71h>71Pt|t71h(Xt — hTé\ﬂtfl)-
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We can now compute P,

=€ |0 =000 = 07| = E (0 = Orges — Kie) (O — 1 — Foe)”|
= B[00 = )0 = B )" | = KGE |eu(B, = Do )| — E[(0 = B)e| KT + KE(eR) KT
= Pyy—1 — Kb Pyyoy — Py h K] + Ky(W Pyyoih + 02) K = Py — K" Py

As required.

7.3 The Kalman filter for the local level model
7.3.1 Prediction and updating stages

Recall the observation and transition equations for the local level model.

Xt = Qt + ng
Ht = 915,1 -+ wy.

Here, h = G =1, {ny, t € Z} and {w, t € Z} are zero mean mutually independent white
noise processes:

E(ny) = E(w;) = 0, Var(n,) = o2, Var(w,) = o2, Cov(wy,ny) =0, t,t' € Z,.

Let 6, be the BLP of 6 given X1, ..., X, and P, = E((6; — 6,)?).
The prediction stage: é\t|t—1 is the BLP of 6; given Xy,..., X, 4

é\t|t—1 — GOy =0, 4
the variance of the corresponding error is given by

Pyiy = E(0, = Ojy1)* = Py + 02,
The updating stage: R R
er =Xy —h" 01 = Xy — 0,1

R Wl =6,

We compute the Kalman gain as follows

Py B Py + 0120

K, = = .
' Py1+02 P_i+o0l+02

Now for the updating stage:

é\t = /e\t|t—1 + Kiep = 515—1 + Kiey
P =Py —KPy_1=P_,+ o — Ki(Poy +02)
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Using the explicit formula for K in this case we can write

Py +02

§:§_+ €.
t t—1 Pt,1+ai+a,% t

This equation can be rewritten as follows
é\t =(1- Kt)é\t—l + K Xy

The error covariance matrix is

P, 1 +02)o?
Pt:Pt\tfl_KtPt\tfl:(1_Kt)<Pt*1+afu>: ]E) t 3_02 _202'
t—1 w n

7.3.2 Long-time behaviour and steady state

It can be shown that the sequence P; converges to a certain limit as t — oo. We say that
the Kalman filter converges to a steady state.

Assuming that the steady state limit exists it can be computed as follows. We have from
the updating equation, that

P,=P_1+o0.— K(Pr1+02)

Passing to the limit in this equation we get that the limit P must be the solution of the
following equation
P +02)?
pP=PpP 2 ( w
o P+o2 +0o2
which can be rewritten in the following quadratic form
P4+ 02P —0202 =0

This equation has two roots, P is the non-negative one (as a limit of non-negative se-
quence)
—02 + /oL + 40202
2
Denoting ¢ = ¢2 /o2 the formula for P can be rewritten as follows

pP=

2
On

P= ?(—c + V2 + 4e). (42)

A direct computation shows that convergence of P, to the limit (42) yields that

1
Kt—>K:§(\/cz+4c—c>, as t — oo.
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7.3.3 State-space models of ARIMA processes

ARIMA processes have state space representations, and in general these representations
are not unique. In what follows, we will give a state space representation of an AR(p)
process.

Suppose we have an AR(p) process

th:aly;f—l‘FH"I“avat—p‘I“Zt

Let the state vector be
etT = (}/t) ... a}/;f—p—i—l))

and let the p x p matrix

a1 Qo Qp_1 O
1 0 0 0
a—| 0o 1 0 0
0 0 1 0

the px 1 matrix b7 = (1,0,...,0), the white noise processes n; = 0 and w! = (Z;,0,...,0) €
R”. The observation variable is X; = Y; € R, so we have is a univariate model.

The observation equation is
Xt — hTQt,

and the state equation is
Qt = G@t,l -+ wy.

State-space representations for ARIMA processes allow us to use the general results
relating to state-space models (though these are not always helpful).
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