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What is an Inverse Problem?

I A : X → Y mapping between Hilbert spaces X ,Y
I physical model A, cause x and effect A(x).

Direct / Forward Problem: given x , calculate A(x).

I Example: Positron Emission Tomography (PET)
Model: X-ray Transformation

Ax : L 7→
∫
L
x(r)dr

→

Inverse Problem: Given y , calculate x with A(x) = y .

Infer from the effect the cause.
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What is the problem with Inverse Problems?

Definition (Jacques Hadamard, 1902):
An Inverse Problem “A(x) = y” is called
well-posed, if the solution

(1) exists.

(2) is unique.

(3) depends continuously on the data.

“Small errors in y lead to small erros in x .”

Otherwise, we call it ill-posed.



Generalized Solutions

Definition: Let y ∈ Y . The set of all approximate solutions of
“A(x) = y” is

L :=

{
x ∈ X

∣∣∣∣ ‖A(x)− y‖ ≤ ‖A(z)− y‖ ∀z ∈ X

}
.

If a solution z ∈ X exists, ‖A(z)− y‖ = 0, then

L =
{
x ∈ X

∣∣∣A(x) = y
}

Definition: An approximate solution x ∈ L is called
minimal-norm-solution, if

‖x‖ ≤ ‖x‖ ∀x ∈ L .
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Properties of Minimal-Norm-Solutions

Assume: A ∈ L(X ,Y )
Recall:
I Range of A: R(A) := {y ∈ Y | ∃x ∈ X : Ax = y} ⊂ Y
I Orthogonal complement: U ⊂ Y ,

U⊥ := {y ∈ Y | 〈y , u〉 = 0 ∀u ∈ U}

I Minkowski sum: U + V := {u + v | u ∈ U, v ∈ V }

I If the range R(A) is closed, then R(A) + R(A)⊥ = Y ,
otherwise R(A) + R(A)⊥ ( Y .
Example: A : `2 → `2, (Ax)j =

xj
j . Range not closed.

Theorem: Let y ∈ R(A) + R(A)⊥. Then there exists a unique
minimal-norm-solution x of “Ax = y”. We write A†y = x .

Theorem: If R(A) is not closed, then x does not depend
continuously on y . I.e. A† is not continuous.
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Regularization

Intuition: board

Definition: A family {Rα}α>0 is called regularization of A†,
if for all

I α > 0 the mapping Rα : Y → X is continuous.

I y ∈ R(A) + R(A)⊥: Rαy → A†y if α→ 0.

Examples:
I The family {Rα}α>0 with Rαy = (A∗A+ αI )−1A∗y is called

Tikhonov regularization of A†.

I Regularization for PET:

→
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