Regularization of Inverse Problems

Matthias J. Ehrhardt

December 3, 2018

What is an Inverse Problem?

- $A: X \to Y$ mapping between Hilbert spaces X, Y
- physical model A, cause x and effect A(x).

Direct / Forward Problem: given x, calculate A(x).

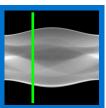
What is an Inverse Problem?

- $A: X \to Y$ mapping between Hilbert spaces X, Y
- physical model A, cause x and effect A(x).

Direct / Forward Problem: given x, calculate A(x).

 Example: Positron Emission Tomography (PET) Model: X-ray Transformation

$$A\mathbf{x}: L \mapsto \int_{L} \mathbf{x}(r) dr$$



What is an Inverse Problem?

- $A: X \to Y$ mapping between Hilbert spaces X, Y
- physical model A, cause x and effect A(x).

Direct / Forward Problem: given x, calculate A(x).

 Example: Positron Emission Tomography (PET) Model: X-ray Transformation

$$A\mathbf{x}: L \mapsto \int_{L} \mathbf{x}(r) dr$$

Inverse Problem: Given y, calculate x with A(x) = y.

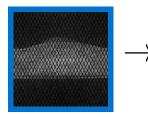
Infer from the **effect** the **cause**.

Examples

▶ 1. board

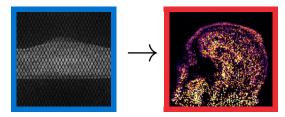
Examples

- ► 1. board
- ▶ 2. Positron Emission Tomography Data: PET scanner in London, model: $Ax : L \mapsto \int_{I} x(r) dr$



Examples

- ▶ 1. board
- ▶ 2. Positron Emission Tomography Data: PET scanner in London, model: $Ax : L \mapsto \int_{I} x(r) dr$



Definition (Jacques Hadamard, 1902): An Inverse Problem "A(x) = y" is called **well-posed**, if the solution

- (1) exists.
- (2) is unique.
- (3) depends continuously on the data."Small errors in y lead to small errors in x."

Otherwise, we call it **ill-posed**.

Generalized Solutions

Definition: Let $y \in Y$. The set of all **approximate solutions** of "A(x) = y" is $L := \left\{ x \in X \mid ||A(x) - y|| \le ||A(z) - y|| \quad \forall z \in X \right\}.$

If a solution $z \in X$ exists, ||A(z) - y|| = 0, then

$$L = \left\{ x \in X \mid A(x) = y \right\}$$

Generalized Solutions

Definition: Let $y \in Y$. The set of all **approximate solutions** of "A(x) = y" is $L := \left\{ x \in X \mid ||A(x) - y|| \le ||A(z) - y|| \quad \forall z \in X \right\}.$

If a solution $z \in X$ exists, ||A(z) - y|| = 0, then

$$L = \left\{ x \in X \mid A(x) = y \right\}$$

Definition: An approximate solution $\overline{x} \in L$ is called **minimal-norm-solution**, if

 $\|\overline{\mathbf{x}}\| \leq \|\mathbf{x}\| \quad \forall \mathbf{x} \in L.$

Assume: $A \in L(X, Y)$ Recall:

▶ Range of A: $R(A) := \{y \in Y \mid \exists x \in X : Ax = y\} \subset Y$

• Orthogonal complement: $U \subset Y$,

$$U^{\perp} := \{ y \in Y \mid \langle y, u \rangle = 0 \quad \forall u \in U \}$$

• Minkowski sum: $U + V := \{u + v \mid u \in U, v \in V\}$

Assume: $A \in L(X, Y)$ Recall:

▶ Range of A: $R(A) := \{y \in Y \mid \exists x \in X : Ax = y\} \subset Y$

• Orthogonal complement: $U \subset Y$,

$$U^{\perp} := \{ y \in Y \mid \langle y, u \rangle = 0 \quad \forall u \in U \}$$

- Minkowski sum: $U + V := \{u + v \mid u \in U, v \in V\}$
- ▶ If the range R(A) is closed, then $R(A) + R(A)^{\perp} = Y$, otherwise $R(A) + R(A)^{\perp} \subseteq Y$. **Example**: $A : \ell^2 \to \ell^2$, $(Ax)_j = \frac{x_j}{j}$. Range **not** closed.

Assume: $A \in L(X, Y)$ Recall:

▶ Range of A: $R(A) := \{y \in Y \mid \exists x \in X : Ax = y\} \subset Y$

• Orthogonal complement: $U \subset Y$,

$$U^{\perp} := \{ y \in Y \mid \langle y, u \rangle = 0 \quad \forall u \in U \}$$

- Minkowski sum: $U + V := \{u + v \mid u \in U, v \in V\}$
- ▶ If the range R(A) is closed, then $R(A) + R(A)^{\perp} = Y$, otherwise $R(A) + R(A)^{\perp} \subsetneq Y$. **Example**: $A : \ell^2 \to \ell^2$, $(Ax)_j = \frac{x_j}{l}$. Range **not** closed.

Theorem: Let $y \in R(A) + R(A)^{\perp}$. Then there exists a unique minimal-norm-solution \overline{x} of "Ax = y". We write $A^{\dagger}y = \overline{x}$.

Assume: $A \in L(X, Y)$ Recall:

▶ Range of A: $R(A) := \{y \in Y \mid \exists x \in X : Ax = y\} \subset Y$

• Orthogonal complement: $U \subset Y$,

$$U^{\perp} := \{ y \in Y \mid \langle y, u \rangle = 0 \quad \forall u \in U \}$$

- Minkowski sum: $U + V := \{u + v \mid u \in U, v \in V\}$
- ▶ If the range R(A) is closed, then $R(A) + R(A)^{\perp} = Y$, otherwise $R(A) + R(A)^{\perp} \subsetneq Y$. **Example**: $A : \ell^2 \to \ell^2$, $(Ax)_j = \frac{x_j}{l}$. Range **not** closed.

Theorem: Let $y \in R(A) + R(A)^{\perp}$. Then there exists a unique minimal-norm-solution \overline{x} of "Ax = y". We write $A^{\dagger}y = \overline{x}$.

Theorem: If R(A) is not closed, then \overline{x} does not depend continuously on y. I.e. A^{\dagger} is not continuous.

Intuition: board

Intuition: board

Definition: A family $\{R_{\alpha}\}_{\alpha>0}$ is called **regularization** of A^{\dagger} , if for all

- $\alpha > 0$ the mapping $R_{\alpha} : Y \to X$ is continuous.
- $y \in R(A) + R(A)^{\perp}$: $R_{\alpha}y \to A^{\dagger}y$ if $\alpha \to 0$.

Intuition: board

Definition: A family $\{R_{\alpha}\}_{\alpha>0}$ is called **regularization** of A^{\dagger} , if for all

- $\alpha > 0$ the mapping $R_{\alpha} : Y \to X$ is continuous.
- $y \in R(A) + R(A)^{\perp}$: $R_{\alpha}y \to A^{\dagger}y$ if $\alpha \to 0$.

Examples:

► The family $\{R_{\alpha}\}_{\alpha>0}$ with $R_{\alpha}y = (A^*A + \alpha I)^{-1}A^*y$ is called **Tikhonov regularization** of A^{\dagger} .

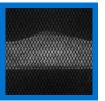
Intuition: board

Definition: A family $\{R_{\alpha}\}_{\alpha>0}$ is called **regularization** of A^{\dagger} , if for all

- $\alpha > 0$ the mapping $R_{\alpha} : Y \to X$ is continuous.
- $y \in R(A) + R(A)^{\perp}$: $R_{\alpha}y \to A^{\dagger}y$ if $\alpha \to 0$.

Examples:

- ► The family $\{R_{\alpha}\}_{\alpha>0}$ with $R_{\alpha}y = (A^*A + \alpha I)^{-1}A^*y$ is called **Tikhonov regularization** of A^{\dagger} .
- Regularization for PET:



Intuition: board

Definition: A family $\{R_{\alpha}\}_{\alpha>0}$ is called **regularization** of A^{\dagger} , if for all

- $\alpha > 0$ the mapping $R_{\alpha} : Y \to X$ is continuous.
- $y \in R(A) + R(A)^{\perp}$: $R_{\alpha}y \to A^{\dagger}y$ if $\alpha \to 0$.

Examples:

- ► The family $\{R_{\alpha}\}_{\alpha>0}$ with $R_{\alpha}y = (A^*A + \alpha I)^{-1}A^*y$ is called **Tikhonov regularization** of A^{\dagger} .
- Regularization for PET:

