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Time series analysis

Time series analysis simply refers to the analysis of data collected /

indexed over time. Such data is observed in a wide range of scientific

areas of interest, e.g. industrial process monitoring, climate modelling,

official statistics.

In particular, our aim is to build realistic models of such data which

account for possible complex temporal dependencies.

Matt Nunes, University of Bath An introduction to time series models



Time series analysis

Time series analysis simply refers to the analysis of data collected /

indexed over time. Such data is observed in a wide range of scientific
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Analysis tasks after modelling include

forecasting (prediction)

classification / distinguishing series

detection of changes, identifying patterns or periodicities etc.
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Time series analysis

Time series analysis simply refers to the analysis of data collected /

indexed over time. Such data is observed in a wide range of scientific

areas of interest, e.g. industrial process monitoring, climate modelling,

official statistics.

In particular, our aim is to build realistic models of such data which

account for possible complex temporal dependencies.

Analysis tasks after modelling include

forecasting (prediction)

classification / distinguishing series

detection of changes, identifying patterns or periodicities etc.

Notation:

A (real-valued, stationary) time series will be denoted by {Xt}t∈Z,

with a corresponding realisation of Xt being xt .
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Stationarity

In order to do inference, it is often assumed some sort of invariance of

time series, i.e. the statistical characteristics of the series do not

change over time (stationarity).

Types of stationarity:

First order: The mean of the time series is the same over time

Strict stationarity: For any finite sequence of integers t1, . . . , tk
and shift h, the distribution of {Xt1 , . . . ,Xtk } is the same as

{Xt1+h, . . . ,Xtk+h}.

(considered strong assumption, hard to check in practice).
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Stationarity

In order to do inference, it is often assumed some sort of invariance of

time series, i.e. the statistical characteristics of the series do not

change over time (stationarity).

Types of stationarity:

First order: The mean of the time series is the same over time

Strict stationarity: For any finite sequence of integers t1, . . . , tk
and shift h, the distribution of {Xt1 , . . . ,Xtk } is the same as

{Xt1+h, . . . ,Xtk+h}.

(considered strong assumption, hard to check in practice).

Second order / covariance / weak stationarity: If the mean is

constant for all t and if for any t and h, γX (h) = cov(Xt ,Xt+h) only

depends on the lag difference k .

(Note: Strict stationarity & E(|Xt |
2) <∞ implies second order

stationarity).
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Stationarity
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Figure: Types of (non)stationarity: linear trend (left); non-constant variance

(right).
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Some popular time series models: AR(p)

Motivation: Recall from linear regression, we predict a response Y

given some covariates Xj , so we model Yi as

Yi =

p
∑

j=1

ajXij + εi ,

with E(εi |Xij) = 0 and typically εi and Xij independent.

For time series, we can similarly predict a future observation from the

current and past observations

Xt =

p
∑

j=1

ajXt−j + εt .

This is the autoregressive model (of order p).
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Some popular time series models: MA(q)

Let {Xt} be a time series. We say Xt has a moving average of order

q (MA(q) for short) representation if

Xt =

q
∑

j=0

ψjεt−j ,

where {εt} are IID random variables with zero mean and finite

variance (i.e. white noise).

In other words, the series is modelled as a linear combination of the

previous noise.
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Some popular time series models: MA(q)

Let {Xt} be a time series. We say Xt has a moving average of order

q (MA(q) for short) representation if

Xt =

q
∑

j=0

ψjεt−j ,

where {εt} are IID random variables with zero mean and finite

variance (i.e. white noise).

In other words, the series is modelled as a linear combination of the

previous noise.

We can combine autoregressive and moving average models to form

ARMA models.
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Some (partial) justification for ARMA processes

Suppose we have an AR(1) process. We have

xt = φxt−1 + εt

= φ(φxt−2 + εt−1) + εt

=
...

=

∞
∑

j=0

φjεt−j .

In other words, an AR(1) process can be expressed as a linear

combination of elements from the noise process εt .
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Some (partial) justification for ARMA processes

Theorem

Any zero-mean nondeterministic covariance-stationary process xt can

be decomposed as

xt =

∞
∑

j=0

ψjεt−j + νt ,

where εt is a finite variance white noise process,
∑

j ψ
2
j <∞ and εt is

independent of νt for all t ∈ Z.
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Some (partial) justification for ARMA processes

Theorem

Any zero-mean nondeterministic covariance-stationary process xt can

be decomposed as

xt =

∞
∑

j=0

ψjεt−j + νt ,

where εt is a finite variance white noise process,
∑

j ψ
2
j <∞ and εt is

independent of νt for all t ∈ Z.

This implies that the dynamic of any purely nondeterministic

covariance-stationary process can be arbitrarily well approximated

by an ARMA process.

The decomposition of a series by the Wold representation may not

be the best description of the process.
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ARMA processes: model selection

Looking at the autocorrelation function (ACF) and partial

autocorrelation function can give an idea about how to choose

model AR and MA orders (look for where the plots “cut off”)
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Figure: ACF and PACF of an AR(2) process; notice the characteristic “cut off”
and damped exponential pattern of the plots.

we can also use model selection procedures like the AIC.
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Integrated models for (trend) nonstationarity

Now suppose xt = µt + yt , with yt a stationary process. For example,

suppose the mean is a random walk, i.e. µt = µt−1 + νt , with νt

stationary.

Then the differenced the series

∇xt = xt − xt−1 = νt +∇yt

is made up of stationary components and thus is stationary.
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Integrated models for (trend) nonstationarity

Now suppose xt = µt + yt , with yt a stationary process. For example,

suppose the mean is a random walk, i.e. µt = µt−1 + νt , with νt

stationary.

Then the differenced the series

∇xt = xt − xt−1 = νt +∇yt

is made up of stationary components and thus is stationary.

More generally, if µt is a k th order polynomial, µt =
∑k

j=0 βj t
j , then

∇kyt is stationary.
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Integrated models for (trend) nonstationarity

Now suppose xt = µt + yt , with yt a stationary process. For example,

suppose the mean is a random walk, i.e. µt = µt−1 + νt , with νt

stationary.

Then the differenced the series

∇xt = xt − xt−1 = νt +∇yt

is made up of stationary components and thus is stationary.

More generally, if µt is a k th order polynomial, µt =
∑k

j=0 βj t
j , then

∇kyt is stationary.

This leads to the integrated ARMA model: a process xt is said to be

ARIMA(p,d,q) if ∇d xt is ARMA(p,q).
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Integrated models for (trend) nonstationarity

Example: Stationary process with a linear trend:
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Figure: Effect of differencing: original series (left); differenced series (right).
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Modelling seasonality

We can also extend the models we’ve seen to seasonal components,

in a similar manner to integrated models.

Suppose a seasonal cycle lasts for s timepoints, i.e. the behaviour of

the series is similar at a lag of s. Then if we difference the series at lag

s,

yt = ∇sxt = xt − xt−s,

this will remove the seasonality.
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Modelling seasonality

We can also extend the models we’ve seen to seasonal components,

in a similar manner to integrated models.

Suppose a seasonal cycle lasts for s timepoints, i.e. the behaviour of

the series is similar at a lag of s. Then if we difference the series at lag

s,

yt = ∇sxt = xt − xt−s,

this will remove the seasonality.

More generally, we can have a ARIMA for the seasonal part of a time

series (P,D,Q)s, with the same interpretation of the orders.
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Modelling seasonality

We can also extend the models we’ve seen to seasonal components,

in a similar manner to integrated models.

Suppose a seasonal cycle lasts for s timepoints, i.e. the behaviour of

the series is similar at a lag of s. Then if we difference the series at lag

s,

yt = ∇sxt = xt − xt−s,

this will remove the seasonality.

More generally, we can have a ARIMA for the seasonal part of a time

series (P,D,Q)s, with the same interpretation of the orders.

Putting this together a flexible model is the SARIMA model:

ARIMA(p,d ,q)× ARIMA(P,D,Q)s.

This allows for nonseasonal and seasonal components.
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Modelling seasonality

Example: co2 time series representing monthly CO2.
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Figure: Original series, featuring

trend and yearly seasonality.

Matt Nunes, University of Bath An introduction to time series models



Modelling seasonality

Example: Time series representing monthly CO2: first difference (∇xt ),

and seasonal difference ∇12∇xt .

Time

F
ir
s
t 

d
if
fe

re
n

c
e

1960 1970 1980 1990

−
2

−
1

0
1

2

Time

S
e

a
s
o

n
a

l 
(s

=
1

2
) 

d
if
fe

re
n

c
e

1960 1970 1980 1990

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Figure: Effect of differencing: First difference (left); further (s=12) differenced

series (right).
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Model fitting (estimating coefficients)

Model fitting in ARMA models is generally done using maximum

likelihood estimation, subject to the constraints that the

coefficients satisfy stationarity conditions.

Usually, (due to the autocorrelation etc) we have to resort to

numerical methods to maximise the likelihood or use a state

space approach (Kalman filter).

As usual, one can incorporate prior belief on the structure of the

model and use a Bayesian formulation.
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Spectral analysis: frequency domain representations

In many applications, time series will exhibit periodicities or

oscillations, which may occur at differing rates.

These periodicities may be difficult to discern in the time domain.

Spectral / frequency domain analysis aims to capture these features,

and provide extra insight and properties of data.
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Spectral analysis: frequency domain representations

In many applications, time series will exhibit periodicities or

oscillations, which may occur at differing rates.

These periodicities may be difficult to discern in the time domain.

Spectral / frequency domain analysis aims to capture these features,

and provide extra insight and properties of data.

Main idea:

decompose a (stationary) series in terms of sinusoids at different

frequencies ωj with random, uncorrelated amplitudes.
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Spectral analysis: frequency domain representations

Suppose Xt =
∑k

j=1 Aj sin(2πωj t) + Bj cos(2πωj t), with A, B

uncorrelated, mean zero, with variance σ2
j (mixture of sinusoids at

different frequencies and amplitudes).

Then,

γ(h) =

k
∑

j=1

σ2
j cos(2πωjh).

(This follows from the uncorrelatedness of Aj and Bj ).
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Spectral analysis: frequency domain representations

Suppose Xt =
∑k

j=1 Aj sin(2πωj t) + Bj cos(2πωj t), with A, B

uncorrelated, mean zero, with variance σ2
j (mixture of sinusoids at

different frequencies and amplitudes).

Then,

γ(h) =

k
∑

j=1

σ2
j cos(2πωjh).

(This follows from the uncorrelatedness of Aj and Bj ). In particular,

setting h = 0, we have

var(Xt) = γ(0) =

k
∑

j=1

σ2
j .

In other words, we can decompose the autocovariance / variance of

the process via the sinusoidal components of the series Xt .
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The spectral density

Definition

Let Xt be a stationary process. Then if the autocovariance is absolutely

summable (i.e.
∑

∞

h=−∞
γ(h) <∞), then it has the representationa

γ(h) = 2π

∫ 1/2

0

cos(2πωh)f (ω)d ω h ∈ N,

as the inverse transform of the spectral density

f (ω) = 2γ(0) + 4

∞
∑

h=1

γ(h) cos(2πωh) for ω ∈ (0,1/2).

aOther definitions exist which differ by the range of the sum / integral and

scaling factor 2π.
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The spectral density: some comments

Some comments of the spectral density:

Interpretation: A stationary time series can be (approximately)

expressed as a random linear combination of sines and cosines at

different frequencies).

The spectral density is positive

The spectral density contains the same information as the

autocovariance, just expressed differently (cf. Parseval’s theorem).

The spectral density is even and periodic (hence we can restrict

our attention to e.g. ω ∈ (0,1/2)).

Matt Nunes, University of Bath An introduction to time series models



The spectral density: examples

1 Since white noise is an uncorrelated process, then γ(0) = σ2 and

is zero for h 6= 0. Hence

fWN(ω) = 2γ(0) + 4

∞
∑

h=1

γ(h) cos(2πωh) = 2γ(0) = 2σ2,

i.e. the spectral density of white noise is constant for all

frequencies.
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The spectral density: examples

1 Since white noise is an uncorrelated process, then γ(0) = σ2 and

is zero for h 6= 0. Hence

fWN(ω) = 2γ(0) + 4

∞
∑

h=1

γ(h) cos(2πωh) = 2γ(0) = 2σ2,

i.e. the spectral density of white noise is constant for all

frequencies.

2 Let Xt be an AR(1) process with parameter φ. Then it can be

shown that

f (ω) =
σ2

1 − 2φ cos(2πω) + φ2
.

(φ > 0 ↔ low frequencies, φ < 0 ↔ high frequencies).
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Example

Example: AR(1) with φ = 0.9.
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Figure: Theoretical spectrum of
AR(1) process with φ = 0.9.
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Spectral estimation: the periodogram

Recall that the discrete Fourier transform is defined as

d(ωj) = T−1/2
T
∑

t=1

xt e
2πiωj t ,

for equally spaced Fourier frequencies ωj .

Matt Nunes, University of Bath An introduction to time series models



Spectral estimation: the periodogram

Recall that the discrete Fourier transform is defined as

d(ωj) = T−1/2
T
∑

t=1

xt e
2πiωj t ,

for equally spaced Fourier frequencies ωj . The periodogram is then

defined as

IT (ωj) = |d(ωj)|
2 = T−1

∣

∣

∣

∣

∣

T
∑

t=1

xt e
2πiωj t

∣

∣

∣

∣

∣

2

,

where ωj =
j

2nω

, j = 0, . . . ,nω =
⌈

T+1
2

⌉

.
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Spectral estimation: the periodogram

Recall that the discrete Fourier transform is defined as

d(ωj) = T−1/2
T
∑

t=1

xt e
2πiωj t ,

for equally spaced Fourier frequencies ωj . The periodogram is then

defined as

IT (ωj) = |d(ωj)|
2 = T−1

∣

∣

∣

∣

∣

T
∑

t=1

xt e
2πiωj t

∣

∣

∣

∣

∣

2

,

where ωj =
j

2nω

, j = 0, . . . ,nω =
⌈

T+1
2

⌉

.

However, the periodogram is an inconsistent estimator of the

spectrum (i.e. var(IT (ωj)) 9 0 as T → ∞), and so the

periodogram is usually smoothed to remedy this.
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Periodogram examples

Let Xt = 2 cos(2π6t/100) + 4 cos(2π10t/100) + 6 cos(2π40t/100).
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Figure: Periodogram of Xt , featuring three periodicities at distinct frequencies

(“full” frequency range).
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Periodogram examples

Let Xt = 2 cos(2π6t/100) + 4 cos(2π10t/100) + 6 cos(2π40t/100).

0 20 40 60 80 100

−
1

0
−

5
0

5
1

0

Time

S
e

ri
e

s

0.0 0.1 0.2 0.3 0.4 0.5

0
5

0
0

1
0

0
0

1
5

0
0

2
0

0
0

frequency

s
p

e
c
tr

u
m

bandwidth = 0.00289

Figure: Periodogram of Xt , featuring three periodicities at distinct frequencies.
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Periodogram examples

Let Xt be the soi (Southern Oscillation Index) series (below).
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Figure: Periodogram of the Southern Oscillation Index.
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Spectral estimation

There are many ways to perform spectral estimation. Nonparametric

spectral estimation methods are derived from the spectrum definition,

e.g.

Average (frame) periodogram/ Welch’s Method

Blackman-Tukey estimator (using a weighted average of

periodogram values)

Parametric methods assume some sort of model / form for the

spectrum,e.g. AR Spectral approximation.
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Forecasting

There are many ways to forecast a time series, depending on your

intuition and the model. For example, one could use

a naive estimator: ŷt+1 = yt

a moving average: ŷt+1 = 1
K

∑K
k=1 yt+1−k

exponential moving average: αyt + (1 − α)ŷt

if there are trend and seasonal components, these can also be

taken into account by using similar procedures, or using the model

form
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Other Remarks and considerations

There are many other issues in time series which are relevant. Here

are some

non-Gaussian errors: either transform (e.g. via log) or use a count

process model

addition of covariates (exogenous variables) straightforward

Vector time series models: multivariate extensions (VARIMA)

which include dependence between series

second order nonstationarity: ARCH models, time-varying

coefficients, locally stationary models

In R, see the base, forecast, VTS packages.
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