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Problem statement

We are interested in integrals of the form

E[p(X)] = / o (x)m(dx), (1)

where 7 is a probability measure defined on (X, X), o : X = Ris
B(R)/X-measurable.

Typically these integrals are intractable
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Monte Carlo

Often it is simpler (than to evaluate E[p(X)]) to draw a sample
1 N did
{XH. ., X"}~

in which case we can straightforwardly calculate

N
Z ~ E[p(X)] (2)

There are many theoretically sound results on the approximation
‘~"in (2).



Validity of Monte Carlo

E [WN(QO)} = E[p(X)] (Unbiased)
V[(e)] = LVIP(0) (Error
™ (p) ﬁ E[e(X)] (Convergence)

VI () = Elp(X)]) 17— (0, V[e(X))

(Central limit theorem)
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Problems with Monte Carlo

P[X > 2] = E[I(X > 2)] = / I(x > 2)n(dx), where X ~ A7(0,1)
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Problems with Monte Carlo

P[X > 2] = E[I(X > 2)] = / I(x > 2)m(dx),
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Importance sampling

Obviously
Bele(X)] = [ o0omax = [ o007 0ax = B [ o) 75|
so we can construct another approximation
IR NGO n(X)] _
) = 5 2 o0 T ~ B, o0 T3] = Brletx)
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Validity of importance sampling

We have immediately

E [m"é(so)} = E[p(X)] (Unbiased)
mi8(¢) ﬁ E[e(X)] (Convergence)

but considerations on the variance of the 7l%(¢) are somewhat
more subtle. The variance may indeed be infinite, depending on
the function /7.

Theorem 1

The choice of v which minimises the variance of ml%(¢) is

el
") = Tl (xax
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Importance sampling for the problem above

P[X > 2] = E[I(X > 2)] = / I(x > 2)n(dx), where X ~ A7(0,1)
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Importance sampling for the problem above

P[X > 2] = E[I(X > 2)] = / I(x > 2)n(dx), where X ~ A7(0,1)
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Importance sampling for the problem above

P[X > 2] = E[I(X > 2)] = / I(x > 2)n(dx), where X ~ A7(0,1)
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Accept reject method
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Accept reject method
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Accept reject method
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Accept reject method

Histogram
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Multilevel Monte Carlo (MLMC)

Consider a situation where we are interested in an expectation

Ble(0)] = [ ¢()n(d),

where ¢ : X — R is uniformly Lipschitz, but X cannot be simulated
exactly from 7. Instead we have approximations {1,..., 7} of
different levels of accuracy of 7 that are easy to sample from.

We also assume that for {1 < {5, my, is less expensive to simulate
from than my, but also a worse approximation of 7.
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Multilevel Monte Carlo

Define

Py = ©(Xp), where Xy~mpand £€{1,...,L}.

Clearly
L

E[PL] = E[Po] + > E[P; — P;4]
=1
For each of the expectations above we can construct the
approximations
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Variance reduction by control variates

E[(X2/4)% — (X1/4)?], where X;~N(4,1), Xo~ N(10,1)
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Variance reduction by control variates
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