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Problem statement

We are interested in integrals of the form

E[ϕ(X )] =

∫
ϕ(x)π(dx), (1)

where π is a probability measure defined on (X,X ), ϕ : X → R is
B(R)/X -measurable.

Typically these integrals are intractable
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Monte Carlo

Often it is simpler (than to evaluate E[ϕ(X )]) to draw a sample

{X 1, . . . ,XN} iid∼ π

in which case we can straightforwardly calculate

πN(ϕ) =
1

N

N∑
i=1

ϕ(X i ) ≈ E[ϕ(X )] (2)

There are many theoretically sound results on the approximation
‘≈’ in (2).
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Validity of Monte Carlo

E
[
πN(ϕ)

]
= E[ϕ(X )] (Unbiased)

V
[
πN(ϕ)

]
=

1

N
V[ϕ(X )] (Error)

πN(ϕ)
a.s.−−−−→

N→∞
E[ϕ(X )] (Convergence)

√
N
(
πN(ϕ)− E[ϕ(X )]

)
d−−−−→

N→∞
N (0,V[ϕ(X )])

(Central limit theorem)
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Problems with Monte Carlo

P[X > 2] = E[I(X > 2)] =

∫
I(x > 2)π(dx), where X ∼ N (0, 1)

0.0

0.1

0.2

0.3

0.4

−4 −2 0 2 4

x

y

5 / 19



Problems with Monte Carlo

P[X > 2] = E[I(X > 2)] =

∫
I(x > 2)π(dx), where X ∼ N (0, 1)

0.0

0.1

0.2

0 100 200 300 400 500

N

y

6 / 19



Importance sampling

Obviously

Eπ[ϕ(X )] =

∫
ϕ(x)π(x)dx =

∫
ϕ(x)

π(x)

γ(x)
γ(x)dx = Eγ

[
ϕ(X )

π(X )

γ(X )

]
so we can construct another approximation

πNIS(ϕ) =
1

N

N∑
i=1

ϕ(X i )
π(X i )

γ(X i )
≈ Eγ

[
ϕ(X )

π(X )

γ(X )

]
= Eπ[ϕ(X )],

where
{X 1, . . . ,XN} iid∼ γ
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Validity of importance sampling

We have immediately

E
[
πNIS(ϕ)

]
= E[ϕ(X )] (Unbiased)

πNIS(ϕ)
a.s.−−−−→

N→∞
E[ϕ(X )] (Convergence)

but considerations on the variance of the πNIS(ϕ) are somewhat
more subtle. The variance may indeed be infinite, depending on
the function π/γ.

Theorem 1

The choice of γ which minimises the variance of πNIS(ϕ) is

γ(x) =
|ϕ(x)|π(x)∫
|ϕ(x)|π(x)dx
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Importance sampling for the problem above

P[X > 2] = E[I(X > 2)] =

∫
I(x > 2)π(dx), where X ∼ N (0, 1)
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Importance sampling for the problem above

P[X > 2] = E[I(X > 2)] =

∫
I(x > 2)π(dx), where X ∼ N (0, 1)
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Accept reject method
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Accept reject method
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Multilevel Monte Carlo (MLMC)

Consider a situation where we are interested in an expectation

E[ϕ(X )] =

∫
ϕ(x)π(dx),

where ϕ : X→ R is uniformly Lipschitz, but X cannot be simulated
exactly from π. Instead we have approximations {π1, . . . , πL} of
different levels of accuracy of π that are easy to sample from.
We also assume that for `1 < `2, π`1 is less expensive to simulate
from than π`2 but also a worse approximation of π.
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Multilevel Monte Carlo

Define

P̂` = ϕ(X`), where X` ∼ π` and ` ∈ {1, . . . , L}.

Clearly

E[P̂L] = E[P̂0] +
L∑
`=1

E[P̂` − P̂`−1]

For each of the expectations above we can construct the
approximations

Ŷ0 =
1

N`

N∑̀
i=1

P̂ i
0 and Ŷ` =

1

N`

N∑̀
i=1

(P̂ i
` − P̂ i

`−1)
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Variance reduction by control variates

E[(X2/4)2 − (X1/4)2], where X1 ∼ N (4, 1), X2 ∼ N (10, 1)
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Variance reduction by control variates
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