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What is a Gaussian process/Gaussian random field (GRF)?

Stochastic process {Z (s)|s ∈ D}, D ⊂ Rd

Mean: µ(s) = E(Z (s))

Variance: Var(Z (s)) <∞

Any finite collection {Z (s1), . . . ,Z (sk)} is multivariate normal:Z (s1)
...

Z (sk)

 ∼ N


µ(s1)

...
µ(sk)

 ,
 Cov(Z (si ),Z (sj))
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What is a Gaussian process/Gaussian random field?
Time series: {Z (t)|t = 0, 1, . . .}

White noise

Z(t) ∼iid N(0, σ2)
Any finite collection {Z(t1), . . . ,Z(tk)} ∼ N(0, σ2I )
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What is a Gaussian process/Gaussian random field?
Time series: {Z (t)|t = 0, 1, . . .}

AR(1) e.g. Z (t) = closing stock price on day t

Z(0) ∼ N(0, σ2

1−φ2 )

Z(t) = φZ(t − 1) + ε(t), ε(t) ∼iid N(0, σ2), for t = 1, 2, . . .
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What is a Gaussian process/Gaussian random field?

Spatial field: {Z (s)|s ∈ D}, D ⊂ R2

White noise

Z(s) ∼iid N(0, σ2)
Any finite collection {Z(s1), . . . ,Z(sk)} ∼ N(0, σ2I )
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What is a Gaussian process/Gaussian random field?

Spatial field: {Z (s)|s ∈ D}, D ⊂ R2

Z (s) = concentration of mineral at location s

µ(s) = µ
Cov(Z(s1),Z(s2)) = C(|s2 − s1|) where

C(r) = exp(−r 2/R2), for some range parameter R
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What is a Gaussian process/Gaussian random field?

Spatial field: {Z (i)|i = 1, . . . ,N}, N regions

Z (i) = relative risk of lung cancer in region i

Covariance: Neighbouring regions more similar than those far apart
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What are Gaussian processes used for?

Improve inference

Identify spatial correlation structure/clustering

More powerful inference by pooling data (e.g. identify time trend in
river flow data)

Prediction: Given observations Z (s1), . . . ,Z (sn)

Reconstruct entire field Z (s) (e.g. global sea surface temperature)

Estimate
∫
A
Z (s)ds (e.g. total quantity of ore across region A from

observed densities)

Assess uncertainty of these estimates

Emiko Dupont

Gaussian processes in spatial statistics



What are Gaussian processes used for?

Applications in

environmental sciences (e.g. assessing time trends/spatial trends in
flood risk/sea ice concentration, sea temperature..., forecasting)

geology (e.g. estimating mineral concentration for mining)

ecology (e.g. assess fish stock to avoid overexploitation)

epidemiology (e.g. understanding spatial distribution of diseases)

econometrics (e.g. financial time series modelling)

...
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Gaussian process models

A Gaussian process is completely determined by its mean and covariance

Additional model assumptions could be:

Stationarity: Process depends only on s1 − s2
µ(s) = µ and Cov(Z (s1),Z (s2)) = C (s1 − s2)

Isotropy: Covariance depends only on |s1 − s2|
Cov(Z (s1),Z (s2)) = C (|s1 − s2|)

Examples of isotropic covariance functions:

Exponential (range parameter R)

Spherical (range parameter R) (resulting field quite spiky)

Matérn (range parameter and smoothness parameter) (very flexible!)

(all reflect the idea that nearby observations are most similar)
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Parameter estimation - method 1 (MLE)
Given z = (z1, . . . , zn) observations of Z (s) at locations s1, . . . , sn.

Model
z ∼ N(Xβ,Σ) where Σ = αV (θ)

X = observed covariates at locations s1, . . . , sn
β = unknown coefficients of covariates
α = unknown overall degree of smoothing
θ = unknown parameters of the chosen covariance function

Maximum likelihood estimate of parameters

(β̂, α̂, θ̂) = argmax l(β, α, θ)

where

l(β, α, θ) = − n
2 log(2π)− n

2 logα− 1
2 log |V (θ)|− 1

2α (z−Xβ)TV (θ)−1(z−Xβ)

Confidence intervals from asymptotic properties of MLE
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Parameter estimation - method 2 (Bayesian)
Given z = (z1, . . . , zn) observations of Z (s) at locations s1, . . . , sn.

Model

z |β, α, θ ∼ N(Xβ,Σ) where Σ = αV (θ)

(β, α, θ) ∼ some prior distribution

X = observed covariates at locations s1, . . . , sn
β = unknown coefficients of covariates
α = unknown overall degree of smoothing
θ = unknown parameters of the chosen covariance function

Posterior distribution

f (β, α, θ|z) ∝ f (z |β, α, θ)f (β, α, θ)

For certain priors, posterior modes correspond to frequentist REML
estimates
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Prediction

Goal
Given: z = (z1, . . . , zn) observations of Z (s) at locations s1, . . . , sn
Estimate: z0 = Z (s0) where s0 /∈ {s1, . . . , sn} =⇒ ẑ0, uncertainty of ẑ0
(generalises to estimation of the entire field Z (s) or

∫
A
Z (s)ds)

Methods

Kriging (known covariance structure)

ẑ0 = λT z (weighted average of observations)

Bayesian method (covariance structure with unknown parameters)

Posterior distribution of parameters
Posterior distribution z0|z (estimate is mean/mode/median)
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Kriging
Given: z = (z1, . . . , zn) observations of Z (s) at locations s1, . . . , sn
and known covariance structure
Idea:

Predict z0 = Z (s0) as a weighted average ẑ0 = λT z

Weights λ are determined by spatial correlation structure
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Kriging
Given: z = (z1, . . . , zn) observations of Z (s) at locations s1, . . . , sn
and known covariance structure
Model

z ∼ N(Xβ,Σ), z0 ∼ N(xT0 β, σ
2
0), Cov(z , z0) = τ

x0,X = observed covariates at locations s0, s1, . . . , sn
β = unknown coefficients of covariates
σ2
0 , τ,Σ = known covariances

Prediction: Choose ẑ0 = λT z so that

ẑ0 is unbiased (E(ẑ0) = z0)

Mean squared prediction error E((z0 − ẑ0)2) = Cov(ẑ0) is minimised

Result

ẑ0 = xT0 β̂ + τTΣ−1(z − X β̂) where β̂ = (XTΣ−1X )−1XTΣ−1z

Cov(ẑ0) = σ2
0−τTΣ−1τ + (x0−XTΣ−1τ)T (XTΣ−1X )−1(x0−XTΣ−1τ)
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Bayesian method for prediction
Given: z = (z1, . . . , zn) observations of Z (s) at locations s1, . . . , sn

Model[
z |α, β, θ
z0|α, β, θ

]
∼ N

([
Xβ
xT0 β

]
,

[
Σ τ
τT σ2

0

])
,

Σ = αV (θ), τ = αw(θ), σ2
0 = αv0(θ)

x0,X = observed covariates at locations s0, s1, . . . , sn

α, β, θ ∼ some prior distribution

Prediction: Posterior distribution

f (z0|Z ) =

∫
f (z0|z , α, θ, β)f (β|z , α, θ)f (α|z , θ)f (θ|z)dβdαdθ

ẑ0 = mean/median/mode
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Tools for estimation and prediction of Gaussian processes

Frequentist methods

Directly using optim to optimise likelihood/REML/prediction error

nlme (linear mixed model formulation of Gaussian process) (uses ML
or REML)

mgcv (GAM formulation) (uses penalised likelihood method)

Bayesian methods

Markov Chain Monte Carlo

INLA for Gaussian Markov random fields (GMRFs) (uses integrated
nested Laplace approximation)
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Tools for estimation and prediction of Gaussian processes

For large datasets z , calculation of Σ−1 and |Σ| is difficult and requires
numerical methods, e.g.

tapering (sparse Σ by setting small values equal to 0)

other likelihood approximations e.g. in the spatial domain (condition
on subvectors of z rather than full z), or in the spectral domain
(truncate spectral density of z)

fixed rank kriging (particular covariance structures - invert Σ by
inverting smaller fixed rank matrices)

GMRF representation of e.g. Matérn fields on triangulated lattice
(sparse precision matrix, cholesky decomposition)
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