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Fitting a model to data

Standard data fitting model

y = Ca + ε, ε ∈ N(0, σ2I)

y is an m × n data vector, a parameters of the model

C is an m × n observation matrix, e.g. basis functions evaluated
at x

ε is an m × n vector of independent random effects associated
with the measuring system

Least squares model fit

â = (CTC)−1CTy = R−1
1 QT

1 y , C = Q1R1

ŷ = Câ = C(CTC)−1CTy = Q1QT
1 y
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Effective number of degrees of freedom in a model

If ŷ = Hy , the sum of the eigenvalues of H is a measure of the
number of degrees of freedom associated with the model.

Least squares model fit

ŷ = C(CTC)−1CT = Q1QT
1 y

Q1QT
1 is a projection with n eigenvalues equal to 1, all others 0.
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Correlated systematic effects

Extension of the standard model:

y = Ca + e + ε, e ∈ N(0,V0), ε ∈ N(0, σ2I)
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Gauss Markov regression

Combined variance matrix, Choleski decomposition

V = V0 + σ2I = LLT, ỹ = L−1y , C̃ = L−1C

ỹ = C̃a + ε̃, ε̃ ∈ N(0, I)

Effective degrees of freedom: transformed problem

ˆ̃y = Q̃1Q̃T
1 ỹ

Effective degrees of freedom: original problem

ŷ = Lˆ̃y = LQ̃1Q̃T
1 L−1y
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Explicit effects model

Same extended model

y = Ca + e + ε, e ∈ N(0,V0), ε ∈ N(0, σ2I)

Introduce parameters to describe the systematic effects,

e = L0d , V0 = L0LT
0[

y
0

]
=

[
C L0

I

] [
a
d

]
+

[
ε
δ

]
ε ∈ N(0, σ2I), δ ∈ N(0, I)
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Augmented system

ỹ = C̃ã + ε̃, where

ỹ =

[
y/σ

0

]
, C̃ =

[
C/σ L0/σ

I

]
and

ã =

[
a
d

]
, ε̃ =

[
ε
δ

]
ε̃ ∈ N(0, I)

Eigenvalues

ˆ̃y = Pỹ =

[
P11 P12
P21 P22

] [
y/σ

0

]
ŷ = P11y

n ≤
∑

j λj(P11),
∑

j λj(P22) ≤ m
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Gaussian Processes

Same extended model

y = Ca + e + ε, e ∈ N(0,V0), ε ∈ N(0, σ2I)

Cij = bj(ti), cov(e,e′) = k(t , t ′), e.g.

k(t , t ′) = σ2
E exp

{
−(t − t ′)2/τ2}

Equally spaced ti

V = σ2
E


1 v v4 v9 v16 · · ·
v 1 v v4 v9 · · ·
v4 v 1 v v4 · · ·

. . .
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Eigenvalues of V for different τ
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Eigenvalues of P11 for different τ
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Eigenvectors of V
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Eigenvectors as Chebyshev polynomials

0.0838 -0.0002 0.0549 0.0009 0.0400 0.0018
0.0001 0.0724 -0.0004 -0.0485 -0.0013 -0.0366

-0.0077 0.0001 0.0697 0.0007 0.0461 0.0017
-0.0000 -0.0078 0.0001 -0.0687 -0.0009 -0.0449
0.0003 -0.0000 -0.0079 -0.0001 0.0681 0.0011
0.0000 0.0004 -0.0000 0.0080 0.0002 -0.0677

-0.0000 0.0000 0.0004 0.0000 -0.0081 -0.0002
-0.0000 -0.0000 0.0000 -0.0005 -0.0000 0.0081
0.0000 -0.0000 -0.0000 -0.0000 0.0005 0.0000
0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0005
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Chebyshev polynomials as eigenvectors

11.1174 0.0445 -8.8230 0.0275 -0.6102 0.0337
-0.0000 12.8329 0.1027 -9.1725 0.0586 -0.9364
1.1822 0.0047 12.3875 0.1628 -9.1967 0.0874

-0.0000 -1.4056 -0.0112 -12.5111 -0.2227 9.1655
0.0785 0.0003 1.4235 0.0180 12.6002 0.2820

-0.0000 -0.0869 -0.0007 -1.4731 -0.0250 -12.6561
0.0034 0.0000 0.0874 0.0011 1.5080 0.0320
0.0000 -0.0036 -0.0000 -0.0900 -0.0015 -1.5330
0.0001 0.0000 0.0036 0.0000 0.0920 0.0019
0.0000 -0.0001 -0.0000 -0.0037 -0.0001 -0.0935
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Eigenvalues of V , k(t , t ′) ∝ exp{−|t − t ′|/τ}
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Eigenvectors of V , k(t , t ′) ∝ exp{−|t − t ′|/τ}
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DIAL measurements and stack emissions

DIAL: differential Absorption LIDAR

Beams pointed at a plume emission

Measures the cumulative absorption along the beam as a
function of distance

Absorption related to amount of pollutant along the beam

Beam is stepped through a number of angles in a plane

Goal: estimate the pollutant density of the plume
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Air quality diagnostics

Stacks at known locations

Multi-species air quality sensors at known locations

Prior profiles of species being emitted at different stacks

Plume dispersion models

Atmospheric chemistry models

Met predictions: wind speed and direction

Met data: wind speed and direction

Goal: what is each stack is emitting as a function of time, alerts

Goal: where to put air quality sensors (and which type) to
provide best resolution

Goal: determine air quality maps from the data and models

Goal: find surrogate measurements, e.g., EO
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Urban air quality diagnostics

Prior profiles of emissions from different classes of vehicles,
buildings

Urban topography: maps, buildings, streets

Environmental fluid dynamics

Met data

Traffic flow data: historical data, ANPR, speed cameras

Multi-species air quality sensors at known locations

Goal: determine posterior profiles of emission profiles

Goal: predict air quality from traffic flow, met predictions
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In-process measurement

Workpiece ideal geometry at 20 degrees C specified, with
tolerances

Workpiece being manufactured: cutting, drilling, machining

Measurements of the temperature at finite number of locations
on the workpiece

Measurements of the dimensions of a finite number of key
features

GOAL: use an FE model of artefact and the measurements to
infer the workpiece shape at a stable 20 degrees

Learn from an ensemble of workpieces

Effective degrees of freedom associated with a FE model

Minimise measurements required
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Large engineering structures

Aircraft wings, bridges

FE model with many material parameters estimated

Heterogeneous set of measurements: temperature, stress,
strain, dimensions, tilt, accelerometers, windspeed

Goal: use the FE model and data to improve estimates of the
material parameters
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Industry 4.0, digital twins

Large scale models, simulations of factories

Multiple streams of sensor data of actual behaviour

Goal: assimilate data into models to improve predictability and
decision-making
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Guide to the Expression of Uncertainty in
Measurement (GUM)

Law of the propagation of uncertainty (1st and 2nd moments)

y = Cx , µY = CµX , VY = CVX CT

If x ∼ N(µX ,VX ), then y ∼ N(µY ,VY )

N(µ,V ) is the maximum entropy distribution with mean µ and
variance V
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Summarising a distribution, reconstructing an
approximate distribution

Given p(x), calculate Sk (p), k = 1, . . . ,K

Given Sk , construct p0(x) such that Sk (p0) = Sk

For what class of distributions is p0 = p

Sk low order moments: mean, variance, skewness, kurtosis,
etc.,

Sk quantiles: 2.5, 5, 10, 50, 90, 95, 97.5

p(x)→ µX ,VX → N(µX ,VX )
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Maximum entropy distributions from moments

Non-central moments

mk =

∫
xk p(x)dx , k = 0, . . . ,n

Maximum entropy distribution satisfies

mk =

∫
xk exp

(
n∑

k=0

ak xk − 1

)
dx
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Reconstruction of a t-distribution
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Reconstruction of a Gamma distribution, 3 moments
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Reconstruction of a Gamma distribution, 4 moments
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Reconstruction of a Gamma distribution, 5 moments
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Reconstruction of a Gamma distribution, 6 moments
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Maximum entropy distributions from quantile
constraints

Maximum entropy distribution given mean, variance and 2.5 and
97.5 quantiles

Result is a discontinuous piecewise Gaussian
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A more general problem

Given a space of probability P distributions with a prior on P, choose
quantiles Qk and reconstruction scheme R to minimise the expected
value of

D(p||R(Qk (p))

(or some other measure).
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Chebyshev-type inequalities

Suppose y =
∑n

1 xj where xj has mean and variance µj , σ2
j ,

derive tight estimates of the quantiles associated with y .

What can be said if we know more: higher moments, symmetry,
unimodality
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Arcsine distribution



Spectral analysis and GP Source diagnostics Data assimilation with engineering models Summarising distributions

Sum of 2 arcsine variates
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Sum of 5 arcsine variates
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Other statistical interests

Approximate Bayesian computation

Linear Bayes

Imprecise probability

Probabilistic numerics
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