Dynamic Imaging

Tomographic reconstruction, object recognition, classification, tracking...

Daniil Kazantsev ITT9, 29.01.2019

Diamond Light Source

1. Microstructural ice-cream melting/freezing processes

Data collected on I13 beamline of DLS by *E. Guo* et al. [1, 4] https://www.diamond.ac.uk/Instruments/Imaging-and-Microscopy/I13.html

1. Microstructural ice-cream melting/freezing processes Data collected on I13 beamline of DLS by *E. Guo* et al. [1, 4] https://www.diamond.ac.uk/Instruments/Imaging-and-Microscopy/I13.html

2. Microstructural dendritic grain growth in Mg alloys Data collected on 113 beamline of DLS by *E. Guo* et al. [3, 2, 5]

1. Microstructural ice-cream melting/freezing processes Data collected on I13 beamline of DLS by *E. Guo* et al. [1, 4] https://www.diamond.ac.uk/Instruments/Imaging-and-Microscopy/I13.html

2. Microstructural dendritic grain growth in Mg alloys Data collected on I13 beamline of DLS by *E. Guo* et al. [3, 2, 5]

3. Modelling phantoms and tomographic data with artifacts TomoPhantom software is able to model 2D-4D phantoms and their projection data with noise and some common imaging artifacts [6] https://github.com/dkazanc/TomoPhantom

Looking into ice-cream structure

Looking into ice-cream structure

Why ice-cream doesn't always taste good?

Figure 1: (a) a taste bud; (b) The micrograph shows a close-up view of tongue's surface

What causes the shape of ice-crystals to change?

The goal is to establish various morphological relationships in ice-cream microstructure as a function of time and temperature

Using thermal 'abuse' chamber

Direct (FBP) reconstruction

FBP reconstruction

Cropped 1.5k² pixels region, 900 proj.

zoomed region

The list of issues:

- low contrast
- noise levels
- ring artifacts
- motion artifacts
- big data (2k³ x 100)

Three-phases structure

One solution to reach segmentable quality

We equalized intensity within separate phases by means of gradient-constrained 3D non-linear diffusion. Here we use the advantage of very sharp and clear boundaries of IR ice-matrix.

Segmented 3-phases time-lapse

Dendritic growth experiments

80 time-frames reconstructed with FBP (left) and iteratively (right).

TomoPhantom: software package to generate 2D–4D phantoms for CT image reconstruction algorithm benchmarks

MANCHESTER

1. Advanced image reconstruction techniques: mathematical methodology, practical challenges

- 1. Advanced image reconstruction techniques: mathematical methodology, practical challenges
- 2. Better segmentation methods, object recognition, feature tracking, clustering and labeling

- 1. Advanced image reconstruction techniques: mathematical methodology, practical challenges
- 2. Better segmentation methods, object recognition, feature tracking, clustering and labeling
- 3. Machine learning approaches using data simulated by **TomoPhantom**, application to real data

- 1. Advanced image reconstruction techniques: mathematical methodology, practical challenges
- 2. Better segmentation methods, object recognition, feature tracking, clustering and labeling
- 3. Machine learning approaches using data simulated by **TomoPhantom**, application to real data
- 4. Development of more advanced physical models to replicate real data errors/artifacts

Example of SLAE for tomography

Let's consider a set of linear equations:

$$b = Ax + \delta$$
,

where

- $\boldsymbol{b} \in \mathbb{R}^{M}$ vectorized sinogram; $M = P(2.5k^{2}) \times \theta(0.9k)$
- $\mathbf{x} \in \mathbb{R}^N$ seeking volume; $N = 2.5k^3$ voxels
- $m{\cdot}~ m{\delta} \in \mathbb{R}^{^{M}}$ random noise
- A : $\mathbb{R}^N \to \mathbb{R}^M$ system projection matrix (discrete approximation of the continuous Radon transform for parallel beam geometry)

Example of SLAE for tomography

Let's consider a set of linear equations:

$$b = Ax + \delta$$
,

where

- $\boldsymbol{b} \in \mathbb{R}^{M}$ vectorized sinogram; $M = P(2.5k^{2}) \times \theta(0.9k)$
- $\mathbf{x} \in \mathbb{R}^N$ seeking volume; $N = 2.5k^3$ voxels
- $m{\cdot}~m{\delta} \in \mathbb{R}^{^{M}}$ random noise
- A : $\mathbb{R}^N \to \mathbb{R}^M$ system projection matrix (discrete approximation of the continuous Radon transform for parallel beam geometry)
- For 4D imaging $M(5.6 \times 10^9) \ll N(1.56 \times 10^{10})$ and A is "fat"

We have K > 100 time frames and for each frame, data **b** can be regarded as it were obtained from the stationary object.

B = AX,

where $X := (x_1^T, \dots, x_K^T)^T$, $X \in \mathbb{R}^{N \times K}$ is a vector containing all xinstances of time lapse series and $B := (b_1^T, \dots, b_K^T)^T$, $B \in \mathbb{R}^{M \times K}$ is a measured projections vector. The block diagonal matrix $\mathbf{A} \in \mathbb{R}^{M \times K \times N \times K}$ is given as:

$$\mathbf{A} = \begin{bmatrix} A_1 & 0 & \dots & 0 \\ 0 & A_2 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \dots & A_K \end{bmatrix}$$

We can assume that A is time-invariant, that is, $A_1 = A_2 = \ldots = A_K$ or $A = I \otimes A_1$, where \otimes is the Kronecker product.

Get python scripts, presentations, installation recommendations and related papers from:

https://github.com/dkazanc/ITT_BATH_DLS

- Ice-cream data can be accessed using the script ITT_BATH_DLS/DynamicImaging/ICE_CREAM/ITT_IceCreamData.py
- Dendritic data can be accessed using the script ITT_BATH_DLS/DynamicImaging/Dendrites/ITT_dendrites.py
- TomoPhantom package for data modelling
- TomoRec package for image reconstruction

References i

- E. GUO, D. KAZANTSEV, J. MO, J. BENT, G. VAN DALEN, P. SCHUETZ, P. ROCKETT, D. STJOHN, AND P. D. LEE, Revealing the microstructural stability of a three-phase soft solid (ice cream) by 4d synchrotron x-ray tomography, Journal of Food Engineering, (2018).
- E. GUO, A. PHILLION, B. CAI, S. SHUAI, D. KAZANTSEV, T. JING, AND P. D. LEE, Dendritic evolution during coarsening of mg-zn alloys via 4d synchrotron tomography, Acta Materialia, 123 (2017), pp. 373–382.
- E. GUO, S. SHUAI, D. KAZANTSEV, S. KARAGADDE, A. PHILLION, T. JING,
 W. LI, AND P. D. LEE, The influence of nanoparticles on dendritic grain growth in mg alloys, Acta Materialia, 152 (2018), pp. 127–137.

References ii

E. GUO, G. ZENG, D. KAZANTSEV, P. ROCKETT, J. BENT, M. KIRKLAND, G. VAN DALEN, D. S. EASTWOOD, D. STJOHN, AND P. D. LEE, Synchrotron x-ray tomographic quantification of microstructural evolution in ice cream–a multi-phase soft solid, Rsc Advances, 7 (2017), pp. 15561–15573.

- D. KAZANTSEV, E. GUO, A. PHILLION, P. J. WITHERS, AND P. D. LEE, Model-based iterative reconstruction using higher-order regularization of dynamic synchrotron data, Measurement Science and Technology, 28 (2017), p. 094004.
- D. KAZANTSEV, V. PICKALOV, S. NAGELLA, E. PASCA, AND P. J. WITHERS, Tomophantom, a software package to generate 2d–4d analytical phantoms for ct image reconstruction algorithm benchmarks, SoftwareX, 7 (2018), pp. 150–155.