Data processing I: objects tracking challenge

Looking into predictive single-particle tracking techniques

Daniil Kazantsev ITT9, 28.01.2019

Diamond Light Source

What is additive manufacturing

- Additive manufacturing (AM) is a transformative approach to industrial production that enables the creation of lighter, stronger parts and systems¹.
- Additive manufacturing uses data computer-aided-design (CAD) software or 3D object scanners to direct hardware to deposit material, layer upon layer, in precise geometric shapes².
- The terms '3D printing' and 'rapid prototyping' are the subsets of additive manufacturing.

¹https://www.ge.com/additive/additive-manufacturing ²https://www.youtube.com/watch?time_continue=71&v=kKQ5KwFwW_s

How the data have been collected

• I12 beamline ³ of DLS is used for very fast radiographic and tomographic imaging

³https://www.diamond.ac.uk/Instruments/Imaging-and-Microscopy/I12.html ⁴https:

//www.diamond.ac.uk/Science/Research/Highlights/2018/laser-additive-manufacturing.html

How the data have been collected

- I12 beamline ³ of DLS is used for very fast radiographic and tomographic imaging
- The series of radiographs were collected resulting in a 3D dataset (x,y + time), i.e. 3D process captured in 2D⁴

³https://www.diamond.ac.uk/Instruments/Imaging-and-Microscopy/I12.html ⁴https:

//www.diamond.ac.uk/Science/Research/Highlights/2018/laser-additive-manufacturing.html

Laser melting process in details

See videos here: https://www.sciencedirect.com/science/article/pii/S1359645418309698

Laser melting process in details

The following image processing pipeline was performed by Dr. *Alex Leung* et al. (UCL) [1, 3, 2] and it contained the following steps:

 Denoising of time-series (radiographs) using state-of-the-art collaborative video block matching algorithm⁵.

⁵http://www.cs.tut.fi/~foi/GCF-BM3D/ ⁶https://arxiv.org/abs/1701.05940 The following image processing pipeline was performed by Dr. *Alex Leung* et al. (UCL) [1, 3, 2] and it contained the following steps:

- Denoising of time-series (radiographs) using state-of-the-art collaborative video block matching algorithm⁵.
- 2. Custom background **subtraction** and image **thresholding** techniques to extract the evolution of melt features, which enables the quantification of the molten pool geometries over time, including the length, width, and area.

⁵http://www.cs.tut.fi/~foi/GCF-BM3D/ ⁶https://arxiv.org/abs/1701.05940

The following image processing pipeline was performed by Dr. *Alex Leung* et al. (UCL) [1, 3, 2] and it contained the following steps:

- Denoising of time-series (radiographs) using state-of-the-art collaborative video block matching algorithm⁵.
- 2. Custom background **subtraction** and image **thresholding** techniques to extract the evolution of melt features, which enables the quantification of the molten pool geometries over time, including the length, width, and area.
- 3. Manual **tracking** with ImageJ⁶ and also the use of TrackMate software[4] (also available in ImageJ).

⁵http://www.cs.tut.fi/~foi/GCF-BM3D/ ⁶https://arxiv.org/abs/1701.05940

Some data processing stages

1. Very low signal-to-noise ratio and poor contrast of the radiographs

- 1. Very low signal-to-noise ratio and poor contrast of the radiographs
- 2. Particles are small and intensity-wise can be at the noise level

- 1. Very low signal-to-noise ratio and poor contrast of the radiographs
- 2. Particles are small and intensity-wise can be at the noise level
- 3. Particles are disappearing/appearing in frames

- 1. Very low signal-to-noise ratio and poor contrast of the radiographs
- 2. Particles are small and intensity-wise can be at the noise level
- 3. Particles are disappearing/appearing in frames
- 4. While randomly flying, particles overlay each other in 3D space

- 1. Very low signal-to-noise ratio and poor contrast of the radiographs
- 2. Particles are small and intensity-wise can be at the noise level
- 3. Particles are disappearing/appearing in frames
- 4. While randomly flying, particles overlay each other in 3D space

What can be done

1. Better video denoising algorithms

- 1. Very low signal-to-noise ratio and poor contrast of the radiographs
- 2. Particles are small and intensity-wise can be at the noise level
- 3. Particles are disappearing/appearing in frames
- 4. While randomly flying, particles overlay each other in 3D space

What can be done

- 1. Better video denoising algorithms
- 2. Better background subtraction and segmentation methods

- 1. Very low signal-to-noise ratio and poor contrast of the radiographs
- 2. Particles are small and intensity-wise can be at the noise level
- 3. Particles are disappearing/appearing in frames
- 4. While randomly flying, particles overlay each other in 3D space

What can be done

- 1. Better video denoising algorithms
- 2. Better background subtraction and segmentation methods
- 3. Objects classification and smarter tracking

- 1. Very low signal-to-noise ratio and poor contrast of the radiographs
- 2. Particles are small and intensity-wise can be at the noise level
- 3. Particles are disappearing/appearing in frames
- 4. While randomly flying, particles overlay each other in 3D space

What can be done

- 1. Better video denoising algorithms
- 2. Better background subtraction and segmentation methods
- 3. Objects classification and smarter tracking
- 4. Predictive models robustly estimating the path of a particle

Access to the data and software dependencies

- The raw I12 data are accessible at
 ITT_BATH_DLS/DataP_I_AdditiveManufact_tracking/rawdata
- Python script to read data (stack of tiffs) into Numpy 3D array ITT_BATH_DLS/DataP_I_AdditiveManufact_tracking/ITT_AM.py
- Python wrapper for Block-Matching denoiser https://github.com/ericmjonas/pybm3d
- Regularisation (denoising) package https://github.com/vais-ral/CCPi-Regularisation-Toolkit

All data have been kindly provided by Dr. **A. Leung** alex.leung@ucl.ac.uk and Prof. **P. D. Lee** peter.lee@ucl.ac.uk

C. L. A. Leung, S. Marussi, R. C. Atwood, M. Towrie, P. J. Withers, and P. D. Lee.

In situ x-ray imaging of defect and molten pool dynamics in laser additive manufacturing.

Nature communications, 9(1):1355, 2018.

C. L. A. Leung, S. Marussi, M. Towrie, R. C. Atwood, P. J. Withers, and P. D. Lee.

The effect of powder oxidation on defect formation in laser additive manufacturing.

Acta Materialia, 2018.

References ii

- C. L. A. Leung, S. Marussi, M. Towrie, J. del Val Garcia, R. C. Atwood, A. J. Bodey, J. R. Jones, P. J. Withers, and P. D. Lee.
 Laser-matter interactions in additive manufacturing of stainless steel ss316l and 13-93 bioactive glass revealed by in situ x-ray imaging.
 Additive Manufacturing, 24:647–657, 2018.
- J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri.
 Trackmate: An open and extensible platform for single-particle tracking.
 Methods, 115:80–90, 2017.