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Time series analysis

Time series analysis simply refers to the analysis of data collected /

indexed over time. Such data is observed in a wide range of scientific

areas of interest, e.g. industrial process monitoring, climate modelling,

official statistics.

In particular, our aim is to build realistic models of such data which

account for possible complex temporal dependencies.
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Time series analysis

Time series analysis simply refers to the analysis of data collected /

indexed over time. Such data is observed in a wide range of scientific

areas of interest, e.g. industrial process monitoring, climate modelling,

official statistics.

In particular, our aim is to build realistic models of such data which

account for possible complex temporal dependencies.

Analysis tasks after modelling include

forecasting (prediction)

classification / distinguishing series

detection of changes, identifying patterns or periodicities etc.

Notation:

A (real-valued, stationary) time series will be denoted by {Xt}t∈Z,

with a corresponding realisation of Xt being xt .
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Stationarity

In order to do inference, it is often assumed some sort of invariance of

time series, i.e. the statistical characteristics of the series do not

change over time (stationarity).

Types of stationarity:

First order: The mean of the time series is the same over time

Second order / covariance / weak stationarity: If the mean is

constant for all t and if for any t and k , γX (h) = cov(Xt ,Xt+k ) only

depends on the lag difference k .
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Stationarity

Time

lin
tr

e
n

d

0 20 40 60 80 100

0
2

0
4

0
6

0

Time

X
_

t
0 50 100 150 200 250 300

−
6

−
4

−
2

0
2

4

Figure: Types of (non)stationarity: linear trend (left); non-constant variance

(right).
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Some popular time series models: AR(p)

Motivation: Recall from linear regression, we predict a response Y

given some covariates Xj , so we model Yi as

Yi =

p∑

j=1

ajXij + εi ,

with E(εi |Xij) = 0 and typically εi and Xij independent.

For time series, we can similarly predict a future observation from the

current and past observations

Xt =

p∑

j=1

ajXt−j + εt .

This is the autoregressive model (of order p).
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Some popular time series models: MA(q)

Let {Xt} be a time series. We say Xt has a moving average of order

q (MA(q) for short) representation if

Xt =

q∑

j=0

ψjεt−j ,

where {εt} are IID random variables with zero mean and finite

variance (i.e. white noise).

In other words, the series is modelled as a linear combination of the

previous noise.
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Some popular time series models: MA(q)

Let {Xt} be a time series. We say Xt has a moving average of order

q (MA(q) for short) representation if

Xt =

q∑

j=0

ψjεt−j ,

where {εt} are IID random variables with zero mean and finite

variance (i.e. white noise).

In other words, the series is modelled as a linear combination of the

previous noise.

We can combine autoregressive and moving average models to form

ARMA models.
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ARMA processes: model selection

Looking at the autocorrelation function (ACF) and partial

autocorrelation function can give an idea about how to choose

model AR and MA orders (look for where the plots “cut off”)
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Figure: ACF and PACF of an AR(2) process; notice the characteristic “cut off”
and damped exponential pattern of the plots.

we can also use more formal model selection procedures like the

AIC.
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Integrated models for (trend) nonstationarity

Now suppose Xt has a polynomial trend behaviour (µt =
∑k

j=0 βj t
j ).

Then if we difference the series k times (repeatedly take differences of

successive observations), then the resulting series will be stationary.

This leads to the integrated ARMA model: Define ∇xt = xt − xt−1,

then a process xt is said to be ARIMA(p,d,q) if ∇dxt is ARMA(p,q).
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Integrated models for (trend) nonstationarity

Example: Stationary process with a linear trend:
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Figure: Effect of differencing: original series (left); differenced series (right).
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Modelling seasonality

We can also extend the models we’ve seen to seasonal components,

in a similar manner to integrated models.

Suppose a seasonal cycle lasts for s timepoints, i.e. the behaviour of

the series is similar at a lag of s. Then if we difference the series at lag

s,

yt = ∇sxt = xt − xt−s,

this will remove the seasonality.
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Modelling seasonality

We can also extend the models we’ve seen to seasonal components,

in a similar manner to integrated models.

Suppose a seasonal cycle lasts for s timepoints, i.e. the behaviour of

the series is similar at a lag of s. Then if we difference the series at lag

s,

yt = ∇sxt = xt − xt−s,

this will remove the seasonality.

More generally, we can have a ARIMA for the seasonal part of a time

series (P,D,Q)s, with the same interpretation of the orders.

Putting this together a flexible model is the SARIMA model:

ARIMA(p,d ,q)× ARIMA(P,D,Q)s.

This allows for nonseasonal and seasonal components.
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Modelling seasonality

Example: co2 time series representing monthly CO2.
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Figure: Time series featuring trend

and yearly seasonality.
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Spectral analysis: frequency domain representations

In many applications, time series will exhibit periodicities or

oscillations, which may occur at differing rates.

These periodicities may be difficult to discern in the time domain.

Spectral / frequency domain analysis aims to capture these features,

and provide extra insight and properties of data.
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Spectral analysis: frequency domain representations

In many applications, time series will exhibit periodicities or

oscillations, which may occur at differing rates.

These periodicities may be difficult to discern in the time domain.

Spectral / frequency domain analysis aims to capture these features,

and provide extra insight and properties of data.

Main idea:

decompose a (stationary) series in terms of sinusoids at different

frequencies ωj with random, uncorrelated amplitudes.
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Spectral analysis: frequency domain representations

Suppose Xt =
∑k

j=1 Aj sin(2πωj t) + Bj cos(2πωj t), with A, B

uncorrelated, mean zero, with variance σ2
j (mixture of sinusoids at

different frequencies and amplitudes).

Then,

γ(h) =
k∑

j=1

σ2
j cos(2πωjh).

(This follows from the uncorrelatedness of Aj and Bj ).
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Spectral analysis: frequency domain representations

Suppose Xt =
∑k

j=1 Aj sin(2πωj t) + Bj cos(2πωj t), with A, B

uncorrelated, mean zero, with variance σ2
j (mixture of sinusoids at

different frequencies and amplitudes).

Then,

γ(h) =
k∑

j=1

σ2
j cos(2πωjh).

(This follows from the uncorrelatedness of Aj and Bj ). In particular,

setting h = 0, we have

var(Xt) = γ(0) =

k∑

j=1

σ2
j .

In other words, we can decompose the autocovariance / variance of

the process via the sinusoidal components of the series Xt (via the

Fourier transform).
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The spectral density: some comments

Some comments of the spectral density:

Interpretation: A stationary time series can be (approximately)

expressed as a random linear combination of sines and cosines at

different frequencies).

The spectral density is positive

The spectral density contains the same information as the

autocovariance, just expressed differently (cf. Parseval’s theorem).

The spectral density is even and periodic (hence we can restrict

our attention to e.g. ω ∈ (0,1/2)).
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Spectrum example

Let Xt = 2 cos(2π6t/100) + 4 cos(2π10t/100) + 6 cos(2π40t/100).
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Figure: Spectrum estimate of Xt , featuring three periodicities at distinct

frequencies (“full” frequency range).
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Spectrum example

Let Xt = 2 cos(2π6t/100) + 4 cos(2π10t/100) + 6 cos(2π40t/100).
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Figure: Spectrum estimate of Xt , featuring three periodicities at distinct

frequencies.

Matt Nunes, University of Bath An introduction to time series models



Periodogram examples

Let Xt be the soi (Southern Oscillation Index) series (below).
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Figure: Spectrum estimate of the Southern Oscillation Index.
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Example analysis tasks

Forecasting:

There are many ways to forecast a time series, depending on your
intuition and the model. For example, one could use: a naive

estimator, a moving average, exponential smoothing

if there are trend and seasonal components, these can also be
taken into account by using similar procedures, or using the model

form

Changepoint detection:

What kind of changes are you looking for? Abrupt or ramping?
are you looking for changes in mean, variance or autocovariance?

Different methods for each
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Forecasting example

Example: co2 time series representing monthly CO2.
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Figure: Original series, together with forecasted values.
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Changing structure

Figure: Two similar-looking series with different underlying behaviour

(environmental sensor data).
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Box-Jenkins modelling time series

Box / Jenkins suggest the following procedure for time series:

1 Examine the time series and remove any seasonality

2 Remove any trend by appropriate differencing (usually ∇1 or ∇2)

3 Fit appropriate ARMA model

4 Begin forecasting!
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Other Remarks and considerations

There are many other issues in time series which are relevant,

including

multivariate models: including dependence between series;

non-Gaussian errors: transform (e.g. via log) or use a count

process model

addition of covariates (exogenous variables): what’s driving the

behaviour?

second order nonstationarity: e.g locally stationary models

Dynamically changing situations: dlms

In R, see the forecast, changepoint, dlm packages (in

particular auto.arima, stl, adf.test functions)
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Challenges in time series analysis

Modelling and differentiating series with complex dependencies

dependence

Online analysis of fast-changing time series / data streams

Estimation in high dimensions computationally intensive

Tools for “mixed rate” sampling series
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