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What is an Inverse Problem?

I A : U → V mapping between Hilbert spaces U ,V, A ∈ L(U ,V)
I physical model A, cause u and effect A(u) = Au.

Direct / Forward Problem: given u, calculate Au.

I Example 1: ray transform (used in CT, PET, ...)

A : L2(Ω)→ L2([0, 2π], [−1, 1]), Au(θ, s) =

∫
R
u(sθ + tθ⊥)dt

θ

s

u

t

tθ⊥

Inverse Problem: Given v , calculate u with Au = v .

Infer from the effect the cause.
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What is the problem with Inverse Problems?

Examples
A solution may

I not exist. Au = 0, v 6= 0

I not be unique. Au = 0, v = 0
I be sensitive to noise.

- Positron Emission Tomography (PET)
- Data: PET scanner in London
- Model: ray transform, Au(L) =

∫
L
u(r)dr

- Find u such that Au = v

→
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What is the problem with Inverse Problems?

Definition (Jacques Hadamard, 1865-1963):
An Inverse Problem “Au = v” is called
well-posed, if the solution

(1) exists.

(2) is unique.

(3) depends continuously on the data.

“Small errors in v lead to small errors in u.”

Otherwise, we call it ill-posed.

Almost all interesting inverse problems are ill-posed.
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Generalized Solutions

Definition: Let v ∈ V. The set of all approximate solutions of
“Au = v” is

L :=

{
u ∈ U

∣∣∣∣ ‖Au − v‖ ≤ ‖Az − v‖ ∀z ∈ U
}
.

If a solution z ∈ U exists, ‖Az − v‖ = 0, then

L =
{
u ∈ U

∣∣∣Au = v
}

Definition: An approximate solution u ∈ L is called
minimal-norm-solution, if

‖u‖ ≤ ‖u‖ ∀u ∈ L .
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Properties of Minimal-Norm-Solutions

Recall:

I Range / image of A: RA := {v ∈ V | ∃u ∈ U Au = v}
I Orthogonal complement: A⊥ := {v ∈ V | 〈v , z〉 = 0 ∀z ∈ A}
I Minkowski sum: A+ B := {u + v | u ∈ A, v ∈ B}

Proposition: RA is closed if and only if RA +R⊥A = V.

Example: A : `2 → `2, (Au)j =
uj
j . Range RA not closed.

Theorem: Let v ∈ RA +R⊥A . Then there exists a unique
minimal-norm-solution u of “Au = v”. We write A†v = u.

Theorem: If RA is not closed, then u does not depend
continuously on v , i.e. A† is not continuous.
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Regularization

U V

u = A†v v

v δ

A†v δ

Rαv
δ

A

Definition: A family {Rα}α>0 is called regularization of A†, if

I for all α > 0 the mapping Rα : V → U is continuous.

I for all v ∈ RA +R⊥A limα→0 Rαv = A†v .

→
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Popular examples of regularization
Tikhonov regularization
(Andrey Tikhonov, 1906-1993)

Rαv
δ = arg min

u

{
‖Au − v δ‖2 + α‖u‖2

}

= (A∗A + αI )−1A∗v δ

Proposition: (A∗A + αI )−1 ∈ L(U ,U) for all α > 0

Variational regularization

Rαv
δ = arg min

u

{
D(Au, v δ) + αJ(u)

}
I data fit D: “divergence” D(x , y) ≥ 0,D(x , y) = 0 iff x = y

Examples: D(x , y) = ‖x − y‖2, ‖x − y‖1,
∫
x − y + y log(y/x)

I regularizer J: Penalizes unwanted features; ensures stability
Examples: J(u) = ‖u‖2, ‖u‖1, TV(u) = ‖∇u‖1

I decouples solution of inverse problem into 2 steps:
1. Modelling: choose D, J,A, α.
2. Optimization: connection to statistics, machine learning ...
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Summary

I Inverse problems
I forward / direct problem
I ill-posedness; interesting inverse problems are ill-posed
I generalized solutions, minimal-norm-solution

I Reguarization
I stable approximation of minimal-norm-solution
I Tikhonov regularization
I variational regularization

→


