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Inverse Problem: Given v, calculate v with Au = v.

Infer from the effect the cause.
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What is the problem with Inverse Problems?

Definition (Jacques Hadamard, 1865-1963):
An Inverse Problem “Au = v" is called
well-posed, if the solution

(1) exists.

(2) is unique.

(3) depends continuously on the data.
“Small errors in v lead to small errors in v.”

Otherwise, we call it ill-posed.
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Almost all interesting inverse problems are ill-posed.
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Definition: An approximate solution v € L is called
minimal-norm-solution, if

fall < vl Vue L.
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Recall:
» Range / imageof A: Rp:={veV|Iueld Au=v}
» Orthogonal complement: At :={v eV |(v,z) =0Vz € A}
» Minkowski sum: A+ B:={u+v|uveAvebB}

Proposition: 1R 4 is closed if and only if R4 + Rj = V.

Example: A: (2 — (% (Au); = “£. Range R4 not closed.
S

Theorem: Let v € R 5 + Rﬁ\-. Then there exists a unique
minimal-norm-solution & of “"Au = v". We write ATv = ©.

Theorem: If R, is not closed, then ' does not depend
continuously on v, i.e. Af is not continuous.



Regularization




Regularization




Regularization




Regularization

Definition: A family {R,},-0 is called regularization of Af, if
» for all « > 0 the mapping R, : V — U/ is continuous.
» forallve R+ Rj lima—o Rav = Afv.



Regularization

Definition: A family {R,},-0 is called regularization of Af, if
» for all « > 0 the mapping R, : V — U/ is continuous.
» forallve R+ Rj lima—o Rav = Afv.




Regularization

Definition: A family {R,},-0 is called regularization of Af, if
» for all « > 0 the mapping R, : V — U/ is continuous.
» forallve R+ Rj lima—o Rav = Afv.




Popular examples of regularization

Tikhonov regularization
(Andrey Tikhonov, 1906-1993)

R.v = arg min{||Au — 2+ a||u||2}




Popular examples of regularization

Tikhonov regularization
(Andrey Tikhonov, 1906-1993)

R.v = arg min{||Au — 2+ a||u||2}
= (A*A+al) TA*Y




Popular examples of regularization

Tikhonov regularization
(Andrey Tikhonov, 1906-1993)

R.v = arg min{||Au — 2+ a||u||2}
= (A*A+al) TA*Y

Proposition: (A*A+ al)~t € L(U4, 1) for all @ > 0



Popular examples of regularization

Tikhonov regularization
(Andrey Tikhonov, 1906-1993)

R.v = arg min{||Au — 2+ a||u||2}
= (A*A+al) TA*Y

Proposition: (A*A+ al)~t € L(U4, 1) for all @ > 0
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Rov® = arg min{D(Au, Vo) + aJ(u)}
» data fit D: “divergence” D(x,y) > 0,D(x,y) =0iff x =y
Examples: D(x,y) = [[x —y|?, lIx = yll1, [ x =y +ylog(y/x)

» regularizer J: Penalizes unwanted features; ensures stability
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Tikhonov regularization
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R.v = arg min{||Au — 2+ a||u||2}
= (A*A+al) TA*Y

Proposition: (A*A+ al)~t € L(U4, 1) for all @ > 0

Variational regularization
Rov® = arg min{D(Au, Vo) + aJ(u)}

» data fit D: “divergence” D(x,y) > 0,D(x,y) =0iff x =y
Examples: D(x,y) = [[x =y lIx—yll1, [ x—y+ylog(y/x)

» regularizer J: Penalizes unwanted features; ensures stability
Examples: J(u) = ||ul|?, ||ull1, TV(u) = || Vul1

» decouples solution of inverse problem into 2 steps:
1. Modelling: choose D, J, A, c.
2. Optimization: connection to statistics, machine learning ...



Summary

» Inverse problems

» forward / direct problem
» ill-posedness; interesting inverse problems are ill-posed
» generalized solutions, minimal-norm-solution

» Reguarization

» stable approximation of minimal-norm-solution
» Tikhonov regularization
» variational regularization




