Regularization of Inverse Problems

Matthias J. Ehrhardt

January 28, 2019

- $A: \mathcal{U} \to \mathcal{V}$ mapping between Hilbert spaces $\mathcal{U}, \mathcal{V}, A \in L(\mathcal{U}, \mathcal{V})$
- physical model A, cause u and effect A(u) = Au.

Direct / Forward Problem: given *u*, calculate *Au*.

A: U → V mapping between Hilbert spaces U, V, A ∈ L(U, V)
physical model A, cause u and effect A(u) = Au.

Direct / Forward Problem: given *u*, calculate *Au*.

▶ Example 1: ray transform (used in CT, PET, ...)

 $A: L^{2}(\Omega) \to L^{2}([0, 2\pi], [-1, 1]), \quad Au(\theta, s) = \int_{\mathbb{R}} u(s\theta + t\theta^{\perp}) dt$

A: U → V mapping between Hilbert spaces U, V, A ∈ L(U, V)
physical model A, cause u and effect A(u) = Au.

Direct / Forward Problem: given *u*, calculate *Au*.

▶ Example 1: ray transform (used in CT, PET, ...)

 $A: L^{2}(\Omega) \to L^{2}([0, 2\pi], [-1, 1]), \quad Au(\theta, s) = \int_{\mathbb{T}} u(s\theta + t\theta^{\perp}) dt$

A: U → V mapping between Hilbert spaces U, V, A ∈ L(U, V)
physical model A, cause u and effect A(u) = Au.

Direct / Forward Problem: given *u*, calculate *Au*.

▶ Example 1: ray transform (used in CT, PET, ...)

 $A: L^{2}(\Omega) \to L^{2}([0, 2\pi], [-1, 1]), \quad Au(\theta, s) = \int_{\mathbb{T}} u(s\theta + t\theta^{\perp}) dt$

A: U → V mapping between Hilbert spaces U, V, A ∈ L(U, V)
physical model A, cause u and effect A(u) = Au.

Direct / Forward Problem: given *u*, calculate *Au*.

▶ Example 1: ray transform (used in CT, PET, ...)

 $A: L^{2}(\Omega) \to L^{2}([0, 2\pi], [-1, 1]), \quad Au(\theta, s) = \int_{\mathbb{T}^{0}} u(s\theta + t\theta^{\perp}) dt$

Inverse Problem: Given v, calculate u with Au = v.

Infer from the **effect** the **cause**.

Examples

A solution may

• not exist. $A_u = 0, v \neq 0$

Examples

A solution may

- not exist. $Au = 0, v \neq 0$
- not be unique. Au = 0, v = 0

Examples

A solution may

- not exist. $A_{\boldsymbol{u}} = 0, \boldsymbol{v} \neq 0$
- not be unique. Au = 0, v = 0
- ▶ be sensitive to noise.
 - Positron Emission Tomography (PET)
 - Data: PET scanner in London
 - Model: ray transform, $A_u(L) = \int_L u(r) dr$
 - Find u such that Au = v

Examples

A solution may

- not exist. $A_{\boldsymbol{u}} = 0, \boldsymbol{v} \neq 0$
- not be unique. Au = 0, v = 0
- **be sensitive to noise**.
 - Positron Emission Tomography (PET)
 - Data: PET scanner in London
 - Model: ray transform, $A_u(L) = \int_L u(r) dr$
 - Find u such that Au = v

Definition (Jacques Hadamard, 1865-1963): An Inverse Problem "Au = v" is called **well-posed**, if the solution

- (1) exists.
- (2) is unique.

(3) depends **continuously** on the data. "Small errors in v lead to small errors in u."

Otherwise, we call it **ill-posed**.

Definition (Jacques Hadamard, 1865-1963): An Inverse Problem "Au = v" is called **well-posed**, if the solution

- (1) exists.
- (2) is unique.
- (3) depends **continuously** on the data. "Small errors in v lead to small errors in u."

Otherwise, we call it **ill-posed**.

Almost all interesting inverse problems are ill-posed.

Generalized Solutions

Definition: Let $v \in \mathcal{V}$. The set of all **approximate solutions** of "Au = v" is $\mathcal{L} := \left\{ u \in \mathcal{U} \mid ||Au - v|| \le ||Az - v|| \quad \forall z \in \mathcal{U} \right\}.$

If a solution $z \in \mathcal{U}$ exists, ||Az - v|| = 0, then

$$\mathcal{L} = \left\{ \mathbf{u} \in \mathcal{U} \, \middle| \, A\mathbf{u} = \mathbf{v} \right\}$$

Generalized Solutions

Definition: Let $v \in \mathcal{V}$. The set of all **approximate solutions** of "Au = v" is $\mathcal{L} := \left\{ u \in \mathcal{U} \mid ||Au - v|| \le ||Az - v|| \quad \forall z \in \mathcal{U} \right\}.$

If a solution $z \in \mathcal{U}$ exists, ||Az - v|| = 0, then

$$\mathcal{L} = \left\{ u \in \mathcal{U} \, \middle| \, Au = v \right\}$$

Definition: An approximate solution $\overline{u} \in \mathcal{L}$ is called **minimal-norm-solution**, if

 $\|\overline{\boldsymbol{u}}\| \leq \|\boldsymbol{u}\| \quad \forall \boldsymbol{u} \in \mathcal{L}.$

Recall:

- ▶ Range / image of A: $\mathcal{R}_A := \{ v \in \mathcal{V} \mid \exists u \in \mathcal{U} Au = v \}$
- Orthogonal complement: $\mathcal{A}^{\perp} := \{ v \in \mathcal{V} \mid \langle v, z \rangle = 0 \; \forall z \in \mathcal{A} \}$
- Minkowski sum: $A + B := \{u + v \mid u \in A, v \in B\}$

Recall:

- ▶ Range / image of A: $\mathcal{R}_A := \{ v \in \mathcal{V} \mid \exists u \in \mathcal{U} Au = v \}$
- Orthogonal complement: $\mathcal{A}^{\perp} := \{ v \in \mathcal{V} \mid \langle v, z \rangle = 0 \; \forall z \in \mathcal{A} \}$
- ▶ Minkowski sum: $A + B := \{u + v \mid u \in A, v \in B\}$

Proposition: \mathcal{R}_A is closed if and only if $\mathcal{R}_A + \mathcal{R}_A^{\perp} = \mathcal{V}$.

Recall:

- ▶ Range / image of A: $\mathcal{R}_A := \{ v \in \mathcal{V} \mid \exists u \in \mathcal{U} Au = v \}$
- ▶ Orthogonal complement: $\mathcal{A}^{\perp} := \{ v \in \mathcal{V} \mid \langle v, z \rangle = 0 \; \forall z \in \mathcal{A} \}$
- ▶ Minkowski sum: $A + B := \{u + v \mid u \in A, v \in B\}$

Proposition: \mathcal{R}_A is closed if and only if $\mathcal{R}_A + \mathcal{R}_A^{\perp} = \mathcal{V}$.

Example: $A : \ell^2 \to \ell^2, (Au)_j = \frac{u_j}{i}$. Range \mathcal{R}_A not closed.

Recall:

- ▶ Range / image of A: $\mathcal{R}_A := \{ v \in \mathcal{V} \mid \exists u \in \mathcal{U} Au = v \}$
- ▶ Orthogonal complement: $\mathcal{A}^{\perp} := \{ v \in \mathcal{V} \mid \langle v, z \rangle = 0 \; \forall z \in \mathcal{A} \}$
- ▶ Minkowski sum: $A + B := \{u + v \mid u \in A, v \in B\}$

Proposition: \mathcal{R}_A is closed if and only if $\mathcal{R}_A + \mathcal{R}_A^{\perp} = \mathcal{V}$.

Example: $A : \ell^2 \to \ell^2, (Au)_j = \frac{u_j}{j}$. Range \mathcal{R}_A not closed.

Theorem: Let $v \in \mathcal{R}_A + \mathcal{R}_A^{\perp}$. Then there exists a unique minimal-norm-solution \overline{u} of "Au = v". We write $A^{\dagger}v = \overline{u}$.

Recall:

- ▶ Range / image of A: $\mathcal{R}_A := \{ v \in \mathcal{V} \mid \exists u \in \mathcal{U} Au = v \}$
- Orthogonal complement: $\mathcal{A}^{\perp} := \{ v \in \mathcal{V} \mid \langle v, z \rangle = 0 \; \forall z \in \mathcal{A} \}$
- ▶ Minkowski sum: $A + B := \{u + v \mid u \in A, v \in B\}$

Proposition: \mathcal{R}_A is closed if and only if $\mathcal{R}_A + \mathcal{R}_A^{\perp} = \mathcal{V}$.

Example: $A : \ell^2 \to \ell^2, (Au)_j = \frac{u_j}{j}$. Range \mathcal{R}_A not closed.

Theorem: Let $v \in \mathcal{R}_A + \mathcal{R}_A^{\perp}$. Then there exists a unique minimal-norm-solution \overline{u} of "Au = v". We write $A^{\dagger}v = \overline{u}$.

Theorem: If \mathcal{R}_A is **not closed**, then \overline{u} **does not depend continuously** on v, i.e. A^{\dagger} is not continuous.

Definition: A family $\{R_{\alpha}\}_{\alpha>0}$ is called **regularization** of A^{\dagger} , if • for all $\alpha > 0$ the mapping $R_{\alpha} : \mathcal{V} \to \mathcal{U}$ is continuous.

• for all $v \in \mathcal{R}_A + \mathcal{R}_A^{\perp}$ $\lim_{\alpha \to 0} R_\alpha v = A^{\dagger} v$.

Definition: A family $\{R_{\alpha}\}_{\alpha>0}$ is called **regularization** of A^{\dagger} , if For all $\alpha > 0$ the mapping $R_{\alpha} : \mathcal{V} \to \mathcal{U}$ is continuous. For all $v \in \mathcal{R}_{A} + \mathcal{R}_{A}^{\perp}$ $\lim_{\alpha \to 0} R_{\alpha}v = A^{\dagger}v$.

Definition: A family $\{R_{\alpha}\}_{\alpha>0}$ is called **regularization** of A^{\dagger} , if For all $\alpha > 0$ the mapping $R_{\alpha} : \mathcal{V} \to \mathcal{U}$ is continuous. For all $v \in \mathcal{R}_{\mathcal{A}} + \mathcal{R}_{\mathcal{A}}^{\perp}$ $\lim_{\alpha \to 0} R_{\alpha}v = A^{\dagger}v$.

Tikhonov regularization

(Andrey Tikhonov, 1906-1993)

$$R_{\alpha}v^{\delta} = \arg\min_{\boldsymbol{u}} \left\{ \|\boldsymbol{A}\boldsymbol{u} - \boldsymbol{v}^{\delta}\|^{2} + \alpha \|\boldsymbol{u}\|^{2} \right\}$$

Tikhonov regularization (Andrey Tikhonov, 1906-1993) $R_{\alpha}v^{\delta} = \arg\min_{\boldsymbol{u}} \left\{ \|A\boldsymbol{u} - \boldsymbol{v}^{\delta}\|^{2} + \alpha \|\boldsymbol{u}\|^{2} \right\}$ $= (A^{*}A + \alpha I)^{-1}A^{*}v^{\delta}$

Tikhonov regularization (Andrey Tikhonov, 1906-1993) $R_{\alpha}v^{\delta} = \arg\min_{u} \left\{ \|Au - v^{\delta}\|^{2} + \alpha \|u\|^{2} \right\}$ $= (A^{*}A + \alpha I)^{-1}A^{*}v^{\delta}$

Proposition: $(A^*A + \alpha I)^{-1} \in L(\mathcal{U}, \mathcal{U})$ for all $\alpha > 0$

Tikhonov regularization (Andrey Tikhonov, 1906-1993) $R_{\alpha}v^{\delta} = \arg\min_{u} \left\{ \|Au - v^{\delta}\|^{2} + \alpha \|u\|^{2} \right\}$ $= (A^{*}A + \alpha I)^{-1}A^{*}v^{\delta}$

Proposition: $(A^*A + \alpha I)^{-1} \in L(\mathcal{U}, \mathcal{U})$ for all $\alpha > 0$

Variational regularization

$$R_{\alpha}v^{\delta} = \arg\min_{u} \left\{ D(Au, v^{\delta}) + \alpha J(u) \right\}$$

- ▶ data fit *D*: "divergence" $D(x, y) \ge 0, D(x, y) = 0$ iff x = yExamples: $D(x, y) = ||x - y||^2, ||x - y||_1, \int x - y + y \log(y/x)$
- ▶ regularizer J: Penalizes unwanted features; ensures stability Examples: $J(u) = ||u||^2$, $||u||_1$, $\mathsf{TV}(u) = ||\nabla u||_1$

Tikhonov regularization (Andrey Tikhonov, 1906-1993) $R_{\alpha}v^{\delta} = \arg\min_{u} \left\{ \|Au - v^{\delta}\|^{2} + \alpha \|u\|^{2} \right\}$ $= (A^{*}A + \alpha I)^{-1}A^{*}v^{\delta}$

Proposition: $(A^*A + \alpha I)^{-1} \in L(\mathcal{U}, \mathcal{U})$ for all $\alpha > 0$

Variational regularization

$$R_{\alpha}v^{\delta} = \arg\min_{u} \left\{ D(Au, v^{\delta}) + \alpha J(u) \right\}$$

- ▶ data fit *D*: "divergence" $D(x, y) \ge 0, D(x, y) = 0$ iff x = yExamples: $D(x, y) = ||x - y||^2, ||x - y||_1, \int x - y + y \log(y/x)$
- ► regularizer J: Penalizes unwanted features; ensures stability Examples: $J(u) = ||u||^2$, $||u||_1$, $\mathsf{TV}(u) = ||\nabla u||_1$
- decouples solution of inverse problem into 2 steps:
 - 1. **Modelling**: choose D, J, A, α .
 - 2. Optimization: connection to statistics, machine learning ...

Summary

Inverse problems

- ► forward / direct problem
- ► ill-posedness; interesting inverse problems are ill-posed
- generalized solutions, minimal-norm-solution

Reguarization

- stable approximation of minimal-norm-solution
- Tikhonov regularization
- variational regularization

