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Problem Recap and Data

Scanning a battery to determine presence and distribution of
materials.

From full scans, we observe Ag, € R™*"™ (matrix of absorptions
of ny energies at np scanned pixels).

Aim: to find a reduced scanning pattern which allows us to recover
Afull-



Problem Recap and Data

If the sample contains kK components, we can approximate Ag,y by:

Afull ~ Uspectral Cspectrala

where Uspectral € R™*k are the spectra of the materials and
Cspectral € RK*™ are the coefficients for each pixel
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Problem Recap and Data




Multi-resolution Sampling Approach using DEIM

1. Use SVD on a coarse resolution scan Acoarse Of all the energies
(aggregated pixels) to identify a matrix Uy which spans the
same space than Uspectral-

2. Use DEIM to identify the important energies. High resolution
scan (in all pixels) will just be performed for these energies.
Compute C; =~ Csyp by imposing A(pk,:) = Uo(pk,:)C1 Vk.

3. Use dictionary of spectra to identify which materials are in the
sample.
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!Saifon Chaturantabut and Danny C. Sorensen. “Nonlinear Model
Reduction via Discrete Empirical Interpolation”. In: SIAM Journal on Scientific
Computing 32.5 (2010), pp. 2737-2764.
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Multi-resolution Sampling Approach using DEIM

pEivond

1. Use SVD on a coarse resolution scan Acoarse Of all the energies
(aggregated pixels) to identify a matrix Uy which spans the
same space than Uspectral-

2. Use DEIM to identify the important energies. High resolution
scan (in all pixels) will just be performed for these energies.
Compute C1 =~ Csyp by imposing A(pk,:) = Uo(pk,:)C1 Vk.

3. Use dictionary of spectra to identify which materials are in the
sample.
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Multi-resolution Sampling Approach using DEIM

pEivond

1. Use SVD on a coarse resolution scan Acoarse Of all the energies
(aggregated pixels) to identify a matrix Usyp which spans the
same space than Uspectral-

2. Use DEIM to identify the important energies. High resolution
scan (in all pixels) will just be performed for these energies.
Compute C; =~ Csyp by imposing A(pk,:) = Uo(pk,:)C1 Vk.

3. Use dictionary of spectra to identify which materials are in the
sample.
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Matrix Completion Approach

Current method: raster scan
through battery
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Matrix Completion Approach

Current method: raster scan
through battery

Could we only scan random lines
instead?

Then we need a way to infer the
gaps

I



Matrix Completion Approach

A 2D scan of a sample, at fixed ...and after randomly removing
energy... 80% of the rows:

10 20 30 40 5 60 70 8 9 100




Matrix Completion Approach

Removing 80% of the rows in each image, and combining the
results into one large matrix:

Energies

1000 3000 5000 7000 8000
Pixels



Matrix Completion Approach

Matrix completion problem:
> M e R™M*" of rank r;
» We know m elements Mj;, (i,j) € Q;

> QC{1,...,m} x{1,...,n} contains the indices of known
elements.

Can we find Mj; for (i,j) ¢ Q7

For most matrices, this can be achieved by using an iterative
algorithm? to approximately solve:

minimize || X]|«

s.t. X,J = M,'J', (I,_j) Y]

2 Jian-Feng Cai, Emmanuel J. Candés, and Zuowei Shen. “A Singular Value
Thresholding Algorithm for Matrix Completion”. In: SIAM Journal on
Optimization 20.4 (2010), pp. 1956-1982.



Matrix Completion Approach

Original sample: Reconstructed sample:

10 20 30 40 5 6 70 8 90 100
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Matrix Completion Approach

Original sample: Reconstructed sample:

10 20 30 40 5 60 70 8 9 100 10 20 30 40 5 60 70 8 90 100
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|deas for Future Work

» Combining the two methods: undersampling in energy and
space

> Extending to rotation of samples for 3D imaging
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