#### Adaptive Sampling for Imaging

Malena Sabate Landman, Sergey Dolgov, Silvia Gazzola, and Tom Davis

February 1, 2019

#### Agenda

Problem Recap and Data

Multi-resolution Sampling Approach using DEIM

Matrix Completion Approach

Ideas for Future Work

Scanning a battery to determine presence and distribution of materials.

From full scans, we observe  $A_{full} \in \mathbb{R}^{n_1 \times n_2}$  (matrix of absorptions of  $n_1$  energies at  $n_2$  scanned pixels).

Aim: to find a reduced scanning pattern which allows us to recover  $A_{full}$ .

If the sample contains k components, we can approximate  $A_{full}$  by:

$$A_{full} \approx U_{spectral} C_{spectral}$$
,

where  $U_{spectral} \in \mathbb{R}^{n_1 \times k}$  are the spectra of the materials and  $C_{spectral} \in \mathbb{R}^{k \times n_2}$  are the coefficients for each pixel































- 1. Use SVD on a coarse resolution scan  $A_{\rm coarse}$  of all the energies (aggregated pixels) to identify a matrix  $U_0$  which spans the same space than  $U_{\rm spectral}$ .
- 2. Use DEIM to identify the important energies. High resolution scan (in all pixels) will just be performed for these energies. Compute  $C_1 \approx C_{\text{SVD}}$  by imposing  $A(p_k,:) = U_0(p_k,:)C_1 \ \forall k$ .
- Use dictionary of spectra to identify which materials are in the sample.







- 1. Use SVD on a coarse resolution scan  $A_{\rm coarse}$  of all the energies (aggregated pixels) to identify a matrix  $U_0$  which spans the same space than  $U_{\rm spectral}$ .
- 2. Use DEIM<sup>1</sup> to identify the important energies. High resolution scan (in all pixels) will just be performed for these energies. Compute  $C_1 \approx C_{\text{SVD}}$  by imposing  $A(p_k,:) = U_0(p_k,:)C_1 \ \forall k$ .
- 3. Use dictionary of spectra to identify which materials are in the sample.

<sup>&</sup>lt;sup>1</sup>Saifon Chaturantabut and Danny C. Sorensen. "Nonlinear Model Reduction via Discrete Empirical Interpolation". In: *SIAM Journal on Scientific Computing* 32.5 (2010), pp. 2737–2764.



- 1. Use SVD on a coarse resolution scan  $A_{\rm coarse}$  of all the energies (aggregated pixels) to identify a matrix  $U_0$  which spans the same space than  $U_{\rm spectral}$ .
- 2. Use DEIM<sup>1</sup> to identify the important energies. High resolution scan (in all pixels) will just be performed for these energies. Compute  $C_1 \approx C_{\text{SVD}}$  by imposing  $A(p_k,:) = U_0(p_k,:)C_1 \ \forall k$ .
- 3. Use dictionary of spectra to identify which materials are in the sample.

<sup>&</sup>lt;sup>1</sup>Saifon Chaturantabut and Danny C. Sorensen. "Nonlinear Model Reduction via Discrete Empirical Interpolation". In: *SIAM Journal on Scientific Computing* 32.5 (2010), pp. 2737–2764.













- 1. Use SVD on a coarse resolution scan  $A_{\rm coarse}$  of all the energies (aggregated pixels) to identify a matrix  $U_0$  which spans the same space than  $U_{\rm spectral}$ .
- 2. Use DEIM to identify the important energies. High resolution scan (in all pixels) will just be performed for these energies. Compute  $C_1 \approx C_{\text{SVD}}$  by imposing  $A(p_k,:) = U_0(p_k,:)C_1 \ \forall k$ .
- 3. Use dictionary of spectra to identify which materials are in the sample.







- 1. Use SVD on a coarse resolution scan  $A_{\rm coarse}$  of all the energies (aggregated pixels) to identify a matrix  $U_{\rm SVD}$  which spans the same space than  $U_{\rm spectral}$ .
- 2. Use DEIM to identify the important energies. High resolution scan (in all pixels) will just be performed for these energies. Compute  $C_1 \approx C_{\text{SVD}}$  by imposing  $A(p_k,:) = U_0(p_k,:)C_1 \ \forall k$ .
- 3. Use dictionary of spectra to identify which materials are in the sample.

Current method: raster scan through battery



Current method: raster scan through battery

Could we only scan random lines instead?

Then we need a way to infer the gaps



A 2D scan of a sample, at fixed energy...



...and after randomly removing 80% of the rows:



Removing 80% of the rows in each image, and combining the results into one large matrix:



Matrix completion problem:

- ▶  $M \in \mathbb{R}^{n_1 \times n_2}$  of rank r;
- ▶ We know m elements  $M_{ij}$ ,  $(i,j) \in \Omega$ ;
- ▶  $\Omega \subset \{1,...,n_1\} \times \{1,...,n_2\}$  contains the indices of known elements.

Can we find  $M_{ij}$  for  $(i, j) \notin \Omega$ ?

For most matrices, this can be achieved by using an iterative algorithm<sup>2</sup> to approximately solve:

minimize 
$$||X||_*$$
  
s.t.  $X_{ij} = M_{ij}, (i, j) \in \Omega$ 

<sup>&</sup>lt;sup>2</sup> Jian-Feng Cai, Emmanuel J. Candés, and Zuowei Shen. "A Singular Value Thresholding Algorithm for Matrix Completion". In: *SIAM Journal on Optimization* 20.4 (2010), pp. 1956–1982.

#### Original sample:



#### Reconstructed sample:



#### Original sample:



#### Reconstructed sample:



#### Ideas for Future Work

- Combining the two methods: undersampling in energy and space
- Extending to rotation of samples for 3D imaging

#### References

- Jian-Feng Cai, Emmanuel J. Candés, and Zuowei Shen. "A Singular Value Thresholding Algorithm for Matrix Completion". In: *SIAM Journal on Optimization* 20.4 (2010), pp. 1956–1982.
- Saifon Chaturantabut and Danny C. Sorensen. "Nonlinear Model Reduction via Discrete Empirical Interpolation". In: *SIAM Journal on Scientific Computing* 32.5 (2010), pp. 2737–2764.