Adaptive Sampling for Imaging

Malena Sabate Landman, Sergey Dolgov, Silvia Gazzola, and Tom Davis

February 1, 2019

Agenda

Problem Recap and Data

Multi-resolution Sampling Approach using DEIM

Matrix Completion Approach

Ideas for Future Work

Scanning a battery to determine presence and distribution of materials.

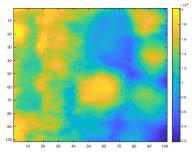
From full scans, we observe $A_{full} \in \mathbb{R}^{n_1 \times n_2}$ (matrix of absorptions of n_1 energies at n_2 scanned pixels).

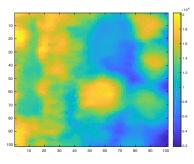
Aim: to find a reduced scanning pattern which allows us to recover A_{full} .

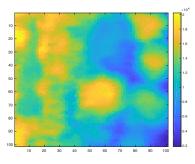
If the sample contains k components, we can approximate A_{full} by:

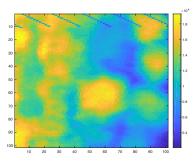
$$A_{full} \approx U_{spectral} C_{spectral}$$
,

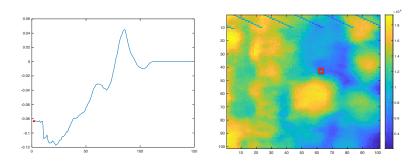
where $U_{spectral} \in \mathbb{R}^{n_1 \times k}$ are the spectra of the materials and $C_{spectral} \in \mathbb{R}^{k \times n_2}$ are the coefficients for each pixel

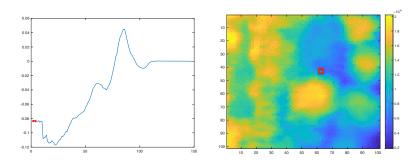


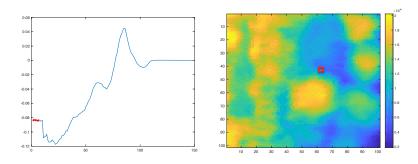


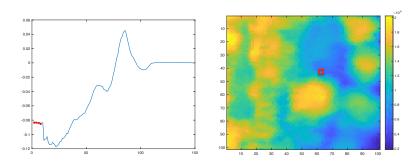


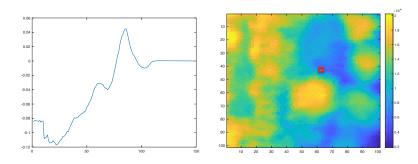


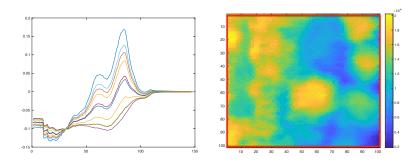


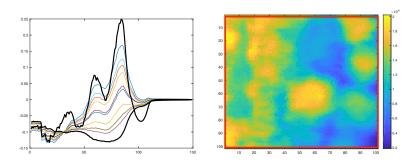




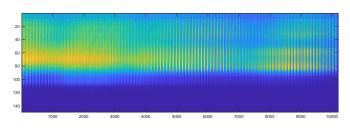


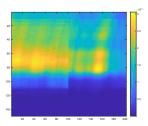


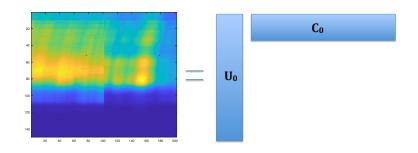




- 1. Use SVD on a coarse resolution scan $A_{\rm coarse}$ of all the energies (aggregated pixels) to identify a matrix U_0 which spans the same space than $U_{\rm spectral}$.
- 2. Use DEIM to identify the important energies. High resolution scan (in all pixels) will just be performed for these energies. Compute $C_1 \approx C_{\text{SVD}}$ by imposing $A(p_k,:) = U_0(p_k,:)C_1 \ \forall k$.
- Use dictionary of spectra to identify which materials are in the sample.





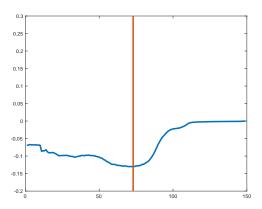


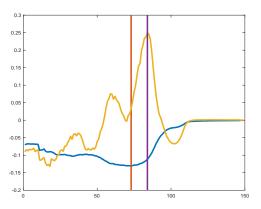
- 1. Use SVD on a coarse resolution scan $A_{\rm coarse}$ of all the energies (aggregated pixels) to identify a matrix U_0 which spans the same space than $U_{\rm spectral}$.
- 2. Use DEIM¹ to identify the important energies. High resolution scan (in all pixels) will just be performed for these energies. Compute $C_1 \approx C_{\text{SVD}}$ by imposing $A(p_k,:) = U_0(p_k,:)C_1 \ \forall k$.
- 3. Use dictionary of spectra to identify which materials are in the sample.

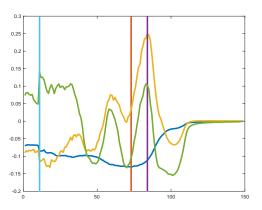
¹Saifon Chaturantabut and Danny C. Sorensen. "Nonlinear Model Reduction via Discrete Empirical Interpolation". In: *SIAM Journal on Scientific Computing* 32.5 (2010), pp. 2737–2764.

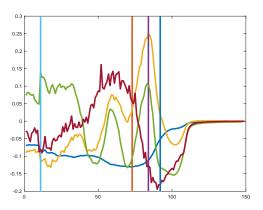
- 1. Use SVD on a coarse resolution scan $A_{\rm coarse}$ of all the energies (aggregated pixels) to identify a matrix U_0 which spans the same space than $U_{\rm spectral}$.
- 2. Use DEIM¹ to identify the important energies. High resolution scan (in all pixels) will just be performed for these energies. Compute $C_1 \approx C_{\text{SVD}}$ by imposing $A(p_k,:) = U_0(p_k,:)C_1 \ \forall k$.
- 3. Use dictionary of spectra to identify which materials are in the sample.

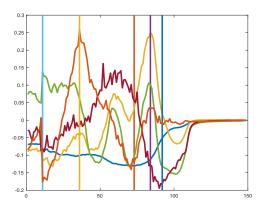
¹Saifon Chaturantabut and Danny C. Sorensen. "Nonlinear Model Reduction via Discrete Empirical Interpolation". In: *SIAM Journal on Scientific Computing* 32.5 (2010), pp. 2737–2764.



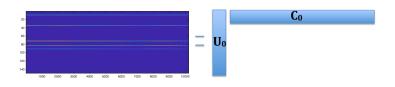


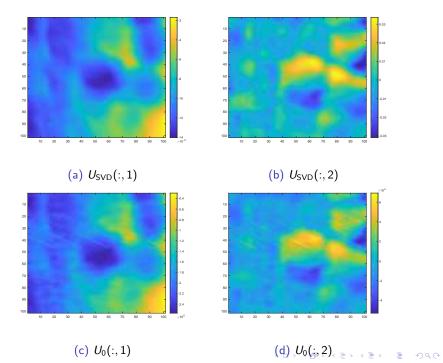






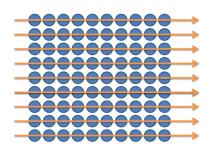
- 1. Use SVD on a coarse resolution scan $A_{\rm coarse}$ of all the energies (aggregated pixels) to identify a matrix U_0 which spans the same space than $U_{\rm spectral}$.
- 2. Use DEIM to identify the important energies. High resolution scan (in all pixels) will just be performed for these energies. Compute $C_1 \approx C_{\text{SVD}}$ by imposing $A(p_k,:) = U_0(p_k,:)C_1 \ \forall k$.
- 3. Use dictionary of spectra to identify which materials are in the sample.





- 1. Use SVD on a coarse resolution scan $A_{\rm coarse}$ of all the energies (aggregated pixels) to identify a matrix $U_{\rm SVD}$ which spans the same space than $U_{\rm spectral}$.
- 2. Use DEIM to identify the important energies. High resolution scan (in all pixels) will just be performed for these energies. Compute $C_1 \approx C_{\text{SVD}}$ by imposing $A(p_k,:) = U_0(p_k,:)C_1 \ \forall k$.
- 3. Use dictionary of spectra to identify which materials are in the sample.

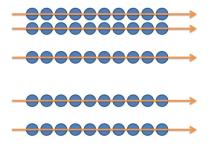
Current method: raster scan through battery



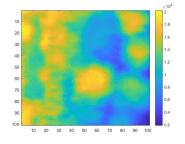
Current method: raster scan through battery

Could we only scan random lines instead?

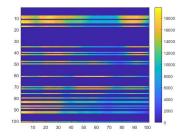
Then we need a way to infer the gaps



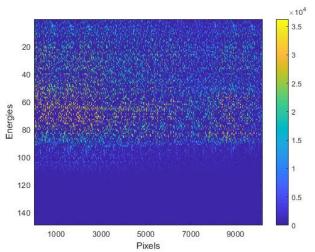
A 2D scan of a sample, at fixed energy...



...and after randomly removing 80% of the rows:



Removing 80% of the rows in each image, and combining the results into one large matrix:



Matrix completion problem:

- ▶ $M \in \mathbb{R}^{n_1 \times n_2}$ of rank r;
- ▶ We know m elements M_{ij} , $(i,j) \in \Omega$;
- ▶ $\Omega \subset \{1,...,n_1\} \times \{1,...,n_2\}$ contains the indices of known elements.

Can we find M_{ij} for $(i, j) \notin \Omega$?

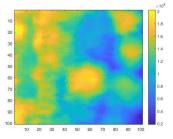
For most matrices, this can be achieved by using an iterative algorithm² to approximately solve:

minimize
$$||X||_*$$

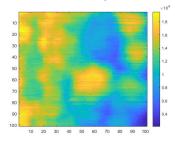
s.t. $X_{ij} = M_{ij}, (i, j) \in \Omega$

² Jian-Feng Cai, Emmanuel J. Candés, and Zuowei Shen. "A Singular Value Thresholding Algorithm for Matrix Completion". In: *SIAM Journal on Optimization* 20.4 (2010), pp. 1956–1982.

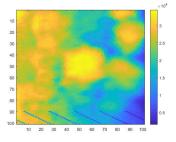
Original sample:



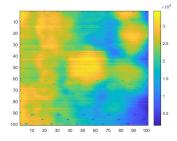
Reconstructed sample:



Original sample:



Reconstructed sample:



Ideas for Future Work

- Combining the two methods: undersampling in energy and space
- Extending to rotation of samples for 3D imaging

References

- Jian-Feng Cai, Emmanuel J. Candés, and Zuowei Shen. "A Singular Value Thresholding Algorithm for Matrix Completion". In: *SIAM Journal on Optimization* 20.4 (2010), pp. 1956–1982.
- Saifon Chaturantabut and Danny C. Sorensen. "Nonlinear Model Reduction via Discrete Empirical Interpolation". In: *SIAM Journal on Scientific Computing* 32.5 (2010), pp. 2737–2764.