# Dengue Fever and Spatial Spread of Breeding sites

Amelie Alice Carlos Antonieta Ben Mark

SAMBa ITT8

June 15, 2018







## Starting from a basic ODE model:

$$\dot{E}(t) = aA(t) - m_e E(t) - s_e E(t)$$

$$\dot{L}(x,t) = s_e E(t) - cL^2(t) - m_l L(t) - s_l L(t)$$

$$\dot{A}(t) = s_l L(t) - m_a A(t)$$

 $K_L = \text{Carrying capacity for larvae}$ 

a =fraction of females laying eggs  $m_e =$ mortality of eggs

 $s_e =$  switch of eggs to larvae  $m_l =$  mortality of larvae

 $s_l =$ switch of larvae to adults  $m_a =$ mortality of adults

#### Coupling to the infection:

$$\dot{I}_m(t) = \beta I_h(t)(1 - I_m(t)) - s_I \frac{L(t)}{A(t)} I_m(t)$$
 $\dot{I}_h(t) = \beta \frac{A(t)}{N} I_m(t)(1 - I_h(t)) - r I_h(t)$ 

where

 $\beta=\,$  frequency of contacts between SM and IH  $m_m=\,$  mortality of mosquitoes  $r=\,$  recovery rate of humans

## Behaviour of the equilibria as c increases



# Phase portrait $(I_m, I_h)$



## Adding spatial dependence:

$$\dot{E}(x,t) = aA(x,t) - m_e E(x,t) - s_e E(x,t)$$

$$\dot{L}(x,t) = s_e E(x,t) - cL^2(x,t) - m_l L(x,t) - s_l L(x,t)$$

$$\dot{A}(x,t) = s_l L(x,t) - m_a A(x,t)$$

 $K_L(x) =$ Carrying capacity for larvae

a =fraction of females laying eggs  $m_e =$ mortality of eggs

 $s_e =$ switch of eggs to larvae  $m_l =$ mortality of larvae

 $s_l$  = switch of larvae to adults  $m_a$  = mortality of adults

## Adding spatial dependence:

$$\dot{E}(x,t) = aA(x,t) - m_e E(x,t) - s_e E(x,t)$$

$$\dot{L}(x,t) = s_e E(x,t) - cL^2(x,t) - m_l L(x,t) - s_l L(x,t)$$

$$\dot{A}(x,t) = s_l L(x,t) - m_a A(x,t) + d_m \Delta A(x,t)$$

 $K_L(x) =$ Carrying capacity for larvae

a =fraction of females laying eggs  $m_e =$ mortality of eggs

 $s_e =$ switch of eggs to larvae  $m_l =$ mortality of larvae

 $s_l = \text{switch of larvae to adults}$   $m_a = \text{mortality of adults}$ 

### Coupling to the Infection:

$$\dot{I}_{m}(x,t) = \beta_{sm-ih} I_{H}(x,t) (1 - I_{m}(x,t)) - m_{m} I_{m}(x,t) + d_{m} \Delta I_{m}(x,t)$$

$$\dot{I}_H(x,t) = \beta_{sm-ih} I_m(x,t) (1 - I_H(x,t)) - r I_m(x,t)$$

 $\beta_{sm-ih} =$  Frequency of contacts between susceptible mosquitoes and infected humans

 $m_m = \text{mortality of mosquitoes}$ 

 $d_h = \text{Diffusivity of mosquitoes}$ 

r =Recovery rate of humans

## **Evolution**

