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Data

The data we have include:

I Approx 30,000 questionnaire responses each with 234
questions during 1998-2017

I A data set of 60 questions asked to 500,000 households
from 2013-2017

I Images of 20,000 houses
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Objectives

We had two key goals:

I Image classification of houses into ’poor’ or ’not poor’

I Apply a more sophisticated regression model for income
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Classification by images

Given 20,000 images of houses, can we apply image
recognition to detect houses belonging to poor people?

For example:
Poor Not Poor
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Issue: The data was unlabelled...

To get around this we could:

I Use the ground truth information in the data to assign
labels (difficult)

I Manually assign labels based on how they look (easy
but labourious)

The first wasn’t feasible so we went with the latter...

Labelled data:

I 672 labelled images (all rural from the same region)

I 80% (537) used for training

I 20% (135) for testing
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Method

Train a convolutional neural network

Pattern recognition and machine learning - Bishop 2006
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Results

After training our neural network the classification
accuracy on the test set was:

Labelled Poor Labelled Not Poor

Predicted Poor 55 24
Predicted Not Poor 12 44

Total accuracy: 73%.
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Example Classifications

Labelled Poor Labelled Not Poor

Predicted
Poor

Predicted
Not
Poor
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Accuracy

Plot of test set accuracy against Epochs
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Urban?

We considered trying urban areas but the variation between
residences would cause issues.

More consistent photographs would be required.
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Statistical Model

Previously poverty has been estimated with 60 variables
using a linear model.

So given our data sets is there anyway to improve the model
or learn from the data.

We fit a linear model to a selection of data, and perform AIC
and BIC to not over-fit the data and achieve some core
predictive variables. We also consider applying a nonlinear
model.
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Clean the Data

We looked at the sample data set with 30,000 people and
250 variables obtained by a questionnaire.

We removed variables where more than 25% of data was
missing, and then rows where data responses were missing.
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Clean the Data

This left us with 36 variables. These were mostly
categorical, such as University (Yes or No?), Rural or Urban,
but also 3 age categories.
Then the data was then aggregated into 8,000 households.
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Generalized Linear model

We fitted a generalized linear model to the data, attempting
to predict the income per household from the other
variables. Even with the removal of variables using AIC
selection and BIC, the adjusted R-Squared value of 0.5816,
with a mean squared error 0.350.

Extreme Poverty: 81%
Poverty: 71%
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Decision tree modelling

Due to the categorical nature of the data we attempted a fit
a decision tree model.

We find that the adjusted R-squared value is 0.402, but
when a Complexity Parameter (cp=0.01) is added we find
that the adjusted R-squared value is 0.546.

Extreme Poverty: 77%
Poverty: 71%
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Limitations:

I May never be an appropriate method for Urban houses.
However an approach could be to separate types of
houses, i.e flat, terrace, room.

I Housing alone is not a true indicator of income.

I No knowledge of number of residents when using image
recognition.

I Location is not taken into account.

I We performed this analysis with our own judgment of
houses. Using actual income might improve it, but may
also be more inaccurate.

I Variable size (33).
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Further work:

I Set-up a method of taking pictures (for example what
angle, no people or cars) which might mean image
recognition improves in the future.

I Use satellite images of rooves in future.

I Improve image recognition with geographical locations.

I Perform more analysis on the questionnaire data, with
more than 25% of the data.

I Use image recognition as a variable in statistical model.
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