Experimental evolution: problems involving digital imaging and dynamic gene networks

Presented by: Nick Priest Milner Centre and B&B **Collaborators:** James Horton 1YPhD Dr. Tiffany Taylor

About me

My research: How infection shapes evolution.

How hosts fight infection.
(Nutrient balance)

2. How pathogens evolve.

Emergence of migration Regulatory Network Evolution

Cancer cell

Human cells mutate.

If they are not cleared, then regulatory network evolution leads to emergence of migration.

Cancer cell

Big questions: How long until migration? Probability of regulatory network re-wiring?

© Catethulhu (https://catethulhu.deviantart.com/art/Pseudomon as-Fluorescens-174966485. Accessed: 16/05/18)

Immotile strain AR2 (derived from SBW25):

- **FleQ** Deleted from genome
- Viscosin Interrupted by transposon-insertion

© Catethulhu (https://catethulhu.deviantart.com/art/Pseudomon as-Fluorescens-174966485. Accessed: 16/05/18)

Immotile strain AR2 (derived from SBW25):

- **FleQ** Deleted from genome
- **Viscosin** Interped by transposon-insertion

Immotile strain AR2 (derived from SBW25):

- **FleQ** Deleted from genome
- **Viscosin** Interped by transposon-insertion

© Catethulhu (https://catethulhu.deviantart.com/art/Pseudomon as-Fluorescens-174966485. Accessed: 16/05/18)

Immotile strain AR2 (derived from SBW25):

- FleQ Deleted from genome
- **Viscosin** Interped by transposon-insertion

synthesis

flagella

y etwork

Immotile strain AR2 (derived from SBW25):

- **FleQ** Deleted from genome
- **Viscosin** Interped by transposon-insertion

Immotile strain AR2 (derived from SBW25):

- FleQ Deleted from genome
- **Viscosin** Interped by transposon-insertion

An Introduction to Gene Regulatory Networks

Flagellar resurrection following starvation-driven selection

Question 1:From digital images can we calculate when migration arises?Extra: when second site, fast migration arises?

Current estimates

J Horton; M Keepence

Question 1: From digital images can we calculate when migration arises? Extra: when second site, fast migration arises?

SHøst-spread phenotype:

The two-step pathway:

How many ways to rewire a network? Which mutations restore motility?

How many ways to rewire a network? Which mutations restore motility?

Nitrogen assimilation network (immotile strain)

glu

-- Molecules /

How many ways to rewire a network? Which mutations restore motility?

More NtrC Phosphorylation GlnL GInG GlnK NtrC-P J GInD Less NtrC GInA Dephophorylation gln PFLU glu +NH₄ <u>KEY</u> *GlnG* -- Genes glu -- Molecules /

Nitrogen assimilation network (immotile strain)

How many ways to rewire a network?

Which mutations restore motility?

Nitrogen assimilation network (immotile strain)

How many ways to rewire a network?

Which mutations restore motility?

NtrC-P

NtrC-P

Nitrogen assimilation network (immotile strain)

Question 2 Extras: Why GlnG for fast migration?

Question 2 Extras: Why does nutrition matter?

M9

Question 2 Extras: Why does nutrition matter?

NtrB

But... **75%** of all phenotype-saving mutations grown in M9 occurred in **alternative genes**, such as *pflu5952* Human cells mutate.

If they are not cleared, then regulatory network evolution leads to emergence of migration.

Cancer cell

Big questions: How long until migration? Probability of regulatory network re-wiring?

Acknowledgements and references

Collaborators:

James Horton Tiffany Taylor

References:

Taylor, T., Mulley, G., Dills, A., Alsohim, A., McGuffin, L., Studholme, D., Silby, M., Brockhurst, M., Johnson, L. and Jackson, R. (2015). Evolutionary resurrection of flagellar motility via rewiring of the nitrogen regulation system. *Science*, 347(6225), pp.1014-1017.

Motility and swarming are facilitated by two key factors:

Fleq – the master regulator of *flg* genes, responsible for flagellar biosynthesis and swarming motility.

Viscosin – a biosurfactant that facilitates sliding surface motility even in the absence of FleQ via a 'spidery spreading' phenotype.

For our study FleQ was deleted, and viscosin disrupted via transposon-insertion.

Taylor et al., Science; 2015