SAMBA'S EIGHTH INTEGRATIVE THINK TANK Bath, 11-15 June 2018

HOW WE CAN EFFECTIVELY REDUCE THE POPULATION OF *AE. AEGYPTI*?

Antonieta Rojas de Arias Centro para el Desarrollo de la Investigación Científica (CEDIC) http://www.cedicpy.com

ARBOVIROSE TRILOGY IN THE WORLD

PUPA

The female can live around 30 days where will perform up to 10 gonadotrophic cycles and will be able to bite dozens of people, putting hundreds of eggs and ... transmitting dengue

LARVE

EGGS

ADULT

CONTROL LIMITATIONS

- ✓ Quick replacement of eliminated containers (<3 months)
- Productive containers can not be disposed of (eg, water storage containers)
- ✓ Presence of cryptic ovoposition sites (can not be seen)
- \checkmark The larvicides have no prolonged residual effect
- ✓ There is resistance to economic larvicides (eg, Abate) and to adulticides (eg, malathion, pyrethroids)
- ✓ There are no ovicides against *Aedes aegypti*
- ✓ Adulticides (ULV) are generally applied from the street or the air and do not reach places of rest inside houses
- Adult mosquitoes are not removed indoors (eg, residual spraying, space spraying)
- ✓ Absence of entomological surveillance or evaluation of control measures (lack of follow-up)

CRYPTIC OVOPOSITION SITES

- ✓ Dependence on the visual search of ovoposition sites.
- ✓ The presence of cryptic, highly productive breeding/ovoposition sites is increasing:
 - Nigeria (septic tanks). Irving-Bell et al., 1987)
 - Australia (Sewers, wells, mines, septic tanks, rain drains, gutters on roofs, Kay et al 2000, Russell et al., 2002, Montgomery & Richie 2002)
 - Colombia (Drains of rains in all the city, González & Suarez 1995)
 - Puerto Rico (Septic tanks, water meters, Barrera et al., 2008)
 - Brazil (Elevated water tank, gutters and water on roofs in the shade, Pilger et al., 2011).
 - México (rainwater drainages; Manrique-Saide et al., 2012

WHY DOES THE CONTROL OF LARVAE/PUPAE FAIL?

Suppose you want to reduce the breeding of *Aedes aegypti* in a community and inspect the houses to apply control of immature

- ✓ If 30% of the houses are closed or refuse, you can only reduce the mosquito population by 70% (1.00 x 0.70)
- ✓ If the larvicide or the elimination of ovoposition sites is 80% (0.70 x 0.80) can only eliminate 56% of the mosquitoes
- ✓ If a further 20% of efficiency is lost from this 56% (treatments reported but not performed, recipients that were not treated or found, errors in transcription of data, etc.) (0.56 x 0.80) would end with a reduction of only 45 %.

In this way, unknowingly, it fails in the control of the population of *Ae. aegypti*, particularly if an evaluation of the final impact is not made (measuring the change in the adult population).

DISTRIBUTION OF LARGE UNUSABLE CONTAINERS AND SATISFACTION WITH THE COLLECTION SERVICE

COLLECTION OF INMATURE STAGES OF AE. AEGYPTI IN DIFFERENT TYPE OF CONTAINERS IN ASUNCION PREMISES, 2017

Potential	Number	Number of	% Houses	%
ovoposition sites		houses		Positive
				container
Animal drinkers	319	264	75.4	
Gutters	244	197	56.3	
Water drums	70	26	7.4	
Pots with dishes	82	21	6.0	
Flower pots	32	19	5.4	9.4
Ponds	30	8	2.3	33.3
Tanks or cisterns	7	4	1.1	42.9
Bottles	2774	176	50.3	
Disposable cuvettes	547	166	47.4	
Other disposable	343	126	36.0	0.3
Discarded domestic	248	90	25.7	5.6
appliances				
Used tires	53	28	8.0	
Axils of leaves	129	55	15.7	

Lima P et al, 2017. Design of a citizen strategy for managing large household solid waste to reduce Aedes aegypti breeding sites in Asunción, Paraguay " Thesis work. Preliminary results

RELATIONSHIP BETWEEN THE EXISTENCE OF OBJECTS IN DISUSE AND SOCIAL AND CULTURAL VARIABLES

Independent Variables	Odd ratio	Coefficient	p Value
Neighborhood with poor	2.17	0.78	0.01
collection coverage *			
Low user satisfaction with	1.87	0.62	0.08
the service			
Precarious housing	2.14	0.76	0.14
Minor education to the	1.14	0.14	0.67
finished secundary school			
It considers the objects in	13.25	2.58	0.00
disuse useful *			
Payment for informal	1.73	0.55	0.10
collection			
Constant		2.61	0.00

Lima P et al, 2017. Design of a citizen strategy for managing large household solid waste to reduce Aedes aegypti breeding sites in Asunción, Paraguay " Thesis work. Preliminary results

Container characteristics		2007-2008			2009-2010				
Container type	Capacity (liters)	Larvae		Pupae		Larvae		Pupae	
		No.	% of total	No.	% of total	No.	% of total	No.	% of total
Discardable containers filled by rain									
Small discarded containers ^a	<5	989	42.6	300	59.6	3,000	21.9	497	15.3
Larger discarded containers ^a	5 - 20	293	12.6	40	8.0	3,102	22.7	1,045	32.1
Tires	<5	135	5.8	40	8.0	1,736	12.7	387	11.9
Nondiscardable containers filled in part by human action									
Flower pots	<5	216	9.3	50	9.9	1,485	10.8	186	5.7
Buckets	5 - 20	389	16.7	30	6.0	3,200	23.4	822	25.2
Nondiscardable containers filled mostly by human action									
Vases	<5	45	1.9	15	3.0	0	0	0	0
Cement troughs (aquatic plants)	20-40	88	3.8	15	3.0	147	1.1	15	0.4
Cement troughs (animal water)	20-40	19	0.8	8	1.6	412	3.0	125	3.8
Large earthen jars	40-60	10	0.4	5	1.0	107	0.8	22	0.7
Swimming pools	>200	33	1.4	0	0	0	0	0	0
Metal or plastic drums	200	30	1.3	0	0	238	1.7	93	2.9
Plastic water tanks	>200	32	1.4	0	0	131	1.0	39	1.2
Plastic containers	20-100	24	1.1	0	0	0	0	0	0
Cement water tanks	>200	19	0.8	0	0	0	0	0	0
Cement cisterns	>200	2	0.1	0	0	120	0.9	26	0.8
Total		2,324	100	503	100	13,678	100	3,257	100

Table 1. Collection of *Ae. aegypti* immatures by container type from residential premises in Mérida, Yucatán, México during March 2007–February 2008 and May 2009–July 2010

There was no overlap between residential premises included for the studies conducted in 2007-2008 versus 2009-2010.

^a Small discarded containers include e.g., bottles, cans, and plastic bags, and similar items; larger discarded containers include e.g., washing machines refrigerators, and similar items.

Mérida proves successful in removing discarded containers as important immature development sites, then we should see dramatic changes in the most productive container types in the future as the mosquito is forced to switch to other container types, which perhaps also will be easier to include in highly targeted mosquito control interventions.

GARCIA-REJO'N ET AL.: PRODUCTIVE CONTAINERS FOR Ae. aegypti IMMATURES. J. Med. Entomol. 48(3): 644<650 (2011); DOI: 10.1603/ME10253 Table I. Mean number of eggs laid by *Aedes aegypti* females under different temperature and humidity.

	60%	rh	80% rh		
Tempe-	Eggs	Oviposition	Eggs	Oviposition	
ratures	mean±SE	variation	mean±SE	variation	
	(n)	(y)	(n)	(y)	
25°C	85.99±3.16 ^{a, B}	4 - 160	99.08±3.56 ª	4 - 155	
	(102)	(37.25%)	(92)	(55.43%)	
30°C	82.89±3.33 ^{b, B}	2 - 143	75.75±5.03 ^ь	1 - 144	
	(111)	(37.84%)	(75)	(45.33%)	
35°C	54.53±4.81 °	1 - 126	59.62±3.41 °	2 - 132	
	(55)	(14.55%)	(79)	(7.59%)	
TOTAL	78.25±2.2		79.29±2.53		
	(268)		(246)		

n= number of females laid eggs. y= percentage of females with total ovipositions ≥ 100 eggs.

Capital letters indicate comparison of values in the same column and small letters show comparison among values in the same line. Regardless of the size same letters represent values without significant differences. Different letters means numbers statistic different (p < 0.05).

Females responded to an increase in temperature by reducing egg production, oviposition time and changing oviposition patterns.

At 25 °C and 80% relative humidity, females survived two-fold more and produced 40% more eggs when compared to those kept at 35 °C and 80% relative humidity.

However, in 55% of females kept at 35 °C and 60% relative humidity oviposition was inhibited and only 15% females laid more than 100 eggs, suggesting that the intensity of the temperature effect was influenced by humidity

RECENT CONCLUSIONS AND SUGGESTIONS

- Abad-Franch et al 2013 found:
 - (i) 'rapid larval surveys' yielded dwelling infestation indices that were markedly lower than the site-occupancy rates based on ovitrap data,
 - (ii) control campaigns had negligible effects on site-occupancy.
- Suggestions:
 - (i) the use of adult mosquitoes to transfer potent larvicidal particles from contaminated 'dissemination stations' to clean breeding sites and
 - (ii) the release of mosquitoes carrying transgenes or specific Wolbachia strains that impair reproduction and/or reduce competence to transmit dengue virus.

Padilla-Torres SD, Ferraz G, Luz SLB, Zamora-Perea E, Abad-Franch F (2013) Modeling Dengue Vector Dynamics under Imperfect Detection: Three Years of Site-Occupancy by Aedes aegypti and Aedes albopictus in Urban Amazonia. PLoS ONE 8(3): e58420. doi:10.1371/journal.pone.0058420

KEY POINTS AND QUESTIONS

- ✓ We have to concentrate our attention to the *Ae. aegypti* productive sites.
- ✓ Why are these large solid wastes good producers of mosquitoes?
- ✓ How quickly do small containers need to be cleared?
- ✓ How many small containers are equivalent to one large container?
- ✓ How is this affected by oviposition site searching behaviour, the accumulation of beneficial microbial communities, predation of mosquito larvae, chance effects?
- ✓ How is adult mosquito density profile related to container density profile? How does this affect disease transmission. What is the impact of removing containers i) systematically, ii) at random? If large containers cannot be removed, what is impact of regular larvicide application?
- ✓ How do we expect infection risk in a household to be related to container density? Does this match with what is observed? What is the potential effect of autodissemination stations (ADS) for oviposition impeders?
- ✓ How many are required? Where should they be placed relative to container distribution?

Thank you!!!

Muchas gracias!!!