Causality

Julian Faraway

Number of people who drowned by falling into a pool correlates with

Films Nicolas Cage appeared in

Correlation: 66.6% (r=0.666004, p>0.05)

isease Control & Prevention and Internet Movie Database

Correlation is evidence of Causation

David Hume

Enquiry Concerning Human Understanding

1748

introduces the idea of the counterfactual

An object is the cause of another..

"if the first object had not been, the second never had existed"

Problems with Counterfactuals

- Never get to observe
- Can the counterfactual action/decision/assignment potentially occur? What if I bought a new car instead of repairing the old one? What if I were the other gender?
- Counterfactual approximations in time and space. Both actions occur but at different times or locations. Additional assumptions are necessary.
- Many more philosophical objections

Matching

- Identify pairs of observations that are identical/similar in the covariates but have different treatments.
- Attempts to approximate the counterfactual outcome
- Exact matching can be difficult where observations are multivariate – propensity score matching can help
- Unobserved characteristics of the pair may be different in a consistent manner thus voiding the causal conclusion

(Linear) Modelling

- Difference between the treatments is expressed as parameter(s) in the model.
- Avoids the need for matching
- Requires additional assumptions
- Non-treatment predictors are called *confounders*. Including such variables in the model is called *adjusting for the confounder*.

Graphical Models

Assigned not observed (preferably at random) Response

Treatment

CAUSALITY

MODELS, REASONING, AND INFERENCE

JUDEA PEARL

Unified Theory of Causality

Statistical/Probabilistic reasoning alone cannot support causal inference

> Determining the joint probability distribution of variables alone says nothing about causation

P(Disease | Symptom)

Pearl promises to determine the necessary set of non-data assumption that are sufficient to make a causal conclusion

Bradford Hill Criteria

Qualitative and somewhat specific to epidemiology