OPTIMISING BACTERIA-INDUCED CALCITE PRECIPITATION IN CONCRETE

Bianca Reeksting, Timothy Hoffmann, <u>Susanne Gebhard</u> Department of Biology & Biochemistry

BACTERIA AS SELF-HEALING AGENTS

REQUIRED BACTERIAL TRAITS

Basic principle of bacteria-induced calcite precipitation

&

Requirements:

Calcite precipitation

- Quantity
- Speed (?)

Thrive in/on concrete

- high pH
- high salt
- low temperature

IDENTIFYING THE BEST BACTERIA FOR THE JOB

Isolation from the environment (*ca*. 70 isolates)

Microbiology

?

Maths?

Optimum bacterium (1 isolate, 1 community?)

Characterisation in the lab (15 isolates)

OBSERVED CALCITE PRECIPITATION

Bacteria grow quickly (lines), calcite appears more slowly (bars)

- Bacteria differ in
 - how fast they grow
 - how high they grow
 - how much calcite is precipitated (dashed line = theoretical maximum)
 - how fast calcite is precipitated

> Is there any mathematical logic in these data, relating growth and precipitation?

THRIVING IN CONCRETE

<u>High pH</u>

Low temperature

<u>High salt</u>

Bacteria need to be able to cope with all three conditions In the lab, we only test one condition at a time

- Bacteria differ in
 - how fast and high they grow at the near neutral pH (blue)
 - how strongly they are affected by high and very high pH

- Bacteria differ in
 - how fast and high they grow at the medium temperature (grey)
 - how strongly they are affected by different temperatures
 - whether they can grow at all at low temperatures (blue)
 - whether they can grow at all at high temperatures (red)

THRIVING IN CONCRETE

<u>High pH</u>

Low temperature

Growth was scored qualitatively, as -, +, ++, +++

NaCl	0 %	2.5 %	5 %	7.5 %	15 %
EM3_2	+++	++	++	+	-
RCI_I	+++	++	+	-	_
PDI_I	+++	++	++	+	-

(NaCl experiments were done at pH 9)

- Bacteria differ in
 - how much salt they can tolerate

THRIVING IN CONCRETE

We currently characterise each bacterium and each condition in isolation

- Calcite-precipitation experiments take 2 weeks and only give low resolution of time as a variable
- Growth experiments are faster, but require access to shared instrumentation
- Parameter space is too large to test all combinations

AIMS AND HOPES

- Collection of bacteria capable of calcite precipitation
- A set of known parameters for each bacterium
 - pH tolerance
 - temperature tolerance
 - ...
- A model that will predict the best bacterium/community for specific applications, e.g.
 - concrete structure in a tunnel (cold, high pH)
 - concrete structure in exposed costal area (salt, range of temperatures, high pH)
 - soil consolidation project (range of temperatures, high/low pH, medium salt)
 - .

> We can supply a bespoke solution to a range of customers

AIMS AND HOPES

- <u>Growth:</u>
 - What test would we do to see if there is a correlation between bacterial growth and calcite precipitation? (amount? speed?)
 - Is it possible to model the effects of pH and temperature on growth using standard mathematical models of growth?

AIMS AND HOPES

Best bug for the job:

- How do we use our experimental data to predict the best bacterium or community for calcite precipitation under concrete-like conditions?
- We are measuring each bacterium and condition in isolation
 - How can we build a model to predict community behaviour in complex conditions, ultimately to find the optimal community
 - Would we need other data? E.g. testing pairs of conditions to predict higher-order interactions?
- Do we need to monitor calcite precipitation under each condition, or can we 'mash together' the growth/calcite correlation from earlier with the ability of the bacteria to simply cope with conditions?

Over to you!