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@ Combined systems & control theory is the

mathematical language for describing and ab- y
stracting feedback.
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@ Many biological systems are themselves the arrangement, combination
and interconnection of (sub)systems

Examples: Human body — cells, tissues, organs. Ecosystems —
organisation by species, trophic level, functional trait.

Systems theory offers both descriptions and explanations of (complex)
biological phenomena
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@ Optimal control — choose C so that desired dynamic behaviour of X

is achieved and a prescribed cost functional is minimised

@ Robust control — P belongs to class 1 (uncertainty set)

e Robust stability if X stable for all P €11
e Robust performance if performance objective satisfied for all P € 1

Zhou & Glover, Essentials of Robust Control, 1999.

@ “Plant variability and uncertainty are formidable adversaries—"
Green & Limebeer, Linear Robust Control, 1995.
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@ At the current level of generality these problems are too broad —
some assumptions are required

@ Some are technical — such as the modelling framework — discrete-
vs. continuous- time, finite- vs. infinite- dimensional, linear- vs.
nonlinear- ...

@ Some are more philosophical — such as a input-state-output or
behavioral framework
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modeller), which give rise to states x and outputs y. Outputs are
typically known, states may not be. Causal relationship. Think
applied force causes a velocity.
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@ In an input-state-output setting, inputs u are available (chosen by the
modeller), which give rise to states x and outputs y. Outputs are
typically known, states may not be. Causal relationship. Think
applied force causes a velocity.

@ In a behavioral setting, there are no inputs, states or outputs, just
trajectories (typically the solutions of some ODE etc). Think currents
and voltages.
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Controllability — to what extent is it possible to reach a desired
state? What states are reachable by control?

Stabilisability — given an unstable equilibrium x,, is it possible to
choose a control such that lim; o x(t) = x,?

Observability — given a sequence of measurements y, is it possible to
reconstruct the state x7

Detectability — given a sequence of measurements y, is it possible to
construct z such that lims—(z(t) — x(t)) = 0?
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Consider a linear, discrete-time control system

x(t+1) = Ax(t) + Bu(t), y(t) = Cx(t), x(0)=x°, teNg. (1)
@ Now the above fundamental properties have linear algebra solutions

e For given input u, the solution x of (1) is given by

t—1
x(t) = A0+ Y " ATIBu(j), teN
j=0
e With x° = 0 we may write
t—1 _ u(t—1)
x(t) = ZAt_l_JBu(j) =[B AB ... A"lB] : ]
j=0 u(0)
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Consider a linear, discrete-time control system

x(t+1) = Ax(t) + Bu(t), y(t) = Cx(t), x(0)=x°, teNg. (1)
@ A state X € R" is reachable if, and only if,

X€im [B AB ... A"!B]
@ By the Cayley-Hamilton Theorem, the rank of
[BAB A’B ... A"1B]

terminates at t = n (if not before)

@ So if X reachable, it is reachable in at most n time-steps



@ For nonlinear systems, often a more bespoke approach is required
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Consider a simple SIR model for the transmission of an infectious disease

S'=-pSI+0(1-5), S(0)=S5°
I'=BSl —al —l, 1(0) = 1° (2)
R' =~ —0oR, R(0) = R®
@ Here S, | and R denote the susceptible, infectious and removed
populations, respectively.

e Further, o is equal to the death (=birth) rate, § is the transmission
rate and ~y is the natural recovery rate. All are positive.

o Note that with N =S+ + R we have N' = —aN + o, so that

e If N(0) =1, with 0 < 5(0),/(0), R(0) <1, then N(t) =1 for all
t>0.
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@ The quantity Ry is important in epidemiological modelling. It is

defined as: The expected number of secondary infections caused by a
single typical infectious individual in a well-mixed population

@ Here Ry = 3/(y + o). If Ry <1, then & :=(1,0,0) is the only
equilibrium, which is globally exponentially stable. If Ry > 1, then

1 o 'y>
s ==, (Ro—1)—=,(Ro— 1=,
&= (g (Ro- D5 (R~ 1))
is the so-called endemic equilibrium. It is stable and attracts all

solutions which do not start at &p.
S I
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@ By way of control, suppose that we introduce vaccination and

treatment into the model, at rates u > 0 and 6 > 0, respectively, so

that
S'=-BSI+0(1-S5)—uS,
I"=BSlI —~vl —al —0I.
o Note that these are (linear) feedback controls
o It follows that if
L -1 < E ,
Yy+0+o o
then & is globally exponentially stable.
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Brief introduction to systems and control theory given

Two competing objectives are optimality and robustness

Key concepts in systems theory are: controllability, stabilisability,
observability, detectability

Linear and nonlinear (SIR model) examples discussed

Please feel free to ask any questions over the week. Thank you for
listening



