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Systems & Control

Control theory or Control engineering focusses on the design and
synthesis of controllers (feedback, optimal or otherwise) in causal
dynamical systems to achieve a desired outcome.

Systems theory is the mathematical framework for (inter)connecting
dynamical objects.

Combined systems & control theory is the
mathematical language for describing and ab-
stracting feedback.
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Connections to mathematical biology

(1) Many biological systems are described by dynamical objects and are
studied with a view to affecting a change in their behaviour

Examples: SIR models. Crop–pest–bio-control dynamics.

Control theory offers solutions for how to affect these changes

(2) Many biological systems are themselves the arrangement, combination
and interconnection of (sub)systems

Examples: Human body — cells, tissues, organs. Ecosystems —
organisation by species, trophic level, functional trait.

Systems theory offers both descriptions and explanations of (complex)
biological phenomena
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Optimal control — choose C so that desired dynamic behaviour of Σ
is achieved and a prescribed cost functional is minimised

Robust control — P belongs to class Π (uncertainty set)

Robust stability if Σ stable for all P ∈ Π
Robust performance if performance objective satisfied for all P ∈ Π

Zhou & Glover, Essentials of Robust Control, 1999.

“Plant variability and uncertainty are formidable adversaries—”
Green & Limebeer, Linear Robust Control, 1995.
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At the current level of generality these problems are too broad —
some assumptions are required

Some are technical — such as the modelling framework — discrete-
vs. continuous- time, finite- vs. infinite- dimensional, linear- vs.
nonlinear- ...

Some are more philosophical — such as a input-state-output or
behavioral framework
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In an input-state-output setting, inputs u are available (chosen by the
modeller), which give rise to states x and outputs y . Outputs are
typically known, states may not be. Causal relationship. Think
applied force causes a velocity.

In a behavioral setting, there are no inputs, states or outputs, just
trajectories (typically the solutions of some ODE etc). Think currents
and voltages.
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Some fundamental concepts within systems theory

Controllability — to what extent is it possible to reach a desired
state? What states are reachable by control?

Stabilisability — given an unstable equilibrium x∗, is it possible to
choose a control such that limt→∞ x(t) = x∗?

Observability — given a sequence of measurements y , is it possible to
reconstruct the state x?

Detectability — given a sequence of measurements y , is it possible to
construct z such that limt→∞(z(t)− x(t)) = 0?
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Now the above fundamental properties have linear algebra solutions

For given input u, the solution x of (1) is given by

x(t) = Atx0 +
t−1∑
j=0

At−1−jBu(j), t ∈ N

With x0 = 0 we may write

x(t) =
t−1∑
j=0

At−1−jBu(j) =
[
B AB . . . At−1B

] [ u(t−1)
...

u(0)

]
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x(t + 1) = Ax(t) + Bu(t), y(t) = Cx(t), x(0) = x0 , t ∈ N0 . (1)

A state x̂ ∈ Rn is reachable if, and only if,

x̂ ∈ im
[
B AB . . . At−1B

]
By the Cayley-Hamilton Theorem, the rank of[

B AB A2B . . . At−1B
]

terminates at t = n (if not before)

So if x̂ reachable, it is reachable in at most n time-steps
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Some fundamental concepts within systems theory

For nonlinear systems, often a more bespoke approach is required



Control of diseases

Consider a simple SIR model for the transmission of an infectious disease

S ′ = −βSI + σ(1− S), S(0) = S0

I ′ = βSI − σI − γI , I (0) = I 0

R ′ = γI − σR, R(0) = R0

 (2)
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Here S , I and R denote the susceptible, infectious and removed
populations, respectively.

Further, σ is equal to the death (=birth) rate, β is the transmission
rate and γ is the natural recovery rate. All are positive.

Note that with N = S + I + R we have N ′ = −σN + σ, so that
limt→∞N(t) = 1.

If N(0) = 1, with 0 ≤ S(0), I (0),R(0) ≤ 1, then N(t) = 1 for all
t ≥ 0.
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The quantity R0 is important in epidemiological modelling. It is
defined as: The expected number of secondary infections caused by a
single typical infectious individual in a well-mixed population

Here R0 = β/(γ + σ). If R0 < 1, then ξ0 := (1, 0, 0) is the only
equilibrium, which is globally exponentially stable. If R0 > 1, then

ξ∗ :=

(
1

R0
, (R0 − 1)

σ

β
, (R0 − 1)

γ

β

)
,

is the so-called endemic equilibrium. It is stable and attracts all
solutions which do not start at ξ0.
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R ′ = γI − σR, R(0) = R0

 (2)

By way of control, suppose that we introduce vaccination and
treatment into the model, at rates µ > 0 and θ > 0, respectively, so
that

S ′ = −βSI + σ(1− S)− µS ,
I ′ = βSI − γI − σI − θI .

Note that these are (linear) feedback controls

It follows that if
β

γ + θ + σ
− 1 <

µ

σ
,

then ξ0 is globally exponentially stable.
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Summary

Brief introduction to systems and control theory given

Two competing objectives are optimality and robustness

Key concepts in systems theory are: controllability, stabilisability,
observability, detectability

Linear and nonlinear (SIR model) examples discussed

Please feel free to ask any questions over the week. Thank you for
listening
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