Liquidean distance

Jordina Francès, Elizabeth Gray, Malena Sabaté, Theresa Smith, Hanneke Wiersema

Groundwater network

- A map of Nitrate
 Vulnerable Zones is made
 using ordinary Kriging.
- Currently, covariance
 structure is assumed to
 depend only on distance
 between points.

Water quality estimation

Water quality estimation

Water quality estimation

First approach

DISTANCE

- For a given set of coordinates $X = \{\bar{z}, \bar{A}, \bar{R}\}$ where \bar{z} is the location, \bar{A} is a vector indicating the corresponding aquifer, and \bar{R} indicates the rock types present.
- We define the distance

$$d_X = \sqrt{(1 - \alpha - \beta)d_z^2 + \alpha d_A^2 + \beta d_R^2}.$$

so the covariance of our model is

$$\Sigma_{ij} = \sigma^2 \exp\left(\frac{-d_{Xij}^2}{\tau}\right)$$

First approach $X = \{E, N, A_1, A_2, A_3, A_4, R\}$

What we tried

NEXT STEP

- Prediction and performance
- Estimate all parameters (α, β, scale and variance)
 e.g. using MCMC
- See if the fun covariance matrix works better

First approach

SPECIAL CASE: DECOUPLED AQUIFERS

- Infinite distance between boreholes in different aquifers \rightarrow zero correlation
- Block diagonal matrix
- Geodistance contribution within aquifers based in rock types

DIFFUSION MODEL

DIFFUSION MODEL

DIFFUSION MODEL

TIME DEPENDENT CORRELATION

TIME DEPENDENT CORRELATION

- Correlation in Δt if
 - direct correlation in Δt
 - difference of path to most recent common ancestor is Δt
- Amount of correlation
 - transported mass
 - decay in time/distance
 - path physical properties

Bath, Bath and North East Somerset at scale 1:300,000

Other maps 🕑 Data search 🕑 Text only version 🕑