Aquifer as Random Environment

Dorka Fekete, John Fernley, Marcel Ortgiese, Sandra Palau, Tsogii Saizmaa

ITT7

Motivation.

Modelling flow of polluted water through porous medium \longrightarrow inhomogeneous structure.

Consider models with only a few parameters.

- Look at one dimensional toy example: to understand transport of pollutant through water flow on a line.
- Simplified equation for concentration of pollutant:

$$\frac{\partial C}{\partial t} = -v \frac{\partial C}{\partial x} + D \frac{\partial^2 C}{\partial x^2}.$$

• What is a good model for random fields v, D?

The Environment Diffusivity

Figure 3. The spatial variability of hydraulic conductivity along (a) line 1 and (b) line 2.

Sudicky et al. (2010) investigate diffusivity in a shallow unconfined aquifer located at North Bay, Ontario. They observe a *log-Gaussian random field*.

Woodbury/Ulrych (2000) suggest an exponential covariance structure and above Sudicky et al. (2010) estimate the covariance structure.

The Forwards Model

We put a flow on this environment from some point source of nitrate from some known point over some known timescale.

Solving the Inverse Problem

- Then given the relative intensities at our two boreholes we can estimate the position of the point source.
- Thus we have a measure of the additional uncertainty created by the unknown aquifer structure.

Extension: Data Over Time

Given observations of nitrate concentration over time in two boreholes, we can try to recover the whole initial concentration profile.

Extension: Data Over Time

We achieve this by regularising for smoothness (Tikhonov). The random environment is *unknown* so we simulate an ensemble of environments and average the resultant ensemble of regularised inverses.

- Robustness to spatial correlation scale.
- Inference of random environment?
- Putting convection back into flow with *physical* random properties.
- Rigorous results for the PDE in random environment.