Big BAM: Detecting non-stationarity in peak river flows

Emiko Dupont, Robbie Peck, Tom Smith, Ilaria Prosdocimi, Nicole Augustin

ITT7

31 January 2017

Emiko Dupont, Robbie Peck, Tom Smith, Ilaria Prosdocimi, Nicole Augustin

Data

- 29,687 obs. of 42 variables.
- Time series at 675 stations.

Emiko Dupont, Robbie Peck, Tom Smith, Ilaria Prosdocimi, Nicole Augustin

Linear model at each station

Model:

$$y_i = \log(\text{flow}_i) = \beta_0 + \beta_1 t_i + \varepsilon_i \text{ where } \varepsilon_i \sim N(0, \sigma^2) \text{ iid}$$

Hypothesis test: $H_0: \beta_1 = 0$ against $H_1: \beta_1 \neq 0$

$$\mathcal{T}=rac{\hat{eta}_1}{\hat{\sigma}_{\hat{eta}_1}}\sim_{ extsf{approx}} N(0,1)$$
 under H_0

Reject H_0 if |T| > 1.64 (time dependence is significant)

Emiko Dupont, Robbie Peck, Tom Smith, Ilaria Prosdocimi, Nicole Augustir

Test statistic for $\alpha = 0.1$

Time dependence significant at around 20% of stations

Emiko Dupont, Robbie Peck, Tom Smith, Ilaria Prosdocimi, Nicole Augustin

What can we do to improve this?

Improvement 1: Build a spatial model for the test statistic

Pooling data improves power of statistical test
Approach 1: Mixed effects model based on hydrometric areas:
For station i in area j

$$\mathcal{T}_i = \mu + b_i + arepsilon_i$$
 where $b_i \sim \mathcal{N}(0, \sigma_b^2), \quad arepsilon_i \sim \mathcal{N}(0, 1)$

Results:

- Reproduced results from Emikos project.
- 80% of tests now significant at level 0.1.

Approach 2: GAM with spatial random effect

$$T_i = \mu + f(c\text{-east}_i, c\text{-north}_i) + \varepsilon_i$$
 where $\varepsilon_i \sim N(0, \sigma^2)$

Use of centroids of catchment as locations.

Emiko Dupont, Robbie Peck, Tom Smith, Ilaria Prosdocimi, Nicole Augustin

Improvement 2: **Approach 1**: Investigate shape of time dependence (GAMM) For station i in hydrometric area j at time t_k

$$\log(\mathrm{flow}_{ik}) = f_j(t_k) + b_{0,i} + b_{1,i}t_k + \varepsilon_{ik}$$

$$\mathsf{b}_{0,i} \sim \mathsf{N}(0,\sigma_{b_0}^2), b_{1,i} \sim \mathsf{N}(0,\sigma_{b_1}^2), \varepsilon_i \sim \mathsf{N}(0,\sigma^2)$$

- Standardise the flow
- *f_j* for each hydrometric area.

Plots of two f_j 's

Emiko Dupont, Robbie Peck, Tom Smith, Ilaria Prosdocimi, Nicole Augustin

Approach 2:

Varying coefficient model based on centralised spatial coordinates. For station i, hydrometric area j and water year k,

 $\log(\text{Standardised Flow}_{ik}) = f((\text{c-north}, \text{c-east})_i)t_k + b_j + \epsilon_{ik}$

- , where $b_j N(0, \sigma_b^2)$.
 - Reflects that stations nearer are more similar.
 - Shows spatial pattern of time dependence.

Emiko Dupont, Robbie Peck, Tom Smith, Ilaria Prosdocimi, Nicole Augustin

Future Work

- Can we obtain "estimated time dependence" from test statistic results?
- From the varying coefficient model, how do we assess whether slopes are significant?
- Improve measure of similarity of stations.
- Model AMAX using GEV distribution.