
A presentation for the Jan 18’ ITT by Phil Trinh (Bath)

AN INTRODUCTION TO FLOW THROUGH 
POROUS MEDIA AND GROUNDWATER FLOW

with bonus discussion on rainoff model



1. How do we model flow through porous media? 

2. What can be done analytically? 

3. Rainfall-Runoff method from the FEH book (flood risk modeling)

OUTLINE
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DARCY FLOW

Q “ kA
�2 ´ �1

z2 ´ z1
ñ qz “ ´k

d�

dz

Q “ flow rate rL3{T 2s
q “ specific discharge (“flux”) rL{T s
� “ head (hydraulic) rLs
z “ height rLs
k “ hydraulic conductivity, [L{T ]



Here are some typical values of k

Take care as discharge is not the same as velocity. Moreover head is not the 
same as (pore) pressure.

q “ ´kr�Darcy’s Law can then be generalized, firstly: 

k “ �

µ

 “ permeability rL2s
� “ ⇢g unit weight of pore fluid rM{L2T 2s
µ “ dynamic viscosity of pore fluid, rM{LT s

There are other ways of writing the 
conductivity: 



Darcy’s law can be alternatively understood via a ‘homogenization’ argument’:

Assume the pores are tubular in shape, and are of radius a. Then by viscous 
pipe flow (Poiseuille), 

where X >~ 1 is a factor that accounts for the arrangement of the tubes (in 
Poiseuille flow—related to the pressure drop across the tube).

flux in one pipe “ qtube « ´ a4

µX
rpp ` ⇢gzq



where      is the permeability of the material.

⇡p “ a2{dp “ void/pore area fraction (porosity)

dp “ representative grain/particle size (radius)

Then since we have,

The flux (flow rate per unit cross-sectional area) is then

q (per unit cross-sectional area of material) “ qtube
d2p

“ ´

hkkkkikkkkj
p�2d2p{Xq

µ
rpp ` ⇢gzq



Darcy’s law can be alternatively understood via a ‘homogenization’ argument’:



NB: In groundwater flow, it’s more typical to work with quantities involving the 
head instead of the pressure. 

� (hydraulic head) “  (pressure head) ` Z

For the piezometer 

Thus, the height Z,

� “ p

⇢g
` Z ñ p “ ⇢gp� ´ Zq



Conservation of mass:

outflow - inflow + creation due to sources “ �V

�t

ñ
ˆBq

x

Bx ` Bq
y

By ` Bq
z

Bz ´ W

˚
˙
�x�y�z “ �V

�t

We assume that the change of volume is approximated by the change in (local) 
head. Thus we write: 

�V

�t

“ ´Ss
��

�t

�x�y�z

Ss “
ˆ

´ �V

���x�y�z

˙
where 

is the specific storage (i.e. volume of water released per 
unit change in head per unit change in volume)

r ¨ q ´ W˚ “ ´Ss
B�
Bt

Using Darcy, this leads to the governing equation (Anderson, Woessner, Randall):

B
Bx

ˆ
K

x

B�
Bx

˙
` B

By

ˆ
K

y

B�
By

˙
` B

Bz

ˆ
K

z

B�
Bz

˙
“ S

s

B�
Bt ` W

˚



Example 1: (2D sink/source, steady) Consider pumping oil at a rate |Q| out of a hole of 
radius R in a thin layer of porous media between two plates of separation height, H

r2� “ 0 ñ 1

r

d

dr

ˆ
1

r

dp

dr

˙
“ 0 ñ � “ �0 ` C log r

´|Q| “
ˆˆ 2⇡

0
p´kr� ¨ nq d✓

˙
H ñ C “ |Q|

2⇡kH

Solving Laplace’s equation on an axi-symmetric 2D domain

Hence imposing the flux condition on the boundary:
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Example 2: (Dupuit-Forchheimer approximation) The DF approximation is 
analogous to the thin-film limit of viscous flows, and allows a reduction in the 
dimension of the problem. 

The DF approximation assumes that the flowlines are large in comparison with 
the geometry thickness. Hence we assume that 

qz “ 0 ñ �z “ 0 ñ � “ �px, y, tq

Conservation of mass argument is then re-done in order to embed the column 
transport (rather than cell). 



Conservation of mass argument is 
then re-done in order to embed 
the column mass (rather than cell). 
Discharge over the height of the 
aquifer is given by 

Q
x

“ hq
x

, Q
y

“ hq
y

ñ Q “ hq

Hence conservation of mass on the column leads to

The head is measured so that                       , i.e. the head and the aquifer thickness 
are the same. It follows from Darcy that 

� “ hpx, y, tq

Which is now a nonlinear equation for the water table, S = storage coefficient

S

Bh
Bt “

ˆBQ
x

Bx ` BQ
y

By

˙

S

Bh
Bt “ ´k

2

ˆBh2

Bx ` Bh2

By

˙



Example 2: Solve for the water table in the below situation at steady-state.

We have

d2ph2q
dx2

“ 0

h “ h0 at x “ L

´|Q| “ ´kh

x

h at x “ 0

ñ hpxq “
c

2|Q|
k

px ´ Lq ` h
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On the assumption that 

Example 3: (Theis’ solution) A common approximation of the nonlinear diffusion 
equation involves a linearization. Introduce

� “ k

2
�2 ñ S

�k

B�
Bt “ r2�

S{p�kq « S{p�kq “ Ss{k “ const.

We are led to the linear diffusion equation:
B�
Bt “ Dr2�, D “ k

Ss

�pr, tq “ ´ Q

4⇡
E1puq ` �0, t ° t0

u “ r2

4Dpt ´ t0q



RAINFALL-RUNOFF METHOD



A Text Book of Hydrology 
By P. Jaya Rami Reddy

FEH

The location is modeled as a point, 



The basic idea of this model involves a pre-processing step to determine net rainfall 
given total rainfall. Then two (independent) models [discrete difference equations] 
are used to determine the baseflow and quick flow. 

base flow “ zptq
quick flow “ qptq

total flow/runo↵ “ Qptq “ qptq ` zptq



First, using [uniformly distributed] 'soil' properties, they determine what proportion 
(q/P) of rainfall is then converted to total rain runoff.



Next, they posit a law for how quick-flow accumulates in time, given a unit forcing 
of rain (i.e. given a unit pulse of rain, the below graph determines the response of 
the system)

The quick-flow then results from a convolution with the rain profile in time:



Finally, the evolution of the base flow is determined by a rate-exchange equation. 

(Somehow this takes in account natural decay of the base flow, and growth/
recharge due to the quick-flow). 



Criticisms of the model? 

Need inputs 
C_min, C_max, uniform soil distribution  
Shape of the unit hydrograph response, T_p, U_p,  
BL, BR [rate constants for base flow] 
Initial values 

Need assumptions 
Soil saturation occurs independently(?) from dynamics 
Uncoupled base/quick flows 
No geometrical parameters 
Later various ad-hoc fixes (to account for seasonality) 
Various dubious steps to determine ICs/parameters


