AN INTRODUCTION TO FLOW THROUGH
POROUS MEDIA AND GROUNDWATER FLOW

with bonus discussion on rainoff model

A presentation for the Jan 18" ITT by Phil Trinh (Bath)

) //////////////////////////

- o .‘* .:.o"‘. 1w o g,
Lw?de". ( Seios J : Gb‘“@ Y L e A/ 7oL
* dusUs s o vnoetled .oqwh
7///////////////////////// S &
W /%%//74/ aY;
I ¢ . -—'- Cix . . . ¢L

///////////////////////// |

(m?\mt w\m‘%er heWween.
YT e aves AR




OUTLINE

1. How do we model flow through porous media?

2. What can be done analytically?

3. Rainfall-Runoff method from the FEH book (flood risk modeling)

References:

1. Haitjema, H. M. Analytic element modeling of groundwater flow

2. Anderson, M. P, Woessner, W. W. and Hunt, R. J. Applied
groundwater modeling

3. Kjeldsen, T. R. The revitalised FSR/FEH rainfall-runoff method,
Flood Estimation Handbook, Supplementary |



DARCY FLOW

R

O

Q = flow rate [L°/T?]

q = specific discharge (“flux”) [L/T] 0O — kACbQ — 1 =g, = —k%
¢ = head (hydraulic) [L] Z2 — 21 dz
z = height |L]

k = hydraulic conductivity, [L/T]




Darcy’s Law can then be generalized, firstly: g = —kVo

There are other ways of writing the =

conductivity: H
K = permeability [L?]

v = pg unit weight of pore fluid [M/L*T?]
u = dynamic viscosity of pore fluid, |M /LT]

Here are some typical values of k

soil type k in ft/day
gravel > 500
sand and gravel 200 - 500
coarse sand 50 - 200
medium sand 20 - 50
fine sand 1-20
silty sand 0.1-1
silt 0.01-0.1
peat 0.001 - 0.01
sandy clay 0.0001 - 0.001
clay < 0.0001

Take care as discharge is not the same as velocity. Moreover head is not the
same as (pore) pressure.



Darcy’s law can be alternatively understood via a ‘homogenization’ argument':

Assume the pores are tubular in shape, and are of radius a. Then by viscous
pipe flow (Poiseuille),

CL4

flux in one pipe = quupe * ——=V(p + pgz)
X
where X >~ 1 is a factor that accounts for the arrangement of the tubes (in
Poiseuille flow—related to the pressure drop across the tube).



Darcy’s law can be alternatively understood via a ‘homogenization’ argument':

Then since we have,

T, = a®/d, = void /pore area fraction (porosity)

d, = representative grain/particle size (radius)

The flux (flow rate per unit cross-sectional area) is then

K

ds/ X
q (per unit cross-sectional area of material) = qz;be = — @7,/ )V(p + pgz)
p

where k is the permeability of the material.



NB: In groundwater flow, it's more typical to work with quantities involving the
head instead of the pressure.
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For the piezometer
¢ (hydraulic head) = i (pressure head) + Z

Thus, the height Z,

b= +Z=p=pg(é—2)
pg



Conservation of mass:
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outflow - inflow + creation due to sources = A7
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We assume that the change of volume is approximated by the change in (local)
head. Thus we write:

AV Ao
= 5, 2% ArAyA
Al DO ATAYAZ
AV is the specific storage (i.e. volume of water released per
where Ss = | — . . . .
ApAxAyAz / unit change in head per unit change in volume)
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Using Darcy, this leads to the governing equation (Anderson, Woessner, Randall):
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Example 1: (2D sink/source, steady) Consider pumping oil at a rate |1Ql out of a hole of
radius R in a thin layer of porous media between two plates of separation height, H
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Example 2: (Dupuit-Forchheimer approximation) The DF approximation is

analogous to the thin-film limit of viscous flows, and allows a reduction in the
dimension of the problem.
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The DF approximation assumes that the flowlines are large in comparison with
the geometry thickness. Hence we assume that

QZ:0:>¢ZZO:>¢:¢(x7y7t)

Conservation of mass argument is then re-done in order to embed the column
transport (rather than cell).



Conservation of mass argument is
then re-done in order to embed
the column mass (rather than cell).
Discharge over the height of the

aquifer is given by

Qz = hqq, Qy = hgy = @ =hq

oh

Hence conservation of mass on the column leads to SE = (

9% , 40)

ox oy

The head is measured so that ¢ = h(zx,y,t) , i.e. the head and the aquifer thickness
are the same. It follows from Darcy that

oh k (O0h?  Oh?
S—=———+—
ot 2 \ Ox oy

Which is now a nonlinear equation for the water table, S = storage coeftficient



Example 2: Solve for the water table in the below situation at steady-state.
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We have

d*(h?)
dz?
h="hy atxz=1L
—|Q| = —kh,h atx =0

)

=>h($)=\/%Q|(:c—L)+h3




Example 3: (Theis’ solution) A common approximation of the nonlinear diffusion
equation involves a linearization. Introduce

ko S o _,
b= = a = Ve®
On the assumption that S/(¢k) ~ S/(¢k) = Ss/k = const.
0P
We are led to the linear diffusion equation: Fri DV?®. D = 5
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RAINFALL-RUNOFF METHOD
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The location is modeled as a point,
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Figure 6.3 100-year design flood hydrograph for Salwarpe at Harford Mill
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Fig. 10.1. Schematic representation of runoff process.

A Text Book of Hydrology

By P. Jaya Rami Reddy




The basic idea of this model involves a pre-processing step to determine net rainfall
given total rainfall. Then two (independent) models [discrete difference equations]
are used to determine the baseflow and quick flow.

base flow = z(t)
quick flow = ¢(t)
total flow /runoff = Q(t) = q(t) + z(t)

Total rainfall

_-—-—-P Net rainfall
\\> l

Initial soil moisture Loss Routing
Cini ' model model

7

(Cmax) (Tp) l —»  Total flow
Initial baseflow _’ Baseflow model

BF (BR, BL)

Figure 2.1 Schematic representation of the ReFH model



First, using [uniformly distributed] 'soil' properties, they determine what proportion
(g/P) of rainfall is then converted to total rain runoft.

Excess Rainfall, P

Soil moisture
capacity, C,

Cumulative distribution of soil moisture capacity

Figure 2.2 Equal water content C, across stores of different capacity

__ = 4 forr=1,2,3, ... 2.1)




Next, they posit a law for how quick-flow accumulates in time, given a unit forcing
of rain (i.e. given a unit pulse of rain, the below graph determines the response of

the system)

Unit hydrograph
A

Ui = U2Tp/Uc
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Figure 2.3 Shape of standard instantaneous unit hydrograph adopted in ReFH

The quick-flow then results from a convolution with the rain profile in time:

g,=>Pu_. for =123, ...




Finally, the evolution of the base flow is determined by a rate-exchange equation.

Stene = kl q, T kz Iy T k3 < k, = BR[l— (1—k3 )E)

(Somehow this takes in account natural decay of the base flow, and growth/
recharge due to the quick-flow).



Criticisms of the model?

Need inputs

C_min, C_max, uniform soil distribution

Shape of the unit hydrograph response, T_p, U_p,
BL, BR [rate constants for base flow]

Initial values

Need assumptions

Soil saturation occurs independently(?) from dynamics
Uncoupled base/quick flows

No geometrical parameters

Later various ad-hoc fixes (to account for seasonality)
Various dubious steps to determine |ICs/parameters



