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An autoregressive-moving-average (ARMA) model

xk+1 = Axk + Bwk, x0 = 0, yk = Cxk + wk.

A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n.

wk i.i.d. random variables, zero mean, variance σ2.

Alternative description:

yk =

k∑
j=0

hjwk−j, hj =

{
I j = 0
CAj−1B j > 0.

Of interest: (eigenvalues of) covariance matrix of
y0
y1
...

yN−1

 ,
for N →∞.



Eigenvalue distribution

Example: n = 1, A = 1
2 , B = C = 1, σ = 1, N = 5
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Eigenvalue distribution function of a symmetric N × N matrix

DN : R→ [0, 1], DN(x) :=
#eigenvalues ≤ x

N
.

Compare: Empirical Distribution Function.



Eigenvalue distribution

Eigenvalue distribution function of a symmetric N × N matrix

DN : R→ [0, 1], DN(x) :=
#eigenvalues ≤ x

N
.

EDF of a sequence (TN) where TN is a symmetric N × N matrix

D : R→ [0, 1], D(x) = lim
N→∞

DN(x).

Example: n = 1, A = 1
2 , B = C = 1, σ = 1, N = 25

Compare: Cumulative Distribution Function.



Recap and goal

ARMA Model

xk+1 = Axk + Bwk, x0 = 0, yk = Cxk + wk.

A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n.

wk i.i.d. random variables, zero mean, variance σ2.

Of interest: the eigenvalue distribution function of the sequence of
covariance matrices of 

y0
y1
...

yN−1

 .

Goal
Understand the eigenvalue distribution function of the sequence of
covariance matrices in terms of A, B, C and σ.



How to find the EDF for an ARMA Covariance matrix?
Recall
State space description:

xk+1 = Axk + Bwk, x0 = 0, yk = Cxk + wk.

Discrete convolution description:

yk =

k∑
j=0

hjwk−j, hj =

{
I j = 0
CAj−1B j > 0.

Transfer function and frequency response

G(z) =
∞∑

j=0

hjzj = I + Cz(I − zA)−1B, φ(t) = |G(eit)|2.

For our example (A = 1
2 , B = C = 1):

G(z) =
2 + z
2− z

, φ(t) =
5 + 4 cos(t)
5− 4 cos(t)

.



How to find the EDF for an ARMA Covariance matrix?
Recall

G(z) =
∞∑

j=0

hjzj = I + Cz(I − zA)−1B, φ(t) = |G(eit)|2.

For our example (A = 1
2 , B = C = 1):

G(z) =
2 + z
2− z

, φ(t) =
5 + 4 cos(t)
5− 4 cos(t)

.

Then
D(x) =

1
2π

measure{t ∈ [0, 2π] : φ(t) ≤ x},

D : [1/9, 9]→ [0, 1], D(x) = 1− 1
π

arccos
(

5(x− 1)
4(x + 1)

)
.



Moral of the story

If we understand the frequency response function,
then we understand the eigenvalue distribution function.



How to prove this?

Gábor Szegö (1895-1985)

The covariance matrix sequence ≈ symmetric Toeplitz matrix
sequence.

This symmetric Toeplitz matrix sequence ≈ symmetric circulant
matrix sequence.

For this symmetric circulant matrix sequence the eigenvalues are
easily calculated.

(SN)N ≈ (TN)N if limN→∞
1
N ‖SN − TN‖F = 0;

(SN)N ≈ (TN)N implies D(SN) = D(TN).



What do frequency response functions look like?

Heat equation:

∂u
∂t

=
∂2u
∂ξ2 , u(t, 0) = 0,

∂u
∂ξ

(t, 1) = w(t), y(t) = u(t, 1).

Continuous-time and discrete-time transfer functions:

Gc(s) =
tanh
√

s√
s

, G(z) = Gc

(
z− 1
z + 1

)
.

Continuous Bode plot of Gc and discrete time plot of φ:



Damped wave equation

Continuous Bode plot of Gc and discrete time plots of φ:

Log scale for φ and (data based) EDF



Moral of the story

If we understand the frequency response function,
then we understand the eigenvalue distribution function.

In some cases we understand the frequency response function.


