# Eigenvalues of covariance matrices

Mark Opmeer

# An autoregressive-moving-average (ARMA) model

$$x_{k+1} = Ax_k + Bw_k, \quad x_0 = 0, \quad y_k = Cx_k + w_k.$$

• 
$$A \in \mathbb{R}^{n imes n}, B \in \mathbb{R}^{n imes 1}, C \in \mathbb{R}^{1 imes n}$$

•  $w_k$  i.i.d. random variables, zero mean, variance  $\sigma^2$ .

Alternative description:

$$y_k = \sum_{j=0}^k h_j w_{k-j}, \qquad h_j = \begin{cases} I & j = 0 \\ CA^{j-1}B & j > 0. \end{cases}$$

Of interest: (eigenvalues of) covariance matrix of

$$\begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{N-1} \end{bmatrix},$$

for  $N \to \infty$ .

### Eigenvalue distribution



Eigenvalue distribution function of a symmetric  $N \times N$  matrix

$$D_N: \mathbb{R} \to [0, 1], \quad D_N(x):= rac{\# ext{eigenvalues} \le x}{N}$$

• Compare: Empirical Distribution Function.

## Eigenvalue distribution

Eigenvalue distribution function of a symmetric  $N \times N$  matrix

$$D_N: \mathbb{R} \to [0, 1], \quad D_N(x):= rac{\# ext{eigenvalues} \le x}{N}$$

EDF of a sequence  $(T_N)$  where  $T_N$  is a symmetric  $N \times N$  matrix

$$D: \mathbb{R} \to [0, 1], \qquad D(x) = \lim_{N \to \infty} D_N(x).$$



#### • Compare: Cumulative Distribution Function.

### Recap and goal

#### ARMA Model

$$x_{k+1} = Ax_k + Bw_k, \quad x_0 = 0, \quad y_k = Cx_k + w_k.$$

- $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times 1}, C \in \mathbb{R}^{1 \times n}.$
- $w_k$  i.i.d. random variables, zero mean, variance  $\sigma^2$ .

Of interest: the *eigenvalue distribution function* of the sequence of covariance matrices of

$$\begin{bmatrix} y_0 \\ y_1 \\ \vdots \\ y_{N-1} \end{bmatrix}$$

#### Goal

Understand the eigenvalue distribution function of the sequence of covariance matrices in terms of *A*, *B*, *C* and  $\sigma$ .

## How to find the EDF for an ARMA Covariance matrix?

#### Recall

State space description:

$$x_{k+1} = Ax_k + Bw_k, \quad x_0 = 0, \quad y_k = Cx_k + w_k.$$

Discrete convolution description:

$$y_k = \sum_{j=0}^k h_j w_{k-j}, \qquad h_j = \begin{cases} I & j = 0 \\ CA^{j-1}B & j > 0. \end{cases}$$

Transfer function and frequency response

$$G(z) = \sum_{j=0}^{\infty} h_j z^j = I + C z (I - zA)^{-1} B, \qquad \phi(t) = |G(e^{it})|^2.$$

For our example  $(A = \frac{1}{2}, B = C = 1)$ :

$$G(z) = \frac{2+z}{2-z}, \qquad \phi(t) = \frac{5+4\cos(t)}{5-4\cos(t)}$$

## How to find the EDF for an ARMA Covariance matrix?

#### Recall

$$G(z) = \sum_{j=0}^{\infty} h_j z^j = I + C z (I - zA)^{-1} B, \qquad \phi(t) = |G(e^{it})|^2.$$

For our example  $(A = \frac{1}{2}, B = C = 1)$ :

$$G(z) = \frac{2+z}{2-z}, \qquad \phi(t) = \frac{5+4\cos(t)}{5-4\cos(t)}.$$

#### Then



### Moral of the story

If we understand the frequency response function, then we understand the eigenvalue distribution function.

### How to prove this?



Gábor Szegö (1895-1985)

- The covariance matrix sequence  $\approx$  symmetric Toeplitz matrix sequence.
- This symmetric Toeplitz matrix sequence ≈ symmetric circulant matrix sequence.
- For this symmetric circulant matrix sequence the eigenvalues are easily calculated.
- $(S_N)_N \approx (T_N)_N$  if  $\lim_{N\to\infty} \frac{1}{N} ||S_N T_N||_F = 0$ ;
- $(S_N)_N \approx (T_N)_N$  implies  $D_{(S_N)} = D_{(T_N)}$ .

## What do frequency response functions look like?

Heat equation:

$$\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial \xi^2}, \quad u(t,0) = 0, \quad \frac{\partial u}{\partial \xi}(t,1) = w(t), \quad y(t) = u(t,1).$$

Continuous-time and discrete-time transfer functions:

$$G_c(s) = rac{ anh \sqrt{s}}{\sqrt{s}}, \qquad G(z) = G_c\left(rac{z-1}{z+1}
ight).$$

Continuous Bode plot of  $G_c$  and discrete time plot of  $\phi$ :



## Damped wave equation

### Continuous Bode plot of $G_c$ and discrete time plots of $\phi$ :



Log scale for  $\phi$  and (data based) EDF





10

### Moral of the story

If we understand the frequency response function, then we understand the eigenvalue distribution function. In some cases we understand the frequency response function.