Eigenvalues of covariance matrices

Mark Opmeer

An autoregressive-moving-average (ARMA) model

$$
x_{k+1}=A x_{k}+B w_{k}, \quad x_{0}=0, \quad y_{k}=C x_{k}+w_{k} .
$$

- $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times 1}, C \in \mathbb{R}^{1 \times n}$.
- w_{k} i.i.d. random variables, zero mean, variance σ^{2}.

Alternative description:

$$
y_{k}=\sum_{j=0}^{k} h_{j} w_{k-j}, \quad h_{j}= \begin{cases}I & j=0 \\ C A^{j-1} B & j>0 .\end{cases}
$$

Of interest: (eigenvalues of) covariance matrix of

$$
\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{N-1}
\end{array}\right],
$$

for $N \rightarrow \infty$.

Example: $n=1, A=\frac{1}{2}, B=C=1, \sigma=1, N=5$

$$
\begin{aligned}
& 0.17 \\
& 0.41 \\
& 1.00 \\
& 2.46 \\
& 5.85
\end{aligned}
$$

Eigenvalue distribution function of a symmetric $N \times N$ matrix

$$
D_{N}: \mathbb{R} \rightarrow[0,1], \quad D_{N}(x):=\frac{\# \text { eigenvalues } \leq x}{N}
$$

- Compare: Empirical Distribution Function.

Eigenvalue distribution function of a symmetric $N \times N$ matrix

$$
D_{N}: \mathbb{R} \rightarrow[0,1], \quad D_{N}(x):=\frac{\# \text { eigenvalues } \leq x}{N}
$$

EDF of a sequence $\left(T_{N}\right)$ where T_{N} is a symmetric $N \times N$ matrix

$$
D: \mathbb{R} \rightarrow[0,1], \quad D(x)=\lim _{N \rightarrow \infty} D_{N}(x)
$$

Example: $n=1, A=\frac{1}{2}, B=C=1, \sigma=1, N=25$

- Compare: Cumulative Distribution Function.

Recap and goal

ARMA Model

$$
x_{k+1}=A x_{k}+B w_{k}, \quad x_{0}=0, \quad y_{k}=C x_{k}+w_{k} .
$$

- $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times 1}, C \in \mathbb{R}^{1 \times n}$.
- w_{k} i.i.d. random variables, zero mean, variance σ^{2}.

Of interest: the eigenvalue distribution function of the sequence of covariance matrices of

$$
\left[\begin{array}{c}
y_{0} \\
y_{1} \\
\vdots \\
y_{N-1}
\end{array}\right] .
$$

Goal

Understand the eigenvalue distribution function of the sequence of covariance matrices in terms of A, B, C and σ.

Recall

State space description:

$$
x_{k+1}=A x_{k}+B w_{k}, \quad x_{0}=0, \quad y_{k}=C x_{k}+w_{k} .
$$

Discrete convolution description:

$$
y_{k}=\sum_{j=0}^{k} h_{j} w_{k-j}, \quad h_{j}= \begin{cases}I & j=0 \\ C A^{j-1} B & j>0 .\end{cases}
$$

Transfer function and frequency response

$$
G(z)=\sum_{j=0}^{\infty} h_{j} z^{j}=I+C z(I-z A)^{-1} B, \quad \phi(t)=\left|G\left(\mathrm{e}^{i t}\right)\right|^{2}
$$

For our example $\left(A=\frac{1}{2}, B=C=1\right)$:

$$
G(z)=\frac{2+z}{2-z}, \quad \phi(t)=\frac{5+4 \cos (t)}{5-4 \cos (t)}
$$

Recall

$$
G(z)=\sum_{j=0}^{\infty} h_{j} z^{j}=I+C z(I-z A)^{-1} B, \quad \phi(t)=\left|G\left(\mathrm{e}^{i t}\right)\right|^{2}
$$

For our example $\left(A=\frac{1}{2}, B=C=1\right)$:

$$
G(z)=\frac{2+z}{2-z}, \quad \phi(t)=\frac{5+4 \cos (t)}{5-4 \cos (t)} .
$$

Then

$$
D(x)=\frac{1}{2 \pi} \text { measure }\{t \in[0,2 \pi]: \phi(t) \leq x\}
$$

$$
D:[1 / 9,9] \rightarrow[0,1],
$$

$$
D(x)=1-\frac{1}{\pi} \arccos \left(\frac{5(x-1)}{4(x+1)}\right)
$$

Moral of the story

If we understand the frequency response function, then we understand the eigenvalue distribution function.

How to prove this?

Gábor Szegö (1895-1985)

- The covariance matrix sequence \approx symmetric Toeplitz matrix sequence.
- This symmetric Toeplitz matrix sequence \approx symmetric circulant matrix sequence.
- For this symmetric circulant matrix sequence the eigenvalues are easily calculated.
- $\left(S_{N}\right)_{N} \approx\left(T_{N}\right)_{N}$ if $\lim _{N \rightarrow \infty} \frac{1}{N}\left\|S_{N}-T_{N}\right\|_{F}=0$;
- $\left(S_{N}\right)_{N} \approx\left(T_{N}\right)_{N}$ implies $D_{\left(S_{N}\right)}=D_{\left(T_{N}\right)}$.

Heat equation:

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial \xi^{2}}, \quad u(t, 0)=0, \quad \frac{\partial u}{\partial \xi}(t, 1)=w(t), \quad y(t)=u(t, 1) .
$$

Continuous-time and discrete-time transfer functions:

$$
G_{c}(s)=\frac{\tanh \sqrt{s}}{\sqrt{s}}, \quad G(z)=G_{c}\left(\frac{z-1}{z+1}\right) .
$$

Continuous Bode plot of G_{c} and discrete time plot of ϕ :

Damped wave equation

Continuous Bode plot of G_{c} and discrete time plots of ϕ :

Log scale for ϕ and (data based) EDF

If we understand the frequency response function, then we understand the eigenvalue distribution function. In some cases we understand the frequency response function.

