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What is a Gaussian process/Gaussian random field?
Definition:
Stochastic process {Z (s) | s ∈ D}, D︸︷︷︸

spatial
domain

⊂ Rd

Any finite collection {Z (s1), . . . ,Z (sk)} is multivariate normal:Z (s1)
...

Z (sk)

 ∼ N


µ(s1)

...
µ(sk)

 ,
 Cov(Z (si ),Z (sj))



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What is a Gaussian process/Gaussian random field?
Definition:
Stochastic process {Z (s) | s ∈ D}, D︸︷︷︸

spatial
domain

⊂ Rd

Any finite collection {Z (s1), . . . ,Z (sk)} is multivariate normal:Z (s1)
...

Z (sk)

 ∼ N


µ(s1)

...
µ(sk)

 ,
 Cov(Z (si ),Z (sj))




Note:
In particular, Z (s) ∼ N(µ(s),Var(s)) for all s ∈ D
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What is a Gaussian process/Gaussian random field?

Spatial field: {Z (s) | s ∈ D}, D ⊂ R2

White noise

Z(s) ∼iid N(0, σ2)
Any finite collection {Z(s1), . . . ,Z(sk)} ∼ N(0, σ2I )
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What is a Gaussian process/Gaussian random field?

Spatial field: {Z (s) | s ∈ D}, D ⊂ R2

Z (s) = concentration of mineral at location s

µ(s) = µ
Cov(Z(s1),Z(s2)) = exp(−|s2 − s1|2/ R2︸︷︷︸

range
parameter

)
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What is a Gaussian process/Gaussian random field?

Spatial field: {Z (i) | i = 1, . . . ,N}, N regions

Z (i) = relative risk of lung cancer in region i

Covariance: Neighbouring regions more similar than those far apart
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What are Gaussian processes used for?

Improve inference:

Identify spatial correlation structure/clustering

More powerful inference by pooling data

Prediction: Given observations of Z (s) at locations s1, . . . , sn

Estimate
∫
A
Z (s)ds (e.g. total quantity of ore across region A)

Reconstruct entire field Z (s) (e.g. global sea surface temperature)
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Applications

geology (e.g. estimating mineral concentration for mining)

environmental sciences (e.g. assessing time trends/spatial trends in
flood risk/sea ice concentration/sea temperature...)

ecology (e.g. assess fish stock to avoid overexploitation)

epidemiology (e.g. understanding spatial distribution of diseases)

econometrics (e.g. financial time series modelling)

...
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Gaussian process models

What’s so special about Gaussians?

A Gaussian is completely determined by its mean and covariance

Gaussians behave nicely under addition, conditioning etc.

Gaussians are often good approximations of other distributions
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Gaussian process models

What’s so special about Gaussians?

A Gaussian is completely determined by its mean and covariance

Gaussians behave nicely under addition, conditioning etc.

Gaussians are often good approximations of other distributions

Common assumption:

Isotropy: Covariance depends only on |s1 − s2|

Cov(Z (s1),Z (s2)) = C (|s1 − s2|)︸ ︷︷ ︸
covariance function

e.g. exponential/spherical/Matern

Typically: nearby points are more similar than those far apart
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Estimating the spatial structure

Given z = (z1, . . . , zn) observations of Z (s) at locations s1, . . . , sn.

Assumption: Mean and variance known up to unknown parameters.

Goal: Estimate parameters
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Estimating the spatial structure

Given z = (z1, . . . , zn) observations of Z (s) at locations s1, . . . , sn.

Model:
z | β, α, θ︸ ︷︷ ︸

unknown
parameters

∼ N(Xβ, αV (θ))

X observed covariates at locations s1, . . . , sn

For example:
Z (s) = sea surface temperature at location s
X = salinity at locations s1, . . . , sn
Exponential covariance function with unknown range parameter θ = R
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Estimating the spatial structure

Given z = (z1, . . . , zn) observations of Z (s) at locations s1, . . . , sn.

Model:
z | β, α, θ︸ ︷︷ ︸

unknown
parameters

∼ N(Xβ, αV (θ))

X observed covariates at locations s1, . . . , sn

Parameter estimation:

Maximum likelihood: (β̂, α̂, θ̂) = argmax f (z | β, α, θ)︸ ︷︷ ︸
likelihood of data

Bayesian method: posterior ∝ prior × likelihood
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Prediction: Kriging

Goal:
Given: z = (z1, . . . , zn) observations of Z (s) at locations s1, . . . , sn
Predict z0 = Z (s0) in unobserved location s0
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Prediction: Kriging

Goal:
Given: z = (z1, . . . , zn) observations of Z (s) at locations s1, . . . , sn
Predict z0 = Z (s0) in unobserved location s0

Assumption: Covariance structure is known

Model

z ∼ N(Xβ,Σ), z0 ∼ N(xT0 β, σ
2
0), Cov(z , z0) = τ

x0,X = observed covariates at locations s0, s1, . . . , sn
β = unknown coefficients of covariates
σ2
0 , τ,Σ = known covariances
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Prediction: Kriging

Goal:
Given: z = (z1, . . . , zn) observations of Z (s) at locations s1, . . . , sn
Predict z0 = Z (s0) in unobserved location s0

Prediction: Choose ẑ0 = λT z so that

ẑ0 is unbiased (E(ẑ0) = z0)

Mean squared prediction error E((z0 − ẑ0)2) = Cov(ẑ0) is minimised

Emiko Dupont

Gaussian processes in spatial statistics



Tools for estimation and prediction of Gaussian processes

Frequentist methods

Directly optimise likelihood/REML/prediction error

nlme (linear mixed model formulation of Gaussian process) (uses ML
or REML)

mgcv (GAM formulation) (uses penalised likelihood method)

Bayesian methods

Markov Chain Monte Carlo (WinBUGS/JAGS/Stan)

INLA for Gaussian Markov random fields (GMRFs) (uses integrated
nested Laplace approximation)
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