Gaussian processes in spatial statistics

Emiko Dupont

29 January 2018

Emiko Dupont

What is a Gaussian process/Gaussian random field? Definition: Stochastic process $\{Z(s) \mid s \in D\}, \underbrace{D}_{\substack{spatial \\ domain}} \subset \mathbb{R}^d$

Any finite collection $\{Z(s_1), \ldots, Z(s_k)\}$ is multivariate normal:

$$\begin{bmatrix} Z(s_1) \\ \vdots \\ Z(s_k) \end{bmatrix} \sim N\left(\begin{bmatrix} \mu(s_1) \\ \vdots \\ \mu(s_k) \end{bmatrix}, \begin{bmatrix} \operatorname{Cov}(Z(s_i), Z(s_j)) \end{bmatrix} \right)$$

Emiko Dupont

What is a Gaussian process/Gaussian random field? Definition: Stochastic process $\{Z(s) \mid s \in D\}, \underbrace{D}_{\substack{spatial \\ domain}} \subset \mathbb{R}^d$

Any finite collection $\{Z(s_1), \ldots, Z(s_k)\}$ is multivariate normal:

$$\begin{bmatrix} Z(s_1) \\ \vdots \\ Z(s_k) \end{bmatrix} \sim N\left(\begin{bmatrix} \mu(s_1) \\ \vdots \\ \mu(s_k) \end{bmatrix}, \begin{bmatrix} \operatorname{Cov}(Z(s_i), Z(s_j)) \end{bmatrix} \right)$$

Note:

In particular, $Z(s) \sim N(\mu(s), \operatorname{Var}(s))$ for all $s \in D$

Emiko Dupont

What is a Gaussian process/Gaussian random field?

```
Spatial field: \{Z(s) \mid s \in D\}, D \subset \mathbb{R}^2
```

White noise

$$Z(s) \sim_{\mathrm{iid}} N(0, \sigma^2)$$

• Any finite collection $\{Z(s_1), \ldots, Z(s_k)\} \sim N(\mathbf{0}, \sigma^2 I)$

Emiko Dupon

What is a Gaussian process/Gaussian random field?

Spatial field: $\{Z(s) \mid s \in D\}$, $D \subset \mathbb{R}^2$

• Z(s) = concentration of mineral at location s

•
$$\mu(s) = \mu$$

• $\operatorname{Cov}(Z(s_1), Z(s_2)) = \exp(-|s_2 - s_1|^2 / \underbrace{R^2}_{\substack{\text{range} \\ \text{parameter}}})$

Emiko Dupont

What is a Gaussian process/Gaussian random field?

Spatial field: $\{Z(i) \mid i = 1, ..., N\}$, N regions

- Z(i) = relative risk of lung cancer in region i
- Covariance: Neighbouring regions more similar than those far apart

Emiko Dupont

What are Gaussian processes used for?

Improve inference:

- Identify spatial correlation structure/clustering
- More powerful inference by pooling data

Prediction: Given observations of Z(s) at locations s_1, \ldots, s_n

- Estimate $\int_A Z(s) ds$ (e.g. total quantity of ore across region A)
- Reconstruct entire field Z(s) (e.g. global sea surface temperature)

Applications

- geology (e.g. estimating mineral concentration for mining)
- environmental sciences (e.g. assessing time trends/spatial trends in flood risk/sea ice concentration/sea temperature...)
- ecology (e.g. assess fish stock to avoid overexploitation)
- epidemiology (e.g. understanding spatial distribution of diseases)
- econometrics (e.g. financial time series modelling)

· · · ·

Gaussian process models

What's so special about Gaussians?

- A Gaussian is completely determined by its mean and covariance
- Gaussians behave nicely under addition, conditioning etc.
- Gaussians are often good approximations of other distributions

Gaussian process models

What's so special about Gaussians?

- A Gaussian is completely determined by its mean and covariance
- Gaussians behave nicely under addition, conditioning etc.
- Gaussians are often good approximations of other distributions

Common assumption:

Isotropy: Covariance depends only on $|s_1 - s_2|$

$$\operatorname{Cov}(Z(s_1), Z(s_2)) = \underbrace{C(|s_1 - s_2|)}_{C(s_1) \in \mathcal{S}_2}$$

covariance function e.g. exponential/spherical/Matern

Typically: nearby points are more similar than those far apart

Estimating the spatial structure

Given $z = (z_1, \ldots, z_n)$ observations of Z(s) at locations s_1, \ldots, s_n .

Assumption: Mean and variance known up to unknown parameters.

Goal: Estimate parameters

Emiko Dupont

Estimating the spatial structure

Given $z = (z_1, \ldots, z_n)$ observations of Z(s) at locations s_1, \ldots, s_n .

Model:

$$z \mid \underline{\beta, \alpha, \theta} \sim \mathcal{N}(X\beta, \alpha V(\theta))$$

parameters

X observed covariates at locations s_1, \ldots, s_n

For example: Z(s) = sea surface temperature at location s $X = \text{salinity at locations } s_1, \dots, s_n$ Exponential covariance function with unknown range parameter $\theta = R$

Estimating the spatial structure

Given $z = (z_1, \ldots, z_n)$ observations of Z(s) at locations s_1, \ldots, s_n .

Model:

$$z \mid \underbrace{\beta, \alpha, \theta}_{\text{unknown}} \sim N(X\beta, \alpha V(\theta))$$

parameters

X observed covariates at locations s_1, \ldots, s_n

Parameter estimation:

• Maximum likelihood: $(\hat{\beta}, \hat{\alpha}, \hat{\theta}) = \operatorname{argmax} f(z \mid \beta, \alpha, \theta)$

likelihood of data

Bayesian method: posterior \propto prior imes likelihood

Prediction: Kriging

Goal:

Given: $z = (z_1, \ldots, z_n)$ observations of Z(s) at locations s_1, \ldots, s_n Predict $z_0 = Z(s_0)$ in unobserved location s_0

Emiko Dupon

Prediction: Kriging

Goal:

Given: $z = (z_1, \ldots, z_n)$ observations of Z(s) at locations s_1, \ldots, s_n Predict $z_0 = Z(s_0)$ in unobserved location s_0

Assumption: Covariance structure is known

Model

$$z \sim N(X\beta, \Sigma), \quad z_0 \sim N(x_0^T\beta, \sigma_0^2), \quad \operatorname{Cov}(z, z_0) = \tau$$

 $x_0, X =$ observed covariates at locations s_0, s_1, \ldots, s_n $\beta =$ unknown coefficients of covariates $\sigma_0^2, \tau, \Sigma =$ known covariances

Prediction: Kriging

Goal:

Given: $z = (z_1, \ldots, z_n)$ observations of Z(s) at locations s_1, \ldots, s_n Predict $z_0 = Z(s_0)$ in unobserved location s_0

Prediction: Choose $\hat{z_0} = \lambda^T z$ so that

- $\hat{z_0}$ is unbiased $(E(\hat{z_0}) = z_0)$
- Mean squared prediction error $E((z_0 \hat{z_0})^2) = Cov(\hat{z_0})$ is minimised

Tools for estimation and prediction of Gaussian processes

Frequentist methods

- Directly optimise likelihood/REML/prediction error
- nlme (linear mixed model formulation of Gaussian process) (uses ML or REML)
- mgcv (GAM formulation) (uses penalised likelihood method)

Bayesian methods

- Markov Chain Monte Carlo (WinBUGS/JAGS/Stan)
- INLA for Gaussian Markov random fields (GMRFs) (uses integrated nested Laplace approximation)

References

- A. E. GELFAND, P. DIGGLE, P. GUTTORP, AND M. FUENTES, Handbook of spatial statistics. CRC press. 2010.
- C. PACIOREK, Technical vignette 3: Kriging, interpolation, and uncertainty: Department of biostatistics, Harvard School of Public Health, Version, 1 (2008).
- H. RUE, A. RIEBLER, S. H. SØRBYE, J. B. ILLIAN, D. P. SIMPSON, AND F. K. LINDGREN, Bayesian computing with inla: A review, arXiv preprint arXiv:1604.00860, (2016).
- R. L. SMITH. *Environmental statistics*. Facultad de Ciencias Económicas, Universidad Nacional del Cuyo, 1999.
- Y. SUN, B. LI, AND M. G. GENTON, Geostatistics for large datasets, in Advances and challenges in space-time modelling of natural events, Springer, 2012, pp. 55-77.
- S. N. WOOD. Generalized additive models: an introduction with R. CRC press, 2017.

Emiko Dupont