Dan Green

Jan 29, 2018
ITT7 (SAMBa Integrative Think Tank)




Data assimilation is a way of combining observations with a
numerical model, to create a better guess of the true state.

Used in

- Weather forecasting
- GPS navigation

- Medical imaging

- Seismology

- and many more places.



We have a state x, € R" at time ty,.
A numerical model My: R" — R" such that

Xep1 = Mp(Xg) + 7k
A background estimate x? of the truth X5,

x5 =xP + eq.
And observations y,e RPr of the state:
Ve = He(Xg) + €k

where Hy, : R" — RPr is an observation operator.

The errors 1, eq, €, are Gaussian with zero mean and
covariances Qi € R™" B e R™" R, € RP-*Pr respectively.



The goal is to find an estimate xg to the true initial condition
xg which minimises
1. the distance to our background state x5,

2. the distances between the state trajectory x of this initial
state, and our observations y.



Different approaches:

- Sequential Data Assimilation
- Variational Data Assimilation



Given previous forecast xI and error covariance matrix Bf

State estimate  x = x[ +Ki(y; — Hix)
where K = BfHI(HBfH! +R)™
(Kalman gain)
Frror covariance estimate B = (I —KiH;)Bl

Given state Xf and error covariance matrix Bf‘

State forecast x/; = M}

- Foo— M. BAMT :
Error covariance forecast Bj,; = M q;BiM4;+Q



Different approaches:

- Sequential Data Assimilation
- Variational Data Assimilation



Variational data assimilation




We wish to find an estimate xq to xj which minimises

1. the distance to our background state x5,
2. the distances between the state trajectory x of this initial
state, and our observations y.

In variational data assimilation, we introduce a cost function J
and attempt to minimise that.

J(x0) = [Ixo = X3l + [ly = HI].
J J
b o



We wish to find an estimate xq to xj which minimises

1. the distance to our background state x5,
2. the distances between the state trajectory x of this initial
state, and our observations y.

In variational data assimilation, we introduce a cost function J
and attempt to minimise that.

J(xo0) = [Ixo — x5|| + ly — H)|-
J J
b o



We wish to find an estimate xq to xj which minimises

1. the distance to our background state x5,

2. the distances between the state trajectory x of this initial
state, and our observations y.

In variational data assimilation, we introduce a cost function J
and attempt to minimise that.

J(x0) = [Ixo — x5+ [ly = H()l]-
J J
b o



- Take observations y of the true dynamical system.



N

Assimilation Window

- Estimate the initial condition x3, for the numerical model
Xi+1 = Miiq,(x;), simulating the true dynamical system.



- Run the numerical model using the estimated initial
condition.



- Minimise cost function J(xo) to find an improved initial
condition x4, i.e.: VJ(x*) = 0.



- The numerical model is run using x* as an initial
condition.



¥ Forecast

- The simulation is continued to create a forecast for the
true dynamical system.



- The process is repeated for new observations.
- This is called cyclic 4DVar.

(Plots from Melina Freitag)
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J(x0) = 0 — x5 + Iy = H(X)]| -
;7,._/ \—j,—/
b o

Earlier we saw that
x5 = x5 + e,

eo Gaussian with zero mean and covariance B € R,
So we take
1 b2
Jo = §||X0 —Xoll5

1 _
= §(X0 —x3)B " (xo — xB).

"



b
J(X0) = |Ixo = Xol[ +[[y — H)|.
—_——— ——
Ip Jo
With one observation at xg,

1
Jo=5llyo — Ho(xo) %,

- %(yo — Ho(x0))'Ry ' (Vo — Hao(x0))-
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b
J(X0) = |Ixo = Xol[ +[[y — H)|.
—_——— ——
Ip Jo
With one observation at xg,

1
Jo=5llyo — Ho(xo) %,
1
= E(yo — Ho(X0)) Ry (Vo — Ho(X0)).

With 4D-Var we consider all observations in our cost function
to obtain instead:

e — He(xe) I3,

I\)I4

=10

Jo =

(Ve — Hr0R)) Ry (Ve — Hr(Xe)) .

N|4
=
Il

0



1
J(Xo) = E(Xo —x8)'B~(xo — x5)

—

b

+ % D Ve = Helxk) Ry (v — Hie(x2)) -
k=0
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1
j(Xo) = E(XO = Xg)TB_1(XO —Xg)

~\~

Jb

N
s 00 = Moo R 0 = HalMiali):

J

Where My, o(X0) = Mp(Mp_1(- - Ma(X0))) = Xe



4D-Var cost function
J(0) = 50 ~ )80 — )

+ 5 (Ve = He(Mieo(x0))) Ry (Ve — He(Mio(X0)))-
k=0

r\)l4

VJ(x0) = B~ (xo — x§)

N
= " (HeMro) Ry (v — Hi((Mio(X0)))
k=0

where Hg and My, o are the Jacobians of Hj, and M.



J(x) = (Xo—Xo)TB (%0 = x5)

_

Jb

N
+3 > 00 = Al B~ o)
Jo
+ % ;(Xk — Mp(Xe-1))" Q" (X — Mp(Xe—1)) -

~~

Ja

X = [XS,XI,...,XL]T.



Incremental 4D-Var




Operationally, Incremental 4D-Var is used.

- This is a form of Gauss-Newton iteration, with
- linearised quadratic cost function J(6x).

J(6x9) = 504 = oyTB (0K b))
N
1 p—
45 D2(dD — o O)R (A — Hiox ),
=0

- Increment at iterate ¢,
5Xge) _ ng+1) B xff).
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Operationally, Incremental 4D-Var is used.

- This is a form of Gauss-Newton iteration, with
- linearised quadratic cost function J(6x).

J(6x9) = 504 = oyTB (0K b))
N
1 p—
45 D2(dD — o O)R (A — Hiox ),
=0

- Increment at iterate ¢,
5Xge) _ ng+1) B Xge).

You can form it into
Ax=>b
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Title imace convricht Star Trek: First Contact



Thank you for listening.
Any Questions?



	Variational data assimilation
	Incremental 4D-Var

