

What is Data Assimilation?

Dan Green

Jan 29, 2018

ITT7 (SAMBa Integrative Think Tank)

What is data assimilation?

Definition

Data assimilation is a way of combining observations with a numerical model, to create a better guess of the true state.

Used in

- · Weather forecasting
- GPS navigation
- · Medical imaging
- Seismology
- and many more places.

Data assimilation setting

We have a state $x_k \in \mathbb{R}^n$ at time t_k .

A numerical model \mathcal{M}_k : $\mathbb{R}^n \to \mathbb{R}^n$ such that

$$X_{k+1} = \mathcal{M}_k(X_k) + \eta_k.$$

A background estimate x^b of the truth x_0^* ,

$$x_0^* = x^b + \mathbf{e}_0.$$

And observations $y_k \in \mathbb{R}^{p_k}$ of the state:

$$y_k = \mathcal{H}_k(X_k^*) + \epsilon_k,$$

where $\mathcal{H}_k : \mathbb{R}^n \to \mathbb{R}^{p_k}$ is an observation operator.

The errors η_k, e_0, ϵ_k are Gaussian with zero mean and covariances $Q_k \in \mathbb{R}^{n \times n}$, $B \in \mathbb{R}^{n \times n}$, $R_k \in \mathbb{R}^{p_k \times p_k}$ respectively.

3

The aim of data assimilation

The goal is to find an estimate x_0 to the true initial condition x_0^* which minimises

- 1. the distance to our background state x_0^b ,
- 2. the distances between the **state trajectory** *x* of this initial state, and our observations *y*.

Different approaches

Different approaches:

- Sequential Data Assimilation
- · Variational Data Assimilation

Kalman Filter

State and error covariance analysis (corrector step)

Given previous forecast x_i^F and error covariance matrix B_i^F

State estimate
$$x_i^A = x_i^F + K_i(y_i - H_i x_i^F)$$

where $K_i = B_i^F H_i^T (H_i B_i^F H_i^T + R_i)^{-1}$
(Kalman gain)

Error covariance estimate $B_i^A = (I - K_i H_i) B_i^F$

State and error covariance forecast (predictor step)

Given state x_i^A and error covariance matrix B_i^A

State forecast
$$x_{i+1}^F = M_{i+1,i}x_i^A$$

Error covariance forecast $B_{i+1}^F = M_{i+1,i}B_i^AM_{i+1,i}^T + Q_i$

Different approaches

Different approaches:

- · Sequential Data Assimilation
- Variational Data Assimilation

We wish to find an estimate x_0 to x_0^* which minimises

- 1. the distance to our background state x_0^b ,
- 2. the distances between the state trajectory *x* of this initial state, and our observations *y*.

In variational data assimilation, we introduce a cost function *J* and attempt to minimise that.

$$J(x_0) = \underbrace{\|x_0 - x_0^b\|}_{J_b} + \underbrace{\|y - \mathcal{H}(x)\|}_{J_o}.$$

8

We wish to find an estimate x_0 to x_0^* which minimises

- 1. the distance to our background state x_0^b ,
- 2. the distances between the state trajectory *x* of this initial state, and our observations *y*.

In variational data assimilation, we introduce a cost function *J* and attempt to minimise that.

$$J(x_0) = \underbrace{\|x_0 - x_0^b\|}_{J_b} + \underbrace{\|y - \mathcal{H}(x)\|}_{J_o}.$$

We wish to find an estimate x_0 to x_0^* which minimises

- 1. the distance to our background state x_0^b ,
- 2. the distances between the state trajectory *x* of this initial state, and our observations *y*.

In variational data assimilation, we introduce a cost function *J* and attempt to minimise that.

$$J(x_0) = \underbrace{\|x_0 - x_0^b\|}_{J_b} + \underbrace{\|y - \mathcal{H}(x)\|}_{J_o}.$$

• Take observations *y* of the true dynamical system.

• Estimate the initial condition x_0^b , for the numerical model $x_{i+1} = M_{i+1,i}(x_i)$, simulating the true dynamical system.

• Run the numerical model using the estimated initial condition.

• Minimise cost function $J(x_0)$ to find an improved initial condition x^A , i.e.: $\nabla J(x^A) = 0$.

• The numerical model is run using x^A as an initial condition.

• The simulation is continued to create a forecast for the true dynamical system.

- The process is repeated for new observations.
- This is called cyclic 4DVar.

(Plots from Melina Freitag)

$$J(x_0) = \underbrace{\|x_0 - x_0^b\|}_{J_b} + \underbrace{\|y - \mathcal{H}(x)\|}_{J_o}.$$

Figure 1: Copyright: ECMWF

$$J(x_0) = \underbrace{\|x_0 - x_0^b\|}_{J_b} + \underbrace{\|y - \mathcal{H}(x)\|}_{J_o}.$$

Earlier we saw that

$$x_0^* = x_0^b + \mathbf{e_0},$$

 e_0 Gaussian with zero mean and covariance $B \in \mathbb{R}^{n \times n}$.

So we take

$$J_b = \frac{1}{2} \|x_0 - x_0^b\|_B^2$$

= $\frac{1}{2} (x_0 - x_0^b)^T B^{-1} (x_0 - x_0^b).$

$$J(x_0) = \underbrace{\|x_0 - x_0^b\|}_{J_b} + \underbrace{\|y - \mathcal{H}(x)\|}_{J_o}.$$

With one observation at x_0 ,

$$J_{0} = \frac{1}{2} \|y_{0} - \mathcal{H}_{0}(x_{0})\|_{R_{0}}^{2}$$

= $\frac{1}{2} (y_{0} - \mathcal{H}_{0}(x_{0}))^{T} R_{0}^{-1} (y_{0} - \mathcal{H}_{0}(x_{0})).$

$$J(x_0) = \underbrace{\|x_0 - x_0^b\|}_{J_b} + \underbrace{\|y - \mathcal{H}(x)\|}_{J_o}.$$

With one observation at x_0 ,

$$J_0 = \frac{1}{2} \|y_0 - \mathcal{H}_0(x_0)\|_{R_0}^2$$

= $\frac{1}{2} (y_0 - \mathcal{H}_0(x_0))^T R_0^{-1} (y_0 - \mathcal{H}_0(x_0)).$

With 4D-Var we consider all observations in our cost function to obtain instead:

$$J_{o} = \frac{1}{2} \sum_{k=0}^{N} \|y_{k} - \mathcal{H}_{k}(x_{k})\|_{R_{k}}^{2}$$

$$= \frac{1}{2} \sum_{k=0}^{N} (y_{k} - \mathcal{H}_{k}(x_{k}))^{T} R_{k}^{-1} (y_{k} - \mathcal{H}_{k}(x_{k}))$$

4D-Var cost function

4D-Var cost function

$$J(x_0) = \underbrace{\frac{1}{2}(x_0 - x_0^b)^T B^{-1}(x_0 - x_0^b)}_{J_b} + \underbrace{\frac{1}{2}\sum_{k=0}^{N}(y_k - \mathcal{H}_k(x_k))^T R_k^{-1}(y_k - \mathcal{H}_k(x_k))}_{J_o}.$$

4D-Var cost function

4D-Var cost function

$$J(x_0) = \underbrace{\frac{1}{2}(x_0 - x_0^b)^T B^{-1}(x_0 - x_0^b)}_{J_b} + \underbrace{\frac{1}{2}\sum_{k=0}^{N}(y_k - \mathcal{H}_k(\mathcal{M}_{k,0}(x_0)))^T R_k^{-1}(y_k - \mathcal{H}_k(\mathcal{M}_{k,0}(x_0)))}_{J_o}.$$

Where
$$\mathcal{M}_{k,0}(x_0) = \mathcal{M}_k(\mathcal{M}_{k-1}(\cdots \mathcal{M}_1(x_0))) = x_k$$

4D-Var cost function

4D-Var cost function

$$J(x_0) = \frac{1}{2} (x_0 - x_0^b)^{\mathsf{T}} B^{-1} (x_0 - x_0^b)$$

+
$$\frac{1}{2} \sum_{k=0}^{N} (y_k - \mathcal{H}_k(\mathcal{M}_{k,0}(x_0)))^{\mathsf{T}} R_k^{-1} (y_k - \mathcal{H}_k(\mathcal{M}_{k,0}(x_0))).$$

4D-Var Cost function gradient

$$\nabla J(x_0) = B^{-1}(x_0 - x_0^b)$$
$$- \sum_{k=0}^{N} (H_k M_{k,0})^T R_k^{-1} (y_k - \mathcal{H}_k((\mathcal{M}_{k,0}(x_0))))$$

where H_k and $M_{k,0}$ are the Jacobians of \mathcal{H}_k and $\mathcal{M}_{k,0}$.

Weak 4D-Var

Weak 4D-Var cost function

$$J(x) = \underbrace{\frac{1}{2}(x_0 - x_0^b)^T B^{-1}(x_0 - x_0^b)}_{J_b} + \underbrace{\frac{1}{2} \sum_{k=0}^{N} (y_k - \mathcal{H}_k(x_k))^T R_k^{-1}(y_k - \mathcal{H}_k(x_k))}_{J_o} + \underbrace{\frac{1}{2} \sum_{k=1}^{N} (x_k - \mathcal{M}_k(x_{k-1}))^T Q_k^{-1}(x_k - \mathcal{M}_k(x_{k-1}))}_{J_q}.$$

$$X = \begin{bmatrix} X_0^T, X_1^T, \dots, X_N^T \end{bmatrix}^T$$
.

Incremental 4D-Var

Incremental 4D-Var

Operationally, Incremental 4D-Var is used.

- · This is a form of Gauss-Newton iteration, with
- linearised quadratic cost function $\tilde{J}(\delta x)$.

$$\tilde{J}(\delta x^{(\ell)}) = \frac{1}{2} (\delta x_0^{(\ell)} - b_0^{(\ell)})^{\mathsf{T}} B^{-1} (\delta x_0^{(\ell)} - b_0^{(\ell)})
+ \frac{1}{2} \sum_{i=0}^{N} (d_i^{(\ell)} - H_i \delta x_i^{(\ell)})^{\mathsf{T}} R_i^{-1} (d_i^{(\ell)} - H_i \delta x_i^{(\ell)}).$$

• Increment at iterate ℓ ,

$$\delta x_0^{(\ell)} = x_0^{(\ell+1)} - x_0^{(\ell)}.$$

Incremental 4D-Var

Operationally, Incremental 4D-Var is used.

- · This is a form of Gauss-Newton iteration, with
- linearised quadratic cost function $\tilde{J}(\delta x)$.

$$\tilde{J}(\delta x^{(\ell)}) = \frac{1}{2} (\delta x_0^{(\ell)} - b_0^{(\ell)})^{\mathsf{T}} B^{-1} (\delta x_0^{(\ell)} - b_0^{(\ell)})
+ \frac{1}{2} \sum_{i=0}^{N} (d_i^{(\ell)} - H_i \delta x_i^{(\ell)})^{\mathsf{T}} R_i^{-1} (d_i^{(\ell)} - H_i \delta x_i^{(\ell)}).$$

• Increment at iterate ℓ ,

$$\delta x_0^{(\ell)} = x_0^{(\ell+1)} - x_0^{(\ell)}.$$

You can form it into

$$Ax = b$$

More information

For more information and references:

- P. COURTIER, J.-N. THÉPAUT, AND A. HOLLINGSWORTH, <u>A strategy for operational implementation of 4D-var, using an incremental approach</u>, Q. J. R. Meteorol. Soc., 120 (1994), pp. 1367–1387.
- M. FISHER, Y. TRÉMOLET, H. AUVINEN, D. TAN, AND P. POLI, <u>Weak-constraint</u> and long-window 4D-var, Tech. Rep. 655, ECMWF, 2011.
- M. A. Freitag and R. Potthast, <u>Synergy of inverse problems and data assimilation techniques</u>, vol. 13, Walter de Gruyter, 2013, pp. 1–53.
- K. IDE, P. COURTIER, M. GHIL, AND A. LORENC, <u>Unified notation for data assimilation: operational, sequential and variational</u>, J. Meteor. Soc. Japan, 75 (1997), pp. 181–189.
- A. S. LAWLESS, <u>Variational data assimilation for very large environmental problems</u>, vol. 13, Walter de Gruyter, 2013, pp. 55–90.

Title image copyright Star Trek: First Contact.

Thank you for listening. Any Questions?