Estimating floods in small catchments

Anita Asadullah Principal Scientist, Flooding Research 29 January 2018

Boscastle catchment

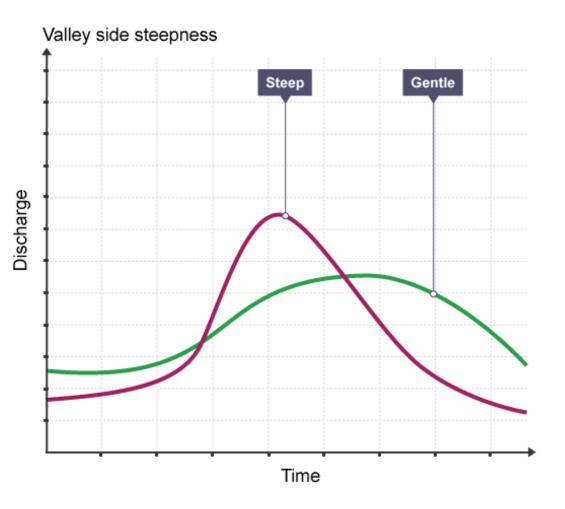
River Valency

Getty, http://www.independent.co.uk/news/uk/home-news/boscastle-flood-of-2004-the-tenth-anniversary-of-freak-weather-striking-a-cornish-town-9673334.html

Getty, http://www.independent.co.uk/news/uk/home-news/boscastle-flood-of-2004-the-tenth-anniversary-of-freak-weather-striking-a-cornish-town-9673334.html

BBC, 2004a. *In Pictures: Dramatic Floods in Boscastle* [image online] Available at: http://news.bbc.co.uk/cbbcnews/hi/newsid_3570000/newsid_3572400/3572488.stm [Accessed 31 January 2012].

What is special about small catchments?

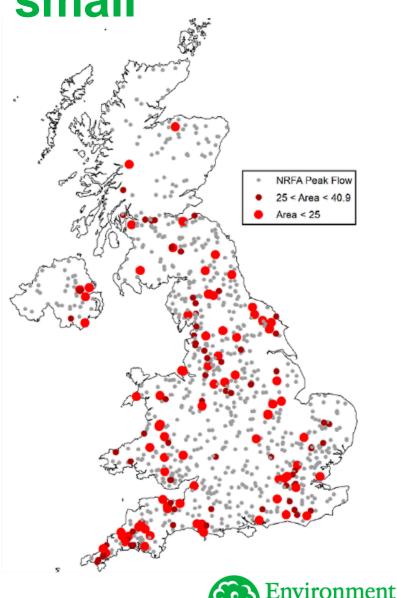

1. There can be less time to respond so...

Flood estimation before events is even more critical

What are we trying to estimate?

- **Peak river flow** during a flood (m³/s)
- Along with it's **likelihood** of occurrence (%)

Changes in Boscastle village since the flood


What is special about small catchments (<25km²)?

What is special about small catchments?

2. We have fewer flow records so...

We have to estimate floods without historic flow measurements at the site

What is special about small catchments?

3. Local features have a larger influence on floods

We cannot generalise about small catchments as easily

We are stuck

- Our current methodology is based on multiple regression analysis
- We cannot improve it
- We need a new approach

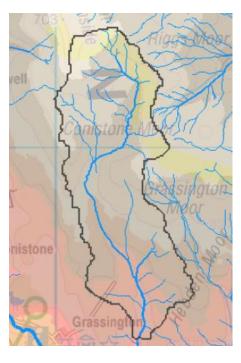
$\textbf{QMED} = \textbf{8.3062} \textbf{AREA}^{0.8510} \textbf{0.1536}^{(1000/SAAR)} \textbf{FARL}^{3.4451} \textbf{0.0460}^{BFIHOST^2}$

Bumpstead Brook

28.3 km^2

7.5m³/s

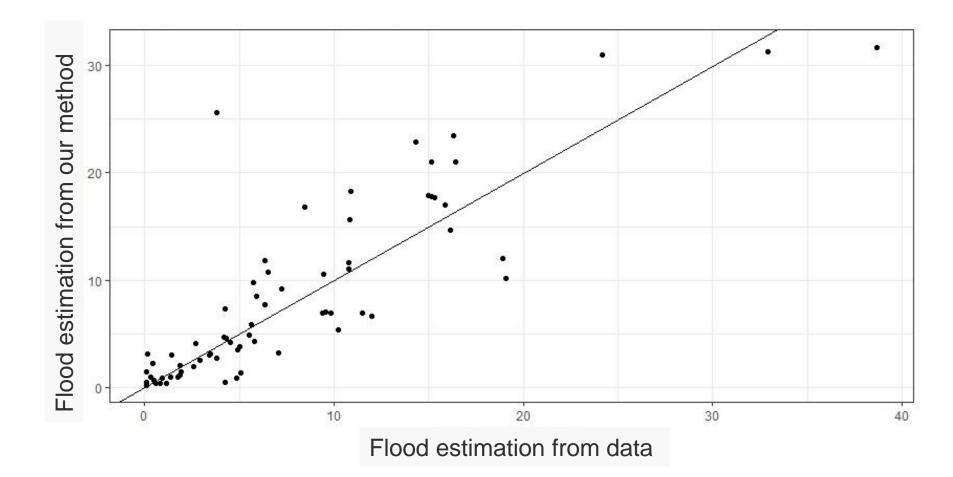
Our methodology estimates an average flood is	3.6m ³ /s
48 years of gauging data say the answer is	7.5m ³ /s



3.6m³/s

Hebden Beck

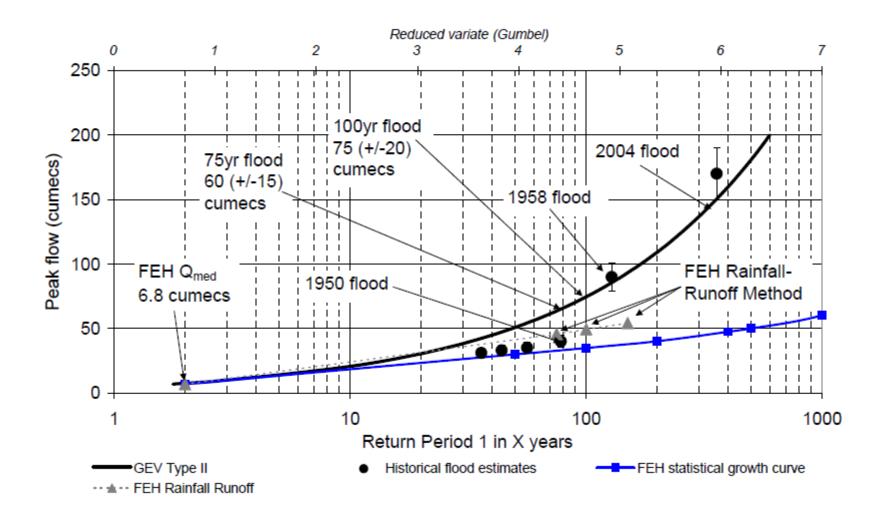
 22.2 km^2



Our methodology estimates an average flood is	25.6m ³ /s	25.6m ³ /s
49 years of gauging data say the answer is	3.8m ³ /s	1 3.8m ³ /s

70 other small catchments

The challenge...



- Could you devise a better way of estimating low probability flood flows (2% -0.1% chance of occurring in a given year) in small catchments?
- Is there a better approach than regression analysis?
- What if we limit ourselves to using "open data"?

$$\label{eq:QMED_NEW} \begin{split} & = 9.1768 \textit{AREA}^{0.8250} 0.4039^{\overline{\textit{RMED13-1D}}} \textit{FARL}^{2.3407} 0.0437^{\overline{\textit{BFIHOST}^2}} 4.5 \end{split}$$

$QMED = 4.8123 AREA^{0.8338} 0.2654^{\left(\frac{1000}{SAAR}\right)} FARL^{2.4369} 0.0403^{BFIHOST^{2}}$

$QMED = 8.3062 AREA^{0.8510} O.1536^{(1000/SAAR)} FARL^{3.4451} O.0460^{BFIHOST^{2}}$