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Quality engineering

Functional requirement of a manufactured part

Manufactured parts specified in terms of geometric shape,
dimensions and tolerances in computer-aid design (CAD)
drawings/files

All designs usually refer to the ideal shape at 20 0C, the
reference temperature for measurement

Manufactured parts the output of a number of cutting,
machining, drilling, polishing processes

Each process likely to drift due to tool wear, environmental
effects (especially temperature)

Other sources of variation: tool, machine, operator



Data assimilation with engineering models Spectral analysis associated with Gaussian Processes

Connecting rod from an internal combustion engine
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Traditional approach to inspection

Assess a sample of objects from the production line to check
dimensions and tolerances

Plug gauges, ring gauges, hard gauges based on artefacts
(yes/no test)

Coordinate measuring machines (CMMs): gather x-, y - and
z-coordinates of points x i on the workpiece.

Apply algorithms to X = {x i} to check if the part (as presented
by X ) conforms to specification

Require workpiece to reach stable equilibrium at 20 0C

Equilibrated workpiece: use a temperature measurement to
scale back to 20 0C
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Coordinate measuring machine
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In-process measurement

Measure the workpiece , safe time, money

Workpiece ideal geometry at 20 0C specified, with tolerances

Workpiece being manufactured: cutting, drilling, machining,
cooling

Measurements of the temperature at finite number of locations
on the workpiece

Measurements of the dimensions of a finite number of key
features

Using a FE model of artefact and the measurements, infer the
workpiece shape at an equilibrated 20 0C
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Data assimilation

Major tool in weather prediction

Forward model: given the ideal geometry at 20 0C, known
material properties, known boundary conditions, predict the
geometric distortion due to thermal effects

Inverse problem: incomplete, measured boundary conditions,
approximate values of material properties

Uncertainty quantification: how well can we infer the shape at
20 0C

Degrees of freedom/surrogate models/machine learning: what
measurement information is sufficient to make good inferences

Bing Ru Yang, Bath, Louise Wright, Dale Partridge, NPL, project
work
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Large engineering structures

Aircraft wings, bridges

Industry 4.0, digital twins
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Fitting a model to data

Standard data fitting model

y = Ca + ε, ε ∈ N(0, σ2I)

y is an m × n data vector, a parameters of the model

C is an m × n observation matrix, e.g. basis functions evaluated
at x

ε is an m × n vector of independent random effects associated
with the measuring system

Least squares model fit

â = (CTC)−1CTy = R−1
1 QT

1 y , C = Q1R1

ŷ = Câ = C(CTC)−1CTy = Q1QT
1 y
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Effective number of degrees of freedom in a model

If ŷ = Hy , the sum of the eigenvalues of H is a measure of the
number of degrees of freedom associated with the model.

Least squares model fit

ŷ = C(CTC)−1CT = Q1QT
1 y

Q1QT
1 is a projection with n eigenvalues equal to 1, all others 0.
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Correlated systematic effects

Extension of the standard model:

y = Ca + e + ε, e ∈ N(0,V0), ε ∈ N(0, σ2I)
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Gauss Markov regression

Combined variance matrix, Choleski decomposition

V = V0 + σ2I = LLT, ỹ = L−1y , C̃ = L−1C

ỹ = C̃a + ε̃, ε̃ ∈ N(0, I)

Effective degrees of freedom: transformed problem

ˆ̃y = Q̃1Q̃T
1 ỹ

Effective degrees of freedom: original problem

ŷ = Lˆ̃y = LQ̃1Q̃T
1 L−1y
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Explicit effects model

Same extended model

y = Ca + e + ε, e ∈ N(0,V0), ε ∈ N(0, σ2I)

Introduce parameters to describe the systematic effects,

e = L0d , V0 = L0LT
0[

y
0

]
=

[
C L0

I

] [
a
d

]
+

[
ε
δ

]
ε ∈ N(0, σ2I), δ ∈ N(0, I)
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Augmented system

ỹ = C̃ã + ε̃, where

ỹ =

[
y/σ

0

]
, C̃ =

[
C/σ L0/σ

I

]
and

ã =

[
a
d

]
, ε̃ =

[
ε
δ

]
ε̃ ∈ N(0, I)

Eigenvalues

ˆ̃y = Pỹ =

[
P11 P12
P21 P22

] [
y/σ

0

]
ŷ = P11y

n ≤
∑

j λj(P11),
∑

j λj(P22) ≤ m



Data assimilation with engineering models Spectral analysis associated with Gaussian Processes

Gaussian Processes

Same extended model

y = Ca + e + ε, e ∈ N(0,V0), ε ∈ N(0, σ2I)

Cij = bj(ti), cov(e,e′) = k(t , t ′), e.g.

k(t , t ′) = σ2
E exp

{
−(t − t ′)2/τ2}

Equally spaced ti

V = σ2
E


1 v v4 v9 v16 · · ·
v 1 v v4 v9 · · ·
v4 v 1 v v4 · · ·

. . .


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Eigenvalues of V for different τ
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Eigenvalues of P11 for different τ
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Eigenvectors of V
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Eigenvectors as Chebyshev polynomials

0.0838 -0.0002 0.0549 0.0009 0.0400 0.0018
0.0001 0.0724 -0.0004 -0.0485 -0.0013 -0.0366

-0.0077 0.0001 0.0697 0.0007 0.0461 0.0017
-0.0000 -0.0078 0.0001 -0.0687 -0.0009 -0.0449
0.0003 -0.0000 -0.0079 -0.0001 0.0681 0.0011
0.0000 0.0004 -0.0000 0.0080 0.0002 -0.0677

-0.0000 0.0000 0.0004 0.0000 -0.0081 -0.0002
-0.0000 -0.0000 0.0000 -0.0005 -0.0000 0.0081
0.0000 -0.0000 -0.0000 -0.0000 0.0005 0.0000
0.0000 0.0000 -0.0000 0.0000 0.0000 -0.0005
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Chebyshev polynomials as eigenvectors

11.1174 0.0445 -8.8230 0.0275 -0.6102 0.0337
-0.0000 12.8329 0.1027 -9.1725 0.0586 -0.9364
1.1822 0.0047 12.3875 0.1628 -9.1967 0.0874

-0.0000 -1.4056 -0.0112 -12.5111 -0.2227 9.1655
0.0785 0.0003 1.4235 0.0180 12.6002 0.2820

-0.0000 -0.0869 -0.0007 -1.4731 -0.0250 -12.6561
0.0034 0.0000 0.0874 0.0011 1.5080 0.0320
0.0000 -0.0036 -0.0000 -0.0900 -0.0015 -1.5330
0.0001 0.0000 0.0036 0.0000 0.0920 0.0019
0.0000 -0.0001 -0.0000 -0.0037 -0.0001 -0.0935
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Eigenvalues of V , k(t , t ′) ∝ exp{−|t − t ′|/τ}
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Eigenvectors of V , k(t , t ′) ∝ exp{−|t − t ′|/τ}
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