ヘロト 人間 とくほ とくほ とう

NPL-SAMBA ITT projects

Alistair Forbes1

¹National Physical Laboratory, UK Data Science Group

University of Bath

・ロト ・ 個 ト ・ ヨ ト ・ ヨ ト

Outline

2 Spectral analysis associated with Gaussian Processes

э

Quality engineering

- Functional requirement of a manufactured part
- Manufactured parts specified in terms of geometric shape, dimensions and tolerances in computer-aid design (CAD) drawings/files
- All designs usually refer to the ideal shape at 20 °C, the reference temperature for measurement
- Manufactured parts the output of a number of cutting, machining, drilling, polishing processes
- Each process likely to drift due to tool wear, environmental effects (especially temperature)
- Other sources of variation: tool, machine, operator

Connecting rod from an internal combustion engine

Traditional approach to inspection

- Assess a sample of objects from the production line to check dimensions and tolerances
- Plug gauges, ring gauges, hard gauges based on artefacts (yes/no test)
- Coordinate measuring machines (CMMs): gather x-, y- and z-coordinates of points x_i on the workpiece.
- Apply algorithms to X = {x_i} to check if the part (as presented by X) conforms to specification
- Require workpiece to reach stable equilibrium at 20 °C
- Equilibrated workpiece: use a temperature measurement to scale back to 20 °C

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Coordinate measuring machine

In-process measurement

Measure the workpiece , safe time, money

- Workpiece ideal geometry at 20 ⁰C specified, with tolerances
- Workpiece being manufactured: cutting, drilling, machining, cooling
- Measurements of the temperature at finite number of locations on the workpiece
- Measurements of the dimensions of a finite number of key features
- Using a FE model of artefact and the measurements, infer the workpiece shape at an equilibrated 20 ⁰C

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Data assimilation

Major tool in weather prediction

- Forward model: given the ideal geometry at 20 ^oC, known material properties, known boundary conditions, predict the geometric distortion due to thermal effects
- Inverse problem: incomplete, measured boundary conditions, approximate values of material properties
- Uncertainty quantification: how well can we infer the shape at 20 °C
- Degrees of freedom/surrogate models/machine learning: what measurement information is sufficient to make good inferences
- Bing Ru Yang, Bath, Louise Wright, Dale Partridge, NPL, project work

・ロト ・聞ト ・ヨト ・ヨト

Large engineering structures

- Aircraft wings, bridges
- Industry 4.0, digital twins

Outline

2 Spectral analysis associated with Gaussian Processes

э

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Fitting a model to data

• Standard data fitting model

$$\mathbf{y} = C\mathbf{a} + \boldsymbol{\epsilon}, \quad \boldsymbol{\epsilon} \in \mathrm{N}(\mathbf{0}, \sigma^2 I)$$

- **y** is an $m \times n$ data vector, **a** parameters of the model
- *C* is an *m* × *n* observation matrix, e.g. basis functions evaluated at *x*
- *ϵ* is an *m* × *n* vector of independent random effects associated with the measuring system
- Least squares model fit

$$\hat{\boldsymbol{a}} = (C^{\mathrm{T}}C)^{-1}C^{\mathrm{T}}\boldsymbol{y} = R_{1}^{-1}Q_{1}^{\mathrm{T}}\boldsymbol{y}, \quad C = Q_{1}R_{1}$$
$$\hat{\boldsymbol{y}} = C\hat{\boldsymbol{a}} = C(C^{\mathrm{T}}C)^{-1}C^{\mathrm{T}}\boldsymbol{y} = Q_{1}Q_{1}^{\mathrm{T}}\boldsymbol{y}$$

・ ロ マ ・ 雪 マ ・ 雪 マ ・ 日 マ

Effective number of degrees of freedom in a model

- If ŷ = Hy, the sum of the eigenvalues of H is a measure of the number of degrees of freedom associated with the model.
- Least squares model fit

$$\hat{\boldsymbol{y}} = \boldsymbol{C}(\boldsymbol{C}^{\mathrm{T}}\boldsymbol{C})^{-1}\boldsymbol{C}^{\mathrm{T}} = \boldsymbol{Q}_{1}\boldsymbol{Q}_{1}^{\mathrm{T}}\boldsymbol{y}$$

• $Q_1 Q_1^T$ is a projection with *n* eigenvalues equal to 1, all others 0.

ヘロト 人間 とくほ とくほとう

Correlated systematic effects

• Extension of the standard model:

$$\mathbf{y} = C\mathbf{a} + \mathbf{e} + \mathbf{\epsilon}, \quad \mathbf{e} \in \mathrm{N}(\mathbf{0}, V_0), \quad \mathbf{\epsilon} \in \mathrm{N}(\mathbf{0}, \sigma^2 I)$$

э.

A B > A B > A B >

Gauss Markov regression

• Combined variance matrix, Choleski decomposition

$$V = V_0 + \sigma^2 I = LL^{\mathrm{T}}, \quad \tilde{\mathbf{y}} = L^{-1} \mathbf{y}, \quad \tilde{C} = L^{-1} C$$
$$\tilde{\mathbf{y}} = \tilde{C} \mathbf{a} + \tilde{\epsilon}, \quad \tilde{\epsilon} \in \mathrm{N}(\mathbf{0}, I)$$

• Effective degrees of freedom: transformed problem

$$\hat{\tilde{\boldsymbol{y}}} = \tilde{\boldsymbol{Q}}_1 \tilde{\boldsymbol{Q}}_1^{\mathrm{T}} \tilde{\boldsymbol{y}}$$

• Effective degrees of freedom: original problem

$$\hat{\boldsymbol{y}} = L\hat{\tilde{\boldsymbol{y}}} = L\tilde{\boldsymbol{Q}}_{1}\tilde{\boldsymbol{Q}}_{1}^{\mathrm{T}}L^{-1}\boldsymbol{y}$$

ヘロト ヘ週 ト ヘ ヨ ト ヘ ヨ ト

Explicit effects model

Same extended model

$$\mathbf{y} = C\mathbf{a} + \mathbf{e} + \mathbf{\epsilon}, \quad \mathbf{e} \in \mathrm{N}(\mathbf{0}, V_0), \quad \mathbf{\epsilon} \in \mathrm{N}(\mathbf{0}, \sigma^2 I)$$

Introduce parameters to describe the systematic effects,

$$\boldsymbol{e} = L_0 \boldsymbol{d}, \quad V_0 = L_0 L_0^{\mathrm{T}}$$
$$\begin{bmatrix} \boldsymbol{y} \\ \boldsymbol{0} \end{bmatrix} = \begin{bmatrix} \boldsymbol{C} & L_0 \\ \boldsymbol{l} \end{bmatrix} \begin{bmatrix} \boldsymbol{a} \\ \boldsymbol{d} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\epsilon} \\ \boldsymbol{\delta} \end{bmatrix} \quad \boldsymbol{\epsilon} \in \mathrm{N}(\boldsymbol{0}, \sigma^2 \boldsymbol{l}), \quad \boldsymbol{\delta} \in \mathrm{N}(\boldsymbol{0}, \boldsymbol{l})$$

э.

Augmented system

$$ilde{m{y}} = ilde{C} ilde{m{a}} + ilde{\epsilon},$$
 where

$$\tilde{\boldsymbol{y}} = \begin{bmatrix} \boldsymbol{y}/\sigma \\ \boldsymbol{0} \end{bmatrix}, \quad \tilde{\boldsymbol{C}} = \begin{bmatrix} \boldsymbol{C}/\sigma & \boldsymbol{L}_0/\sigma \\ & \boldsymbol{I} \end{bmatrix}$$

and

$$\tilde{\boldsymbol{a}} = \left[egin{array}{c} \boldsymbol{a} \ \boldsymbol{d} \end{array}
ight], \quad ilde{\boldsymbol{\epsilon}} = \left[egin{array}{c} \boldsymbol{\epsilon} \ \boldsymbol{\delta} \end{array}
ight] \quad ilde{\boldsymbol{\epsilon}} \in \mathrm{N}(\boldsymbol{0}, l)$$

Eigenvalues

$$\hat{\tilde{\boldsymbol{y}}} = P\tilde{\boldsymbol{y}} = \begin{bmatrix} P_{11} & P_{12} \\ P_{21} & P_{22} \end{bmatrix} \begin{bmatrix} \boldsymbol{y}/\sigma \\ \boldsymbol{0} \end{bmatrix}$$
$$\hat{\boldsymbol{y}} = P_{11}\boldsymbol{y}$$

• $n \leq \sum_{j} \lambda_j(P_{11}), \sum_{j} \lambda_j(P_{22}) \leq m$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ヘロア 人間 アメヨアメヨア

Gaussian Processes

• Same extended model

$$oldsymbol{y} = oldsymbol{C}oldsymbol{a} + oldsymbol{e} + oldsymbol{\epsilon}, \quad oldsymbol{e} \in \mathrm{N}(oldsymbol{0}, V_0), \quad oldsymbol{\epsilon} \in \mathrm{N}(oldsymbol{0}, \sigma^2 I)$$

•
$$C_{ij} = b_j(t_i), \operatorname{cov}(e, e') = k(t, t'), \text{ e.g.}$$

 $k(t, t') = \sigma_E^2 \exp \left\{ -(t - t')^2 / \tau^2 \right\}$

Equally spaced t_i

$$V = \sigma_E^2 \begin{bmatrix} 1 & v & v^4 & v^9 & v^{16} & \cdots \\ v & 1 & v & v^4 & v^9 & \cdots \\ v^4 & v & 1 & v & v^4 & \cdots \\ & & \ddots & & \end{bmatrix}$$

Eigenvalues of V for different τ

▲口▶▲圖▶▲圖▶▲圖▶ 圖 の文(で)

・ロト ・ 理 ト ・ 理 ト ・ 理 ト

Eigenvalues of P_{11} for different τ

0

・ロト ・ 四ト ・ ヨト ・ ヨト

Eigenvectors of V

æ

ヘロト 人間 とくほ とくほとう

Eigenvectors as Chebyshev polynomials

0.0838	-0.0002	0.0549	0.0009	0.0400	0.0018
0.0001	0.0724	-0.0004	-0.0485	-0.0013	-0.0366
-0.0077	0.0001	0.0697	0.0007	0.0461	0.0017
-0.0000	-0.0078	0.0001	-0.0687	-0.0009	-0.0449
0.0003	-0.0000	-0.0079	-0.0001	0.0681	0.0011
0.0000	0.0004	-0.0000	0.0080	0.0002	-0.0677
-0.0000	0.0000	0.0004	0.0000	-0.0081	-0.0002
-0.0000	-0.0000	0.0000	-0.0005	-0.0000	0.0081
0.0000	-0.0000	-0.0000	-0.0000	0.0005	0.0000
0.0000	0.0000	-0.0000	0.0000	0.0000	-0.0005

æ

ヘロト 人間 とくほ とくほとう

Chebyshev polynomials as eigenvectors

11.1174	0.0445	-8.8230	0.0275	-0.6102	0.0337
-0.0000	12.8329	0.1027	-9.1725	0.0586	-0.9364
1.1822	0.0047	12.3875	0.1628	-9.1967	0.0874
-0.0000	-1.4056	-0.0112	-12.5111	-0.2227	9.1655
0.0785	0.0003	1.4235	0.0180	12.6002	0.2820
-0.0000	-0.0869	-0.0007	-1.4731	-0.0250	-12.6561
0.0034	0.0000	0.0874	0.0011	1.5080	0.0320
0.0000	-0.0036	-0.0000	-0.0900	-0.0015	-1.5330
0.0001	0.0000	0.0036	0.0000	0.0920	0.0019
0.0000	-0.0001	-0.0000	-0.0037	-0.0001	-0.0935

æ

Eigenvalues of *V*, $k(t, t') \propto \exp\{-|t - t'|/\tau\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─ のへで

Eigenvectors of *V*, $k(t, t') \propto \exp\{-|t - t'|/\tau\}$

Ø

・ロト・西ト・西ト・日下 ひゃぐ