ITT 7: Spectral analysis associated with Gaussian Processes

Matthias, Dan, Mark, Sergey, Alistair

January 31, 2018

Setup

- Given: data points over time $y_i(t_i)$
- Seeking: model that fits the data
 - Problem: balance between
 - few parameter \rightarrow bad fit
 - $\bullet \ \ \text{many parameters} \rightarrow \text{computationally expansive}/ \ \text{overfitting}$
- Assumption: correlation between data points given by a correlation matrix/ kernel, e.g.

$$cov(e, e') = \sigma^2 \exp\{-(t - t')^2/\lambda^2\}$$

- λ large: 3 degrees of freedom
- λ small: 6 degrees of freedom

Conclusion

Eigenvalues tell us something about the effective degree of freedom of the system.

Problem formulation

Model

$$\mathbf{y} = C\mathbf{a} + \mathbf{e} + \varepsilon, \quad \mathbf{e} \in N(\mathbf{0}, V_0), \quad \varepsilon \in N(\mathbf{0}, \sigma^2 I)$$

- for given V_0 , e.g.
 - squared exponential kernel
 - exponential kernel
 - Matérn covariance function
 - any covariance matrix
- For given covariance matrix/ kernel, how do we get information about the effective degrees of freedom of a system, **in an computationally efficient way**?

Our approach

- Literature:
 - Paper by Rob:
 - enlarge covariance matrix to obtain "nicer" properties
 - only considered Matérn covariance function
 - (low rank) matrix approximation
 - Kalman filter: update the model function in real time