Detecting non-stationarity in peak river flows

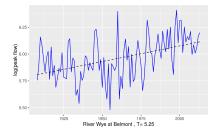
Emiko Dupont, Robbie Peck, Tom Smith, Ilaria Prosdocimi, Nicole Augustin

ITT7

31 January 2017

Emiko Dupont, Robbie Peck, Tom Smith, Ilaria Prosdocimi, Nicole Augustin

Linear model at each station



Model:

$$y_i = \log(\text{flow}_i) = \beta_0 + \beta_1 t_i + \varepsilon_i$$
 where $\varepsilon_i \sim N(0, \sigma^2)$ iid

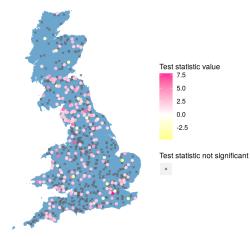
Hypothesis test: $H_0: \beta_1 = 0$ against $H_1: \beta_1 \neq 0$

$$\mathcal{T} = rac{eta_1}{\hat{\sigma}_{\hat{eta}_1}} \sim_{ extsf{approx}} N(0,1)$$
 under H_0

Reject H_0 if |T| > 1.64 (time dependence is significant)

Emiko Dupont, Robbie Peck, Tom Smith, Ilaria Prosdocimi, Nicole Augustin

Test statistic for $\alpha = 0.1$



Time dependence significant at around 20% of stations

Emiko Dupont, Robbie Peck, Tom Smith, Ilaria Prosdocimi, Nicole Augustin

Detecting non-stationarity in peak river flows

What can we do to improve this?

Improvement 1: Build a spatial model for the test statistic

- Pooling data improves power of statistical test
- Smoothing of extreme test statistics

Approach 1: Mixed effects model based on hydrometric areas: For station i in hydrometric area j

$$\mathcal{T}_i = \mu + b_j + arepsilon_i$$
 where $b_j \sim \mathcal{N}(0, \sigma_b^2), \ arepsilon_i \sim \mathcal{N}(0, 1)$

Approach 2: GAM with spatial random effect

$$T_i = \mu + f(\mathsf{lon}_i, \mathsf{lat}_i) + \varepsilon_i$$
 where $\varepsilon_i \sim N(0, 1)$

What can we do to improve this?

Improvement 1: Build a spatial model for the test statistic

- Pooling data improves power of statistical test
- Smoothing of extreme test statistics

Approach 1: Mixed effects model based on hydrometric areas: For station i in hydrometric area j

$$\mathcal{T}_i = \mu + b_j + arepsilon_i$$
 where $b_j \sim \mathcal{N}(0, \sigma_b^2), \ arepsilon_i \sim \mathcal{N}(0, 1)$

Approach 2: GAM with spatial random effect

$$T_i = \mu + f(\mathsf{lon}_i, \mathsf{lat}_i) + \varepsilon_i$$
 where $\varepsilon_i \sim N(0, 1)$

Improvement 2: Investigate shape of time dependence (GAMM) For station i at time t_k

$$\begin{array}{ll} log(\mathsf{flow}_{ik}) &=& f(t_k) + b_{0,i} + b_{1,i}t_k + \varepsilon_i, \\ && b_{0,i} \sim \mathsf{N}(0,\sigma_{b_0}^2), b_{1,i} \sim \mathsf{N}(0,\sigma_{b_1}^2), \varepsilon_i \sim \mathsf{N}(0,\sigma^2) \end{array}$$

Emiko Dupont, Robbie Peck, Tom Smith, Ilaria Prosdocimi, Nicole Augustin