Using Differential Geometry to Classify the Shape of Pores

 in Metal-Organic FrameworksHere is a MOF: show video

Smoothing out the curve by FFT

- Let $\gamma:[0, L) \rightarrow \mathbb{R}^{3}$ describe the noisy path.
- Regularise the path using $\gamma_{\mathrm{reg}}(t)=(\gamma * g)(t)$ where $g(t)$ is the top hat function $\chi_{[-\epsilon, \epsilon]}$.
- Take the Fourier transform: $\hat{\gamma}_{\text {reg }}(\omega)=\hat{\gamma}(\omega) \hat{g}(\omega)$.

Compute the curvature and torsion

- From the Frenet-Serret formulae we can deduce

$$
\begin{align*}
\kappa_{\gamma}(t) & =\frac{\left\|\gamma^{\prime}(t) \times \gamma^{\prime \prime}(t)\right\|}{\left\|\gamma^{\prime}(t)\right\|^{3}} \tag{1}\\
\tau_{\gamma}(t) & =\frac{\gamma^{\prime}(t) \cdot \gamma^{\prime \prime}(t) \times \gamma^{\prime \prime \prime}(t)}{\left\|\gamma^{\prime}(t) \times \gamma^{\prime \prime}(t)\right\|^{2}} \tag{2}
\end{align*}
$$

- We have $\gamma_{r e g}$ in closed form:

$$
\begin{aligned}
\underline{\gamma}_{r e g}(t)=(0, t, 0) & +\underline{A}_{1} \cos \frac{2 \pi t}{\ell}+\underline{A}_{2} \cos \frac{4 \pi t}{\ell} \\
& +\underline{B}_{1} \sin \frac{2 \pi t}{\ell}+\underline{B}_{2} \sin \frac{4 \pi t}{\ell}
\end{aligned}
$$

where $\underline{A}_{i}, \underline{B}_{i} \in \mathbb{R}^{3}$ are constants depending on $\hat{\gamma}_{\text {reg }}$.

- Hence we can calculate the curvature and torsion of $\gamma_{\text {reg }}$ analytically!

Parametrisation by arclength

- The arclength of $\gamma(t)=(x(t), t, z(t))$ is given by

$$
s=f(t):=\int_{0}^{t} \sqrt{x^{\prime}(u)^{2}+1+z^{\prime}(u)^{2}} d u
$$

Parametrisation by arclength

- The arclength of $\gamma(t)=(x(t), t, z(t))$ is given by

$$
s=f(t):=\int_{0}^{t} \sqrt{x^{\prime}(u)^{2}+1+z^{\prime}(u)^{2}} d u
$$

- Parametrise κ, τ by arclength by

$$
\kappa_{\text {reg }}(s)=\kappa_{\text {reg }} \circ f^{-1}(s)
$$

Parametrisation by arclength

- The arclength of $\gamma(t)=(x(t), t, z(t))$ is given by

$$
s=f(t):=\int_{0}^{t} \sqrt{x^{\prime}(u)^{2}+1+z^{\prime}(u)^{2}} d u
$$

- Parametrise κ, τ by arclength by

$$
\kappa_{\text {reg }}(s)=\kappa_{\text {reg }} \circ f^{-1}(s)
$$

- Compute numerically.

curvature with s

torsion with s

Question: which molecule gets adsorbed?

Question: which molecule gets adsorbed?

Left 2,4-propanediol

Right 2,4-propanediol

Warning: molecules are not periodic but we imposed a periodic boundary condition!

Curvature

Torsion

Questions to consider

- Kinematic vs equilibrium

Questions to consider

- Kinematic vs equilibrium
- Kinematic problem: pushing the molecule into the MOF pore

Questions to consider

- Kinematic vs equilibrium
- Kinematic problem: pushing the molecule into the MOF pore
- Equilibrium problem: magically transporting the molecule into the MOF pore and see if it stays in

Questions to consider

- Kinematic vs equilibrium
- Kinematic problem: pushing the molecule into the MOF pore
- Equilibrium problem: magically transporting the molecule into the MOF pore and see if it stays in
- Using the radius as tolerance

Adsorption against pressure

3 pairs of molecules: 1,2-pentanediol; 2,4-pentanediol; 1,3-butanediol

Further investigations

- Creating the space of MOFs
- Characterising the spine of the molecule
- Carlos' idea for kinematic fitting as a second screening
- More complex MOFs
- Electrostatic forces

