Yet another Talk on Multilevel Monte Carlo Different I Promise!

Robert Scheichl

Department of Mathematical Sciences

Joint work over 8 years with a large number of collaborators, including

G Detommaso, I Graham, E Müller, M Parkinson & T Shardlow (all Bath); J Charrier (Marseille); A Cliffe†; T Dodwell (Exeter); M Giles (Oxford); A Teckentrup (Edinburgh); E Ullmann (TUM)

> SAMBa Integrative Think Tank 6 BRLSI, Bath, June 5th 2017

$\begin{array}{cccc} \mathsf{INPUT} & \longrightarrow & \mathsf{MODEL} & \longrightarrow & & \mathsf{OUTPUT} \end{array}$

Rock permeability

Composite material

Rob Scheichl (Maths, Bath)

FE analysis of aircraft wing

Composite material

Rob Scheichl (Maths, Bath)

Composite material

FE analysis of aircraft wing

Wing failing?

$$Z(\omega) \in X \xrightarrow{\mathsf{Model}} u(\omega) \in V \xrightarrow{\mathsf{Output}} Q(\omega) \in \mathbb{R}(\mathsf{or } \mathbb{R}^J) \xrightarrow{\mathsf{Statistics}} \mathbb{E}[Q]$$

noise process state of process

quantity of interest

$Z(\omega)\in X$ Mo	$\stackrel{del}{ ightarrow} u(\omega) \in V \stackrel{Output}{\longrightarrow}$	$Q(\omega) \in \mathbb{R}(ext{or } \mathbb{R}^J)$	$\stackrel{Statistics}{\longrightarrow} \mathbb{E}\left[Q\right]$
noise process	state of process	quantity of interest	
uncertain input	"latent" field	quantity of interest	

$Z(\omega) \in X$ $\stackrel{Mo}{=}$	$\stackrel{odel}{ ightarrow} u(\omega) \in V \stackrel{Output}{\longrightarrow}$	$Q(\omega) \in \mathbb{R}(ext{or } \mathbb{R}^J)$	$\stackrel{Statistics}{\longrightarrow}$	$\mathbb{E}\left[Q ight]$
noise process	state of process	quantity of interest		
uncertain input	"latent" field	quantity of interest		

SDE: $Z = Z_t$, e.g. the driving Brownian (or Levy) process W_t ; $u = u_t$, unknown process (e.g. option price at time t); Q (non)linear functional of u_t (at end time T or along whole path)

$Z(\omega) \in X$ $\stackrel{Mo}{=}$	$\stackrel{odel}{ ightarrow} u(\omega) \in V \stackrel{Output}{ ightarrow}$	$Q(\omega) \in \mathbb{R}(ext{or } \mathbb{R}^J) \stackrel{ ext{Statistics}}{ o } \mathbb{E}\left[Q ight]$	
noise process	state of process	quantity of interest	
uncertain input	"latent" field	quantity of interest	

SDE: $Z = Z_t$, e.g. the driving Brownian (or Levy) process W_t ; $u = u_t$, unknown process (e.g. option price at time t); Q (non)linear functional of u_t (at end time T or along whole path)

UQ: Z = Z(x) (or Z(x, t)), spatial (or spatiotemporal) random field; u = u(x) (or u(x, t)), model state (e.g. PDE solution); Q (non)linear functional of u (incl. moments or failure probabilities)

$Z(\omega) \in X$ $\stackrel{Mo}{=}$	$\stackrel{odel}{ ightarrow} u(\omega) \in V \stackrel{Output}{ ightarrow}$	$Q(\omega) \in \mathbb{R}(ext{or } \mathbb{R}^J)$	$\stackrel{\text{Statistics}}{\longrightarrow}$	𝔼 [<i>Q</i>]	
noise process	state of process	quantity of interest			
uncertain input	"latent" field	quantity of interest			

SDE: $Z = Z_t$, e.g. the driving Brownian (or Levy) process W_t ; $u = u_t$, unknown process (e.g. option price at time t); Q (non)linear functional of u_t (at end time T or along whole path)

UQ: Z = Z(x) (or Z(x, t)), spatial (or spatiotemporal) random field; u = u(x) (or u(x, t)), model state (e.g. PDE solution); Q (non)linear functional of u (incl. moments or failure probabilities)

Other applications: imaging, biological/chemical reaction networks, interacting particle systems, ...

$Z(\omega) \in X$ $\stackrel{Mo}{=}$	$\stackrel{odel}{ ightarrow} u(\omega) \in V \stackrel{Output}{ ightarrow}$	$Q(\omega) \in \mathbb{R}(ext{or } \mathbb{R}^J) \stackrel{ ext{Statistics}}{\longrightarrow} \mathbb{E}\left[Q ight]$	
noise process	state of process	quantity of interest	
uncertain input	"latent" field	quantity of interest	

SDE: $Z = Z_t$, e.g. the driving Brownian (or Levy) process W_t ; $u = u_t$, unknown process (e.g. option price at time t); Q (non)linear functional of u_t (at end time T or along whole path)

UQ: Z = Z(x) (or Z(x, t)), spatial (or spatiotemporal) random field; u = u(x) (or u(x, t)), model state (e.g. PDE solution); Q (non)linear functional of u (incl. moments or failure probabilities)

Other applications: imaging, biological/chemical reaction networks, interacting particle systems, ...

Even though $Q(\omega)$ may only be a **single random variable**. Its distribution is often defined only implicitly via the distributions of the **latent** fields $u \in V$ and $Z \in X$ which may be **infinite or high dimensional**!

Rob Scheichl (Maths, Bath)

$$Z_{\ell}(\omega) \in X_{\ell} \stackrel{\mathsf{Model}(\ell)}{\longrightarrow} u_{\ell}(\omega) \in V_{\ell} \stackrel{\mathsf{Output}}{\longrightarrow} Q_{\ell}(\omega) \in \mathbb{R}(\mathsf{or} \ \mathbb{R}^{J}) \stackrel{\mathsf{Quadrature}}{\longrightarrow} \widehat{Q}_{\ell}$$

$$Z_{\ell}(\omega) \in X_{\ell} \stackrel{\mathsf{Model}(\ell)}{\longrightarrow} u_{\ell}(\omega) \in V_{\ell} \stackrel{\mathsf{Output}}{\longrightarrow} Q_{\ell}(\omega) \in \mathbb{R}(\mathsf{or} \ \mathbb{R}^{J}) \stackrel{\mathsf{Quadrature}}{\longrightarrow} \widehat{Q}_{\ell}$$

SDE: Discretisation with step size h_{ℓ}

 $Z_{\ell} = (\Delta W_{\ell,j})_{j=1}^{M_{\ell}} \text{ vector of Brownian increments;}$ $u_{\ell} = (U_{\ell,j})_{j=1}^{M_{\ell}} \text{ vector of states at time } t_{j} = jh_{\ell}.$

$$Z_{\ell}(\omega) \in X_{\ell} \stackrel{\mathsf{Model}(\ell)}{\longrightarrow} u_{\ell}(\omega) \in V_{\ell} \stackrel{\mathsf{Output}}{\longrightarrow} Q_{\ell}(\omega) \in \mathbb{R}(\mathsf{or} \ \mathbb{R}^{J}) \stackrel{\mathsf{Quadrature}}{\longrightarrow} \widehat{Q}_{\ell}$$

SDE: Discretisation with step size h_{ℓ}

 $Z_{\ell} = (\Delta W_{\ell,j})_{j=1}^{M_{\ell}} \text{ vector of Brownian increments;}$ $u_{\ell} = (U_{\ell,j})_{j=1}^{M_{\ell}} \text{ vector of states at time } t_{j} = jh_{\ell}.$

UQ: Discretisation with mesh size h_{ℓ} (here only spatial)

$$\begin{split} & Z_{\ell} = (Z_{\ell,j})_{j=1}^{s_{\ell}} \text{ coeffs in KL or discrete Fourier expansion of RF } Z; \\ & u_{\ell} = (U_{\ell,j})_{j=1}^{M_{\ell}} \text{ FE coefficient vector associated with FE mesh } \mathcal{T}_{\ell}. \end{split}$$

$$Z_{\ell}(\omega) \in X_{\ell} \stackrel{\mathsf{Model}(\ell)}{\longrightarrow} u_{\ell}(\omega) \in V_{\ell} \stackrel{\mathsf{Output}}{\longrightarrow} Q_{\ell}(\omega) \in \mathbb{R}(\mathsf{or} \ \mathbb{R}^{J}) \stackrel{\mathsf{Quadrature}}{\longrightarrow} \widehat{Q}_{\ell}$$

SDE: Discretisation with step size h_{ℓ}

 $Z_{\ell} = (\Delta W_{\ell,j})_{j=1}^{M_{\ell}} \text{ vector of Brownian increments;}$ $u_{\ell} = (U_{\ell,j})_{i=1}^{M_{\ell}} \text{ vector of states at time } t_{j} = jh_{\ell}.$

UQ: Discretisation with mesh size h_{ℓ} (here only spatial)

$$\begin{split} & Z_{\ell} = (Z_{\ell,j})_{j=1}^{s_{\ell}} \text{ coeffs in KL or discrete Fourier expansion of RF } Z; \\ & u_{\ell} = (U_{\ell,j})_{j=1}^{M_{\ell}} \text{ FE coefficient vector associated with FE mesh } \mathcal{T}_{\ell}. \end{split}$$

Other approximations: *p***-refinement**, **model order reduction**, change of **physical model**, **coarse graining** in particle systems, ...

$$Z_{\ell}(\omega) \in X_{\ell} \stackrel{\mathsf{Model}(\ell)}{\longrightarrow} u_{\ell}(\omega) \in V_{\ell} \stackrel{\mathsf{Output}}{\longrightarrow} Q_{\ell}(\omega) \in \mathbb{R}(\mathsf{or} \ \mathbb{R}^{J}) \stackrel{\mathsf{Quadrature}}{\longrightarrow} \widehat{Q}_{\ell}$$

SDE: Discretisation with step size h_{ℓ}

 $Z_{\ell} = (\Delta W_{\ell,j})_{j=1}^{M_{\ell}} \text{ vector of Brownian increments;}$ $u_{\ell} = (U_{\ell,j})_{i=1}^{M_{\ell}} \text{ vector of states at time } t_{j} = jh_{\ell}.$

UQ: Discretisation with mesh size h_{ℓ} (here only spatial)

$$\begin{split} & Z_{\ell} = (Z_{\ell,j})_{j=1}^{s_{\ell}} \text{ coeffs in KL or discrete Fourier expansion of RF } Z; \\ & u_{\ell} = (U_{\ell,j})_{j=1}^{M_{\ell}} \text{ FE coefficient vector associated with FE mesh } \mathcal{T}_{\ell}. \end{split}$$

Other approximations: *p***-refinement**, **model order reduction**, change of **physical model**, **coarse graining** in particle systems, ...

This provides us with a natural **model hierarchy** (parametrised by ℓ). Assume, there exist $\alpha > 0$ and $\gamma > 0$ such that

(A1) $|\mathbb{E}[Q-Q_{\ell}]| = \mathcal{O}(2^{-\alpha\ell})$ and (A2) $\mathbb{E}[\operatorname{Cost}_{\ell}] = \mathcal{O}(2^{\gamma\ell})$

where $Cost_{\ell}$ is the cost to compute one realisation of Q_{ℓ} .

• Single-phase subsurface flow on unit square *D*:

$$-
abla \cdot \left(e^{Z(\omega)}
abla u(\omega)
ight) = 0$$

subject to Neumann BC $\nabla u \cdot \nu = 0$ (top & bottom) & Dirichlet BC u = 1 (left) and u = 0 (right)

• Single-phase subsurface flow on unit square *D*:

$$-
abla \cdot \left(e^{Z(\omega)}
abla u(\omega)
ight) = 0$$

subject to Neumann BC $\nabla u \cdot \nu = 0$ (top & bottom) & Dirichlet BC u = 1 (left) and u = 0 (right)

• $u \in V := H^1_{\Gamma}(D)$ & $Z \in X := L^{\infty}(D)$ (∞ -dim'l function spaces)

• Single-phase subsurface flow on unit square *D*:

$$-\nabla\cdot\left(e^{Z(\omega)}\nabla u(\omega)\right)=0$$

subject to Neumann BC $\nabla u \cdot \nu = 0$ (top & bottom) & Dirichlet BC u = 1 (left) and u = 0 (right)

- $u \in V := H^1_{\Gamma}(D)$ & $Z \in X := L^{\infty}(D)$ (∞ -dim'l function spaces)
- Gaussian $Z(\omega)$ w. exponential covariance (i.e. $e^{Z(\omega)}$ lognormal)
- Parametrised by Z_ℓ(ω) ∈ X_ℓ := ℝ^{s_ℓ} with Z_{ℓ,j} ~ N(0, 1) i.i.d. (e.g. via truncated KL-expansion of Z or via circulant embedding & FFT)

• Single-phase subsurface flow on unit square *D*:

$$-\nabla\cdot\left(e^{Z(\omega)}\nabla u(\omega)\right)=0$$

subject to Neumann BC $\nabla u \cdot \nu = 0$ (top & bottom) & Dirichlet BC u = 1 (left) and u = 0 (right)

- $u \in V := H^1_{\Gamma}(D)$ & $Z \in X := L^{\infty}(D)$ (∞ -dim'l function spaces)
- Gaussian $Z(\omega)$ w. exponential covariance (i.e. $e^{Z(\omega)}$ lognormal)
- Parametrised by Z_ℓ(ω) ∈ X_ℓ := ℝ^{s_ℓ} with Z_{ℓ,j} ~ N(0, 1) i.i.d. (e.g. via truncated KL-expansion of Z or via circulant embedding & FFT)
- FE discretisation: $u_{\ell} \in V_{\ell} \subset V$ (e.g. continuous p.w. linears w.r.t. \mathcal{T}_{ℓ} with mesh size $h_{\ell} = 2^{-\ell+1/2}$):

$$\int_{D} \nabla v_{\ell} \cdot \left(e^{Z_{\ell}(\omega)} \nabla u_{\ell}(\omega) \right) = 0 \quad \forall v_{\ell} \in V_{\ell} \quad \Leftrightarrow \quad A_{\ell}(\omega) U_{\ell}(\omega) = b$$
$$M_{\ell} \times M_{\ell} \text{ random lin. sys.}$$

Running Example – Model Hierarchy

• The standard Monte Carlo estimator for $\mathbb{E}[Q]$ is

 $\hat{Q}_L^{\mathrm{MC}} := rac{1}{N} \sum_{i=1}^N Q_L^{(i)}, \quad Q_L^{(i)} \text{ i.i.d. samples with Model}(L)$

• The standard Monte Carlo estimator for $\mathbb{E}[Q]$ is

 $\hat{Q}_{L}^{\text{MC}} := \frac{1}{N} \sum_{i=1}^{N} Q_{L}^{(i)}, \quad Q_{L}^{(i)} \text{ i.i.d. samples with Model}(L)$

• Convergence of plain vanilla MC (mean square error):

• The standard Monte Carlo estimator for $\mathbb{E}[Q]$ is

 $\hat{Q}_{L}^{\mathrm{MC}} := \frac{1}{N} \sum_{i=1}^{N} Q_{L}^{(i)}, \quad Q_{L}^{(i)} \text{ i.i.d. samples with Model}(L)$

• Convergence of plain vanilla MC (mean square error):

- Recall $|\mathbb{E}[Q_{\ell} Q]| = \mathcal{O}(2^{-\alpha \ell})$ and $\mathbb{E}[\operatorname{Cost}_{\ell}] = \mathcal{O}(2^{\gamma \ell})$.
- To get MSE = $\mathcal{O}(\varepsilon^2)$, we need $L \sim \log_2(\varepsilon^{-1})\alpha^{-1}$ & $N \sim \varepsilon^{-2}$

• The standard Monte Carlo estimator for $\mathbb{E}[Q]$ is

 $\hat{Q}_{L}^{\text{MC}} := \frac{1}{N} \sum_{i=1}^{N} Q_{L}^{(i)}, \quad Q_{L}^{(i)} \text{ i.i.d. samples with Model}(L)$

• Convergence of plain vanilla MC (mean square error):

- Recall $|\mathbb{E}[Q_{\ell} Q]| = \mathcal{O}(2^{-\alpha \ell})$ and $\mathbb{E}[\operatorname{Cost}_{\ell}] = \mathcal{O}(2^{\gamma \ell})$.
- To get MSE = $\mathcal{O}(\varepsilon^2)$, we need $L \sim \log_2(\varepsilon^{-1})\alpha^{-1}$ & $N \sim \varepsilon^{-2}$

Complexity Theorem for (plain vanilla) Monte Carlo

$$\operatorname{Cost}(\hat{Q}_L^{\mathrm{MC}}) = \mathcal{O}(NM_L) = \mathcal{O}(\varepsilon^{-2-\gamma/\alpha})$$
 to obtain $\mathsf{MSE} = \mathcal{O}(\varepsilon^2)$.

• The standard Monte Carlo estimator for $\mathbb{E}[Q]$ is

 $\hat{Q}_{L}^{\text{MC}} := \frac{1}{N} \sum_{i=1}^{N} Q_{L}^{(i)}, \quad Q_{L}^{(i)} \text{ i.i.d. samples with Model}(L)$

• Convergence of plain vanilla MC (mean square error):

- Recall $|\mathbb{E}[Q_{\ell} Q]| = \mathcal{O}(2^{-\alpha \ell})$ and $\mathbb{E}[\operatorname{Cost}_{\ell}] = \mathcal{O}(2^{\gamma \ell})$.
- To get MSE = $\mathcal{O}(\varepsilon^2)$, we need $L \sim \log_2(\varepsilon^{-1})\alpha^{-1}$ & $N \sim \varepsilon^{-2}$

Complexity Theorem for (plain vanilla) Monte Carlo

$$\operatorname{Cost}(\hat{Q}_L^{\operatorname{MC}}) = \mathcal{O}(\mathsf{NM}_L) = \mathcal{O}(\varepsilon^{-2-\gamma/lpha})$$
 to obtain $\operatorname{\mathsf{MSE}} = \mathcal{O}(\varepsilon^2)$.

For fruit fly: $Cost(\hat{Q}_L^{MC}) \approx \mathcal{O}(\varepsilon^{-4})$ Prohibitively expensive!

Basic Idea: Note that trivially

$$Q_L = Q_0 + \sum_{\ell=1}^{L} Q_{\ell} - Q_{\ell-1}$$

Basic Idea: Note that trivially (due to linearity of \mathbb{E}) $\mathbb{E}[Q_L] = \mathbb{E}[Q_0] + \sum_{\ell=1}^{L} \mathbb{E}[Q_\ell - Q_{\ell-1}]$

Basic Idea: Note that trivially (due to linearity of \mathbb{E}) $\mathbb{E}[Q_L] = \mathbb{E}[Q_0] + \sum_{\ell=1}^{L} \mathbb{E}[Q_\ell - Q_{\ell-1}]$

Define the following **multilevel MC** estimator for $\mathbb{E}[Q]$:

$$\widehat{Q}_L^{MLMC} := \widehat{Q}_0^{\mathsf{MC}} + \sum_{\ell=1}^L \widehat{Y}_\ell^{\mathsf{MC}}$$
 where $Y_\ell := Q_\ell - Q_{\ell-1}$

Basic Idea: Note that trivially (due to linearity of \mathbb{E}) $\mathbb{E}[Q_L] = \mathbb{E}[Q_0] + \sum_{\ell=1}^{L} \mathbb{E}[Q_\ell - Q_{\ell-1}]$

Define the following **multilevel MC** estimator for $\mathbb{E}[Q]$:

$$\widehat{Q}_L^{MLMC} := \widehat{Q}_0^{\mathsf{MC}} + \sum_{\ell=1}^L \widehat{Y}_\ell^{\mathsf{MC}}$$
 where $Y_\ell := Q_\ell - Q_{\ell-1}$

Key Observation: (Variance Reduction! Corrections cheaper!)

Level L: $\mathbb{V}[Q_L - Q_{L-1}] \to 0$ as $L \to \infty \Rightarrow N_L = \mathcal{O}(1)$ (best case)

Basic Idea: Note that trivially (due to linearity of \mathbb{E}) $\mathbb{E}[Q_L] = \mathbb{E}[Q_0] + \sum_{\ell=1}^{L} \mathbb{E}[Q_\ell - Q_{\ell-1}]$

Define the following multilevel MC estimator for $\mathbb{E}[Q]$:

$$\widehat{Q}_L^{MLMC} := \widehat{Q}_0^{\mathsf{MC}} + \sum_{\ell=1}^L \widehat{Y}_\ell^{\mathsf{MC}}$$
 where $Y_\ell := Q_\ell - Q_{\ell-1}$

Key Observation: (Variance Reduction! Corrections cheaper!)

Level L: $\mathbb{V}[Q_L - Q_{L-1}] \to 0$ as $L \to \infty \Rightarrow N_L = \mathcal{O}(1)$ (best case)

Level 0:
$$N_0 \sim N$$
 but $\text{Cost}_0 = \mathcal{O}(M_0) = \mathcal{O}(1)$

Basic Idea: Note that trivially (due to linearity of \mathbb{E}) $\mathbb{E}[Q_L] = \mathbb{E}[Q_0] + \sum_{\ell=1}^{L} \mathbb{E}[Q_\ell - Q_{\ell-1}]$

Define the following multilevel MC estimator for $\mathbb{E}[Q]$:

$$\widehat{Q}_L^{MLMC} := \widehat{Q}_0^{\mathsf{MC}} + \sum_{\ell=1}^L \widehat{Y}_\ell^{\mathsf{MC}}$$
 where $Y_\ell := Q_\ell - Q_{\ell-1}$

Key Observation: (Variance Reduction! Corrections cheaper!)

Level L: $\mathbb{V}[Q_L - Q_{L-1}] \to 0$ as $L \to \infty \Rightarrow N_L = \mathcal{O}(1)$ (best case)

Level ℓ : N_ℓ optimised to "balance" cost with levels 0 and L

Level 0: $N_0 \sim N$ but $Cost_0 = \mathcal{O}(M_0) = \mathcal{O}(1)$

SAMBa ITT6, 05/06/17

Complexity Theorem [Giles, '07], [Cliffe, Giles, RS, Teckentrup, '11] Assume approximation error $\mathcal{O}(2^{-\alpha\ell})$, Cost/sample $\mathcal{O}(2^{\gamma\ell})$ and $\mathbb{V}[Q_{\ell} - Q_{\ell-1}] = \mathcal{O}(2^{-\beta\ell})$ (strong error/variance reduction)

Then there exist L, $\{N_{\ell}\}_{\ell=0}^{L}$ to obtain MSE = $\mathcal{O}(\varepsilon^2)$ with

$$\operatorname{Cost}(\widehat{Q}_{L}^{MLMC}) = \mathcal{O}\left(\varepsilon^{-2-\max\left(0,\frac{\gamma-\beta}{\alpha}\right)}\right) + \operatorname{possible} \log\operatorname{-factor}$$

using **dependent** or **independent** estimators \hat{Q}_0^{MC} , and $(\hat{Y}_{\ell}^{MC})_{\ell=1}^{L}$.

Complexity Theorem [Giles, '07], [Cliffe, Giles, RS, Teckentrup, '11] Assume approximation error $\mathcal{O}(2^{-\alpha\ell})$, Cost/sample $\mathcal{O}(2^{\gamma\ell})$ and $\mathbb{V}[Q_{\ell} - Q_{\ell-1}] = \mathcal{O}(2^{-\beta\ell})$ (strong error/variance reduction)

Then there exist L, $\{N_{\ell}\}_{\ell=0}^{L}$ to obtain MSE = $\mathcal{O}(\varepsilon^2)$ with

$$\operatorname{Cost}(\widehat{Q}_{L}^{MLMC}) = \mathcal{O}\left(\varepsilon^{-2-\max\left(0,\frac{\gamma-\beta}{\alpha}\right)}\right) + \operatorname{possible} \log - \operatorname{factor}$$

using **dependent** or **independent** estimators \hat{Q}_0^{MC} , and $(\hat{Y}_{\ell}^{MC})_{\ell=1}^{L}$.

Fruit fly (with smooth functionals & AMG): $\alpha \approx 1$, $\beta \approx 2$, $\gamma \approx 2$

$$\operatorname{Cost}(\widehat{Q}_{L}^{MLMC}) = \mathcal{O}\left(\varepsilon^{-\max\left(2,\frac{\gamma}{\alpha}\right)}\right) = \mathcal{O}\left(\max(N_{0}, M_{L})\right) \approx \mathcal{O}(\varepsilon^{-2})$$

Complexity Theorem [Giles, '07], [Cliffe, Giles, RS, Teckentrup, '11] Assume approximation error $\mathcal{O}(2^{-\alpha\ell})$, Cost/sample $\mathcal{O}(2^{\gamma\ell})$ and $\mathbb{V}[Q_{\ell} - Q_{\ell-1}] = \mathcal{O}(2^{-\beta\ell})$ (strong error/variance reduction)

Then there exist L, $\{N_{\ell}\}_{\ell=0}^{L}$ to obtain MSE = $\mathcal{O}(\varepsilon^2)$ with

$$\operatorname{Cost}(\widehat{Q}_{L}^{MLMC}) = \mathcal{O}\left(\varepsilon^{-2-\max\left(0,\frac{\gamma-\beta}{\alpha}\right)}\right) + \operatorname{possible} \log\operatorname{-factor}$$

using **dependent** or **independent** estimators \hat{Q}_0^{MC} , and $(\hat{Y}_{\ell}^{MC})_{\ell=1}^{L}$.

Fruit fly (with smooth functionals & AMG): $\alpha \approx 1$, $\beta \approx 2$, $\gamma \approx 2$

$$\operatorname{Cost}(\widehat{Q}_{L}^{MLMC}) = \mathcal{O}\left(\varepsilon^{-\max\left(2,\frac{\gamma}{\alpha}\right)}\right) = \mathcal{O}\left(\max(N_{0}, M_{L})\right) \approx \mathcal{O}(\varepsilon^{-2})$$

Optimality: Asymptotic cost of <u>one</u> deterministic solve (to tol= ε) !

Rob Scheichl (Maths, Bath)

SAMBa ITT6, 05/06/17

Numerical Example (Multilevel MC) Fruit fly with $Q = ||u||_{L_2(D)}$ & circulant embedding with $s_{\ell} = \mathcal{O}(M_{\ell})$

 $\sigma^2 = 1$, $\lambda = 0.3$, $h_0 = \frac{1}{8}$

- Gains even for small number of levels (see below).
- Substantial practical gains (not only asymptotic as $\varepsilon \to 0$)
- Models do not have to be nested (could even couple FE & MD)

- Gains even for small number of levels (see below).
- Substantial practical gains (not only asymptotic as $\varepsilon \to 0$)
- Models do not have to be nested (could even couple FE & MD)
- Other approximations: multiscale methods, model order reduction, smoothing, homogenisation, coarse graining, ...
- Different quadrature: ML Quasi-MC, ML Stoch. Collocation,...

- Gains even for small number of levels (see below).
- Substantial practical gains (not only asymptotic as $\varepsilon \to 0$)
- Models do not have to be nested (could even couple FE & MD)
- Other approximations: multiscale methods, model order reduction, smoothing, homogenisation, coarse graining, ...
- Different quadrature: ML Quasi-MC, ML Stoch. Collocation,...
- Not restricted to differential equations:
 - continuous time Markov chains, biological/chemical reaction networks, kinetic MC, ...
 - interacting particle syst. (coarse graining), nested simulation
 - Boltzmann/neutron transport (integrodifferential equation)

- Gains even for small number of levels (see below).
- Substantial practical gains (not only asymptotic as $\varepsilon \to 0$)
- Models do not have to be nested (could even couple FE & MD)
- Other approximations: multiscale methods, model order reduction, smoothing, homogenisation, coarse graining, ...
- Different quadrature: ML Quasi-MC, ML Stoch. Collocation,...
- Not restricted to differential equations:
 - continuous time Markov chains, biological/chemical reaction networks, kinetic MC, ...
 - interacting particle syst. (coarse graining), nested simulation
 - Boltzmann/neutron transport (integrodifferential equation)

Strong (sample-wise) coupling is key: $\mathbb{V}[Q_{\ell} - Q_{\ell-1}] \ll \mathbb{V}[Q_{\ell}]$ Not always easy!!

Refs.: https://people.maths.ox.ac.uk/gilesm/mlmc_community.html Rob Scheichl (Maths, Bath) SAMBa ITT6, 05/06/17

Not just theory & Not just for the Fruit Fly (for simplicity consider only two levels)

Not just theory & Not just for the Fruit Fly (for simplicity consider only two levels)

Assume:

- $\mathbb{E}[\operatorname{Cost}_0] = X \mathbb{E}[\operatorname{Cost}_1], \text{ for some } X < 1$
- **2** $\mathbb{V}[Q_0] \approx \mathbb{V}[Q_1] \& \mathbb{V}[Q_1 Q_0] = Y^2 \mathbb{V}[Q_0]$, for some Y < 1

Not just theory & Not just for the Fruit Fly (for simplicity consider only two levels)

 $\begin{tabular}{|c|c|c|c|} \hline Model 1 & & & \hline Model 0 \\ \downarrow & & \downarrow \\ Q_1^{(i)} & \stackrel{\text{strong coupling}}{\longleftrightarrow} & Q_0^{(i)} \\ \hline \end{array}$

Assume:

- $E[Cost_0] = X E[Cost_1], \text{ for some } X < 1$

$$Gain = \frac{Cost(\hat{Q}_1^{MC})}{Cost(\hat{Q}_1^{MLMC})} = \frac{1}{X + Y^2(1 + X)}$$

Not just theory & Not just for the Fruit Fly

(for simplicity consider only two levels)

Assume:

 $\blacksquare \mathbb{E}[\text{Cost}_0] = X \mathbb{E}[\text{Cost}_1], \text{ for some } X < 1$

2 $\mathbb{V}[Q_0] \approx \mathbb{V}[Q_1] \& \mathbb{V}[Q_1 - Q_0] = Y^2 \mathbb{V}[Q_0]$, for some Y < 1

Examples / Gains	X	<i>Y</i> = 0.5	Y = 0.1	Y = 0.05
2D elliptic $(h_0 = 2h_1)$	1/4	1.8	3.8	4.0
3D elliptic $(h_0 = 2h_1)$	1/8	2.4	7.1	8.0
3D parab. $(h_0 = 2h_1)$	1/16	3.0	13.7	15.9
3D elliptic $(h_0 = 4h_1)$	1/64	3.7	38.8	62.4

Even higher gains with multiple levels!

Rob Scheichl (Maths, Bath)

SAMBa ITT6, 05/06/17

Numerical Evidence

Fruit fly (with Matern covariance) [Kuo, RS, Schwab, Sloan, Ullmann, '17] Neutron transport (Boltzmann) [Graham, Parkinson, RS, '17(pre)]

 $\begin{array}{cccc} Z(\omega) \in X & \stackrel{\text{Model}}{\longrightarrow} & u(\omega) \in V & \stackrel{\text{Output}}{\longrightarrow} & Q(\omega) \in \mathbb{R} (\text{or } \mathbb{R}^J) & \stackrel{\text{Statistics}}{\longrightarrow} & \mathbb{E}_{\pi}[Q] \\ \text{conditioned on data } \mathbf{y}^{\text{obs}} & & \text{posterior expectation} \end{array}$

 $\begin{array}{cccc} Z(\omega) \in X & \stackrel{\text{Model}}{\longrightarrow} & u(\omega) \in V & \stackrel{\text{Output}}{\longrightarrow} & Q(\omega) \in \mathbb{R} (\text{or } \mathbb{R}^J) & \stackrel{\text{Statistics}}{\longrightarrow} & \mathbb{E}_{\pi}[Q] \\ \text{conditioned on data } \mathbf{y}^{\text{obs}} & & \text{posterior expectation} \end{array}$

 Multilevel Markov Chain Monte Carlo [Hoang, Schwab, Stuart 13], [Dodwell, Ketelsen, RS, Teckentrup, 15]

 $\begin{array}{ccc} Z(\omega) \in X & \stackrel{\text{Model}}{\longrightarrow} & u(\omega) \in V & \stackrel{\text{Output}}{\longrightarrow} & Q(\omega) \in \mathbb{R} (\text{or } \mathbb{R}^J) & \stackrel{\text{Statistics}}{\longrightarrow} & \mathbb{E}_{\pi}[Q] \\ \text{conditioned on data } \mathbf{y}^{\text{obs}} & & \text{posterior expectation} \end{array}$

- Multilevel Markov Chain Monte Carlo [Hoang, Schwab, Stuart 13], [Dodwell, Ketelsen, RS, Teckentrup, 15]
- Multilevel Sequential Monte Carlo [Beskos, Jasra, Law, Tempone, Zhou, 17], [Del Moral, Jasra, Law, 17]
- Multilevel Filtering [Jasra, Kamatani, Law, Zhou, 15(pre)], [Gregory, Cotter, Reich, 16], [Gregory, Cotter 16(pre)]
- Multilevel Ensemble Kalman Filter [Hoel, Law, Tempone, 15], [Chernov, Hoel, Law, Nobile, Temp., 16(pre)]

 $\begin{array}{cccc} Z(\omega) \in X & \stackrel{\text{Model}}{\longrightarrow} & u(\omega) \in V & \stackrel{\text{Output}}{\longrightarrow} & Q(\omega) \in \mathbb{R} (\text{or } \mathbb{R}^J) & \stackrel{\text{Statistics}}{\longrightarrow} & \mathbb{E}_{\pi}[Q] \\ \text{conditioned on data } \mathbf{y}^{\text{obs}} & & \text{posterior expectation} \end{array}$

- Multilevel Markov Chain Monte Carlo [Hoang, Schwab, Stuart 13], [Dodwell, Ketelsen, RS, Teckentrup, 15]
- Multilevel Sequential Monte Carlo [Beskos, Jasra, Law, Tempone, Zhou, 17], [Del Moral, Jasra, Law, 17]
- Multilevel Filtering
 [Jasra, Kamatani, Law, Zhou, 15(pre)], [Gregory, Cotter, Reich, 16],
 [Gregory, Cotter 16(pre)]
- Multilevel Ensemble Kalman Filter [Hoel, Law, Tempone, 15], [Chernov, Hoel, Law, Nobile, Temp., 16(pre)]

Similar gains possible! More difficult to achieve **both consistency** (collapsing sum) + variance reduction (strong coupling).

Posterior distribution (Bayes):

$$\pi^{\ell}(\mathbf{Z}_{\ell}|\mathbf{y}^{\mathrm{obs}}) \ \eqsim \ \exp(-\|\mathbf{y}^{\mathrm{obs}} - \mathcal{F}_{\ell}(\mathbf{Z}_{\ell})\|_{\boldsymbol{\Sigma}^{\mathsf{obs}}}^2) \, \pi_{\mathrm{prior}}(\mathbf{Z}_{\ell})$$

What were the key ingredients of "standard" multilevel Monte Carlo?

Posterior distribution (Bayes):

 $\pi^{\ell}(\mathbf{Z}_{\ell}|\mathbf{y}^{\mathrm{obs}}) \ \eqsim \ \exp(-\|\mathbf{y}^{\mathrm{obs}} - \mathit{F}_{\ell}(\mathbf{Z}_{\ell})\|_{\Sigma^{\mathsf{obs}}}^2) \, \pi_{\mathrm{prior}}(\mathbf{Z}_{\ell})$

What were the key ingredients of "standard" multilevel Monte Carlo?

- Telescoping sum: $\mathbb{E}[\mathcal{Q}_L] = \mathbb{E}[\mathcal{Q}_0] + \sum_{\ell=1}^L \mathbb{E}[\mathcal{Q}_\ell \mathcal{Q}_{\ell-1}]$
- Models on coarser levels **much cheaper** to solve $(M_0 \ll M_L)$.
- $\mathbb{V}[\mathcal{Q}_{\ell} \mathcal{Q}_{\ell-1}] \xrightarrow{\ell \to \infty} 0$ as \implies much **fewer samples** on finer levels.

Posterior distribution (Bayes):

 $\pi^{\ell}(\mathbf{Z}_{\ell}|\mathbf{y}^{\mathrm{obs}}) \ \eqsim \ \exp(-\|\mathbf{y}^{\mathrm{obs}} - \mathit{F}_{\ell}(\mathbf{Z}_{\ell})\|_{\Sigma^{\mathsf{obs}}}^2) \, \pi_{\mathrm{prior}}(\mathbf{Z}_{\ell})$

What were the key ingredients of "standard" multilevel Monte Carlo?

- Telescoping sum: $\mathbb{E}[\mathcal{Q}_L] = \mathbb{E}[\mathcal{Q}_0] + \sum_{\ell=1}^{L} \mathbb{E}[\mathcal{Q}_\ell \mathcal{Q}_{\ell-1}]$
- Models on coarser levels **much cheaper** to solve $(M_0 \ll M_L)$.
- $\mathbb{V}[\mathcal{Q}_{\ell} \mathcal{Q}_{\ell-1}] \xrightarrow{\ell \to \infty} 0$ as \implies much **fewer samples** on finer levels.

But Important! In MCMC the target distribution π^{ℓ} depends on ℓ :

$$\mathbb{E}_{\pi^{L}}\left[\mathcal{Q}_{L}\right] = \mathbb{E}_{\pi^{0}}\left[\mathcal{Q}_{0}\right] + \sum_{\ell} \mathbb{E}_{\pi^{\ell}}\left[\mathcal{Q}_{\ell}\right] - \mathbb{E}_{\pi^{\ell-1}}\left[\mathcal{Q}_{\ell-1}\right]$$

Posterior distribution (Bayes):

 $\pi^{\ell}(\mathbf{Z}_{\ell}|\mathbf{y}^{\mathrm{obs}}) \ \eqsim \ \exp(-\|\mathbf{y}^{\mathrm{obs}} - \mathit{F}_{\ell}(\mathbf{Z}_{\ell})\|_{\Sigma^{\mathsf{obs}}}^2) \, \pi_{\mathrm{prior}}(\mathbf{Z}_{\ell})$

What were the key ingredients of "standard" multilevel Monte Carlo?

- Telescoping sum: $\mathbb{E}[\mathcal{Q}_L] = \mathbb{E}[\mathcal{Q}_0] + \sum_{\ell=1}^{L} \mathbb{E}[\mathcal{Q}_\ell \mathcal{Q}_{\ell-1}]$
- Models on coarser levels **much cheaper** to solve $(M_0 \ll M_L)$.
- $\mathbb{V}[\mathcal{Q}_{\ell} \mathcal{Q}_{\ell-1}] \xrightarrow{\ell \to \infty} 0$ as \implies much **fewer samples** on finer levels.

But Important! In MCMC the target distribution π^{ℓ} depends on ℓ :

$$\mathbb{E}_{\pi^{L}}\left[\mathcal{Q}_{L}\right] = \underbrace{\mathbb{E}_{\pi^{0}}\left[\mathcal{Q}_{0}\right]}_{\text{standard MCMC}} + \sum_{\ell} \underbrace{\mathbb{E}_{\pi^{\ell}}\left[\mathcal{Q}_{\ell}\right] - \mathbb{E}_{\pi^{\ell-1}}\left[\mathcal{Q}_{\ell-1}\right]}_{\text{multilevel MCMC (NEW)}}$$

$$\widehat{Q}_{h,s}^{\text{MLMetH}} := \frac{1}{N_{0}} \sum_{n=1}^{N_{0}} \mathcal{Q}_{0}(\mathsf{Z}_{0,0}^{n}) + \sum_{\ell=1}^{L} \frac{1}{N_{\ell}} \sum_{n=1}^{N_{\ell}} \left(\mathcal{Q}_{\ell}(\mathsf{Z}_{\ell,\ell}^{n}) - \mathcal{Q}_{\ell-1}(\mathsf{Z}_{\ell,\ell-1}^{n})\right)$$
chains strongly coupled!

SAMBa ITT6, 05/06/17

• **Prior:** Separable exponential covariance with $\sigma^2 = 1$, $\lambda = 0.5$.

- **Prior:** Separable exponential covariance with $\sigma^2 = 1$, $\lambda = 0.5$.
- "Data" y^{obs}: Pressure at 16 points $x_i^* \in D$ and $\Sigma^{obs} = 10^{-4}I$.

• 5-level method w. #KL modes increasing from $s_0 = 50$ to $s_4 = 150$

• 5-level method w. #KL modes increasing from $s_0 = 50$ to $s_4 = 150$

• #independent samples = $\frac{N_{\ell}}{t_{\ell}}$ (w. t_l ... integrated autocorrelation time)

Level ℓ	0	1	2	3	4
a.c. time t_l	136.23	3.66	2.93	1.46	1.23

Overall Summary

- Huge potential for multilevel Monte Carlo & model hierarchies (in general) in stochastic simulation and in UQ
- A vibrant research area with many open questions
- A "no-brainer" in practice (if you have a model hierarchy)
- Many new application areas await exploration
- I believe, we have only scratched the surface, especially in context of Bayesian inference & data assimilation
- Significant further improvements are possible with using adaptive, sample-dependent hierarchies (current work!)

Overall Summary

- Huge potential for multilevel Monte Carlo & model hierarchies (in general) in stochastic simulation and in UQ
- A vibrant research area with many open questions
- A "no-brainer" in practice (if you have a model hierarchy)
- Many new application areas await exploration
- I believe, we have only scratched the surface, especially in context of Bayesian inference & data assimilation
- Significant further improvements are possible with using adaptive, sample-dependent hierarchies (current work!)

