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Uncertainty Quantification / Stochastic Simulation

Z (ω) ∈ X Model−→ u(ω) ∈ V
Output−→ Q(ω) ∈ R(or RJ)

Statistics−→ E [Q]

noise process state of process quantity of interest

uncertain input “latent” field quantity of interest

SDE: Z = Zt , e.g. the driving Brownian (or Levy) process Wt ;
u = ut , unknown process (e.g. option price at time t);
Q (non)linear functional of ut (at end time T or along whole path)

UQ: Z = Z (x) (or Z (x , t)), spatial (or spatiotemporal) random field;
u = u(x) (or u(x , t)), model state (e.g. PDE solution);
Q (non)linear functional of u (incl. moments or failure probabilities)

Other applications: imaging, biological/chemical reaction networks,
interacting particle systems, . . .

Even though Q(ω) may only be a single random variable. Its distribution
is often defined only implicitly via the distributions of the latent fields
u ∈ V and Z ∈ X which may be infinite or high dimensional!
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Practical Implementation: Discretisation / Approximation

Z`(ω) ∈ X`
Model(`)−→ u`(ω) ∈ V`

Output−→ Q`(ω) ∈ R(or RJ)
Quadrature−→ Q̂`

SDE: Discretisation with step size h`
Z` = (∆W`,j)

M`

j=1 vector of Brownian increments;
u` = (U`,j)M`

j=1 vector of states at time tj = jh`.

UQ: Discretisation with mesh size h` (here only spatial)
Z` = (Z`,j)s`

j=1 coeffs in KL or discrete Fourier expansion of RF Z ;
u` = (U`,j)M`

j=1 FE coefficient vector associated with FE mesh T`.

Other approximations: p–refinement, model order reduction, change
of physical model, coarse graining in particle systems, . . .

This provides us with a natural model hierarchy (parametrised by `).
Assume, there exist α > 0 and γ > 0 such that

(A1) |E [Q − Q`] | = O(2−α`) and (A2) E [Cost`] = O(2γ`)

where Cost` is the cost to compute one realisation of Q`.
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Running Example (“Fruit fly” of UQ)

Single-phase subsurface flow on unit square D:

−∇ ·
(
eZ(ω)∇u(ω)

)
= 0

subject to Neumann BC ∇u · ν = 0 (top & bottom)
& Dirichlet BC u = 1 (left) and u = 0 (right)

u ∈ V := H1
Γ(D) & Z ∈ X := L∞(D) (∞-dim’l function spaces)

Gaussian Z (ω) w. exponential covariance (i.e. eZ(ω) lognormal)

Parametrised by Z`(ω) ∈ X` := Rs` with Z`,j ∼ N (0, 1) i.i.d.
(e.g. via truncated KL-expansion of Z or via circulant embedding & FFT)

FE discretisation: u` ∈ V` ⊂ V
(e.g. continuous p.w. linears w.r.t. T` with mesh size h` = 2−`+1/2):∫
D
∇v` ·

(
eZ`(ω)∇u`(ω)

)
= 0 ∀v` ∈ V` ⇔ A`(ω)U`(ω) = b

M` ×M` random lin. sys.
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Running Example – Model Hierarchy

L

0

V` X`

Here α ≈ 1 (smooth functionals) and γ ≈ 2 (with AMG)
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Monte Carlo

The standard Monte Carlo estimator for E[Q] is

Q̂MC
L :=

1
N

N∑
i=1

Q(i)
L , Q(i)

L i.i.d. samples with Model(L)

Convergence of plain vanilla MC (mean square error):

E
[(

Q̂MC
L − E[Q]

)2]︸ ︷︷ ︸
=: MSE

=
V[QL]

N︸ ︷︷ ︸
sampling error

+
(
E[QL − Q]

)2

︸ ︷︷ ︸
model error (“bias”)

Recall |E[Q` − Q]| = O(2−α`) and E [Cost`] = O(2γ`).

To get MSE = O(ε2), we need L ∼ log2(ε−1)α−1 & N ∼ ε−2

Complexity Theorem for (plain vanilla) Monte Carlo

Cost(Q̂MC
L ) = O(NML) = O

(
ε−2− γ/α) to obtain MSE = O(ε2).

For fruit fly: Cost(Q̂MC
L ) ≈ O(ε−4) Prohibitively expensive!
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L ) ≈ O(ε−4) Prohibitively expensive!
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Monte Carlo

The standard Monte Carlo estimator for E[Q] is

Q̂MC
L :=

1
N

N∑
i=1

Q(i)
L , Q(i)

L i.i.d. samples with Model(L)

Convergence of plain vanilla MC (mean square error):

E
[(

Q̂MC
L − E[Q]

)2]︸ ︷︷ ︸
=: MSE

=
V[QL]

N︸ ︷︷ ︸
sampling error

+
(
E[QL − Q]

)2

︸ ︷︷ ︸
model error (“bias”)
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Multilevel Monte Carlo [Heinrich, ’98], [Giles, ’07]

Basic Idea: Note that trivially

(due to linearity of E)

E[

QL

]

=

E[

Q0

]

+
L∑
`=1

E[

Q` − Q`−1

]

Define the following multilevel MC estimator for E[Q]:

Q̂MLMC
L := Q̂MC

0 +
L∑
`=1

Ŷ MC
` where Y` := Q` − Q`−1

Key Observation: (Variance Reduction! Corrections cheaper!)

Level L: V[QL − QL−1]→ 0 as L→∞ ⇒ NL = O(1) (best case)

...
Level `: N` optimised to “balance” cost with levels 0 and L

...

Level 0: N0 ∼ N but Cost0 = O(M0) = O(1)
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Complexity Theorem [Giles, ’07], [Cliffe, Giles, RS, Teckentrup, ’11]

Assume approximation error O(2−α`), Cost/sample O(2γ`) and

V[Q` − Q`−1] = O(2−β`) (strong error/variance reduction)

Then there exist L, {N`}L`=0 to obtain MSE = O(ε2) with

Cost(Q̂MLMC
L ) = O

(
ε−2−max

(
0, γ−β

α

))
+ possible log-factor

using dependent or independent estimators Q̂MC
0 , and

(
Ŷ MC
`

)L
`=1.

Fruit fly (with smooth functionals & AMG): α ≈ 1, β ≈ 2, γ ≈ 2

Cost(Q̂MLMC
L ) = O

(
ε−max(2, γ

α)
)

= O (max(N0,ML)) ≈ O(ε−2)

Optimality: Asymptotic cost of one deterministic solve (to tol= ε) !
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Numerical Example (Multilevel MC)
Fruit fly with Q = ‖u‖L2(D) & circulant embedding with s` = O(M`)

σ2 = 1, λ = 0.3, h0 = 1
8
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Observations, Extensions and Applications

Gains even for small number of levels (see below).

Substantial practical gains (not only asymptotic as ε→ 0)

Models do not have to be nested (could even couple FE & MD)

Other approximations: multiscale methods, model order
reduction, smoothing, homogenisation, coarse graining, . . .

Different quadrature: ML Quasi-MC, ML Stoch. Collocation,. . .
Not restricted to differential equations:

continuous time Markov chains, biological/chemical reaction
networks, kinetic MC, . . .
interacting particle syst. (coarse graining), nested simulation
Boltzmann/neutron transport (integrodifferential equation)

Strong (sample-wise) coupling is key: V[Q` − Q`−1]� V[Q`]

Not always easy!!

Refs.: https://people.maths.ox.ac.uk/gilesm/mlmc_community.html
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Not just theory & Not just for the Fruit Fly
(for simplicity consider only two levels)

Model 1 Model 0
↓ ↓

Q(i)
1

strong coupling←→ Q(i)
0

Assume:
1 E[Cost0] = X E[Cost1], for some X < 1

2 V[Q0] ≈ V[Q1] & V[Q1 − Q0] = Y 2 V[Q0], for some Y < 1

Gain =
Cost(Q̂MC

1 )

Cost(Q̂MLMC
1 )

=
1

X + Y 2(1 + X )
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Not just theory & Not just for the Fruit Fly
(for simplicity consider only two levels)

Model 1 Model 0
↓ ↓

Q(i)
1

strong coupling←→ Q(i)
0

Assume:
1 E[Cost0] = X E[Cost1], for some X < 1

2 V[Q0] ≈ V[Q1] & V[Q1 − Q0] = Y 2 V[Q0], for some Y < 1

Examples / Gains X Y = 0.5 Y = 0.1 Y = 0.05
2D elliptic (h0 = 2h1) 1/4 1.8 3.8 4.0
3D elliptic (h0 = 2h1) 1/8 2.4 7.1 8.0
3D parab. (h0 = 2h1) 1/16 3.0 13.7 15.9
3D elliptic (h0 = 4h1) 1/64 3.7 38.8 62.4

Even higher gains with multiple levels!
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Numerical Evidence
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Fruit fly (with Matern covariance)
[Kuo, RS, Schwab, Sloan, Ullmann, ’17]

Neutron transport (Boltzmann)
[Graham, Parkinson, RS, ’17(pre)]
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Extension to Bayesian inference / Data assimilation

Z (ω) ∈ X Model−→ u(ω) ∈ V
Output−→ Q(ω) ∈ R(or RJ)

Statistics−→ Eπ[Q]

conditioned on data yobs posterior expectation

Multilevel Markov Chain Monte Carlo
[Hoang, Schwab, Stuart 13], [Dodwell, Ketelsen, RS, Teckentrup, 15]

Multilevel Sequential Monte Carlo
[Beskos, Jasra, Law, Tempone, Zhou, 17], [Del Moral, Jasra, Law, 17]

Multilevel Filtering
[Jasra, Kamatani, Law, Zhou, 15(pre)], [Gregory, Cotter, Reich, 16],
[Gregory, Cotter 16(pre)]

Multilevel Ensemble Kalman Filter
[Hoel, Law, Tempone, 15], [Chernov, Hoel, Law, Nobile, Temp., 16(pre)]

Similar gains possible! More difficult to achieve both
consistency (collapsing sum) + variance reduction (strong coupling).
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Multilevel Markov Chain Monte Carlo – Idea
Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015

Posterior distribution (Bayes):

π`(Z`|yobs) h exp(−‖yobs − F`(Z`)‖2Σobs)πprior(Z`)

What were the key ingredients of “standard” multilevel Monte Carlo?

Telescoping sum: E [QL] = E [Q0] +
∑L
`=1 E [Q` −Q`−1]

Models on coarser levels much cheaper to solve (M0 � ML).

V[Q` −Q`−1]
`→∞−→ 0 as =⇒ much fewer samples on finer levels.

But Important! In MCMC the target distribution π` depends on `:

EπL [QL] = Eπ0 [Q0] +
∑

`
Eπ` [Q`]− Eπ`−1 [Q`−1]EπL [QL] = Eπ0 [Q0]︸ ︷︷ ︸

standard MCMC

+
∑

`
Eπ` [Q`]− Eπ`−1 [Q`−1]︸ ︷︷ ︸

multilevel MCMC (NEW)

Q̂MLMetH
h,s :=

1
N0

N0∑
n=1

Q0(Zn
0,0) +

L∑
`=1

1
N`

N∑̀
n=1

(
Q`(Zn

`,`)−Q`−1(Zn
`,`−1)

)
chains strongly coupled!
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MLMCMC – Numerical Example
Fruit fly (i.e. 2D lognormal diffusion on D = (0, 1)2 with linear FEs)

Prior: Separable exponential covariance with σ2 = 1, λ = 0.5.

“Data” yobs: Pressure at 16 points x∗j ∈ D and Σobs = 10−4I .

!"#$"%&'(')*+!"#$"%&'(')*+ !"#$"%&'(')*+

Data Posterior Sample
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MLMCMC – Numerical Example
Fruit fly (i.e. 2D lognormal diffusion on D = (0, 1)2 with linear FEs)

5-level method w. #KL modes increasing from s0 = 50 to s4 = 150
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(w. tl . . . integrated autocorrelation time)

Level ` 0 1 2 3 4
a.c. time t` 136.23 3.66 2.93 1.46 1.23

Rob Scheichl (Maths, Bath) SAMBa ITT6, 05/06/17 17 / 18



MLMCMC – Numerical Example
Fruit fly (i.e. 2D lognormal diffusion on D = (0, 1)2 with linear FEs)

5-level method w. #KL modes increasing from s0 = 50 to s4 = 150

Level
0 1 2 3 4

In
de

pe
nd

en
t S

am
pl

es
, N

l

102

103

104

105

0 = 0.04
0 = 0.083
0 = 0.066
0 = 0.0033

0
0.01 0.02 0.03 0.04

C
os

t i
n 

C
P

U
 T

im
e 

(s
ec

s)

102

103

104

105

106

MLMCMC
Standard MCMC

2

4

#independent samples =
N`
t`

(w. tl . . . integrated autocorrelation time)

Level ` 0 1 2 3 4
a.c. time t` 136.23 3.66 2.93 1.46 1.23

Rob Scheichl (Maths, Bath) SAMBa ITT6, 05/06/17 17 / 18



Overall Summary

Huge potential for multilevel Monte Carlo & model
hierarchies (in general) in stochastic simulation and in UQ

A vibrant research area with many open questions

A “no-brainer” in practice (if you have a model hierarchy)

Many new application areas await exploration

I believe, we have only scratched the surface, especially in
context of Bayesian inference & data assimilation

Significant further improvements are possible with using
adaptive, sample-dependent hierarchies (current work!)

Thank You !
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