Yet another Talk on Multilevel Monte Carlo

Different | Promisel!

Robert Scheichl

Department of Mathematical Sciences

UNIVERSITY OF

=) BATH

Joint work over 8 years with a large number of collaborators, including
G Detommaso, | Graham, E Miiller, M Parkinson & T Shardlow (all Bath);

J Charrier (Marseille); A Cliffef; T Dodwell (Exeter); M Giles (Oxford);
A Teckentrup (Edinburgh); E Ullmann (TUM)

SAMBa Integrative Think Tank 6
BRLSI, Bath, June 5th 2017

Rob Scheichl (Maths, Bath) SAMBa ITT6, 05/06/17 1/18



INPUT — MODEL — OUTPUT

Rob Scheichl (Maths, Bath) SAMBa ITT6, 05/06/17 2 /18



INPUT — MODEL — OUTPUT

Rock permeability

Rob Scheichl (Maths, Bath) SAMBa ITT6, 05/06/17



Motivation
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Motivation

INPUT — MODEL — OUTPUT
N /
Rock permeability FE analysis of leaking Radionuclides
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Motivation

INPUT — MODEL — OUTPUT
N /
Rock permeability FE analysis of leaking Radionuclides
waste reaching drinkwater?

FE analysis of aircraft wing

Wing failing?

Composite material
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Uncertainty Quantification / Stochastic Simulation

Z(w) e X Mode! u(w) eV Outpyt Q(w) € R(or RY) Statisties E[Q]
noise process  state of process quantity of interest
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Uncertainty Quantification / Stochastic Simulation

Model Output Statisti
Z(w)e X =5 y(w)e V B Qw) e Ror RY) > E[Q]
noise process  state of process quantity of interest
uncertain input  “latent” field quantity of interest

SDE: Z = Z;, e.g. the driving Brownian (or Levy) process W;;
u = ug, unknown process (e.g. option price at time t);
Q (non)linear functional of u; (at end time T or along whole path)

UQ: Z = Z(x) (or Z(x,t)), spatial (or spatiotemporal) random field;
u = u(x) (or u(x,t)), model state (e.g. PDE solution);
Q (non)linear functional of u

Other applications: imaging, biological/chemical reaction networks,
interacting particle systems, ...

Even though Q(w) may only be a single random variable. Its distribution
is often defined only implicitly via the distributions of the latent fields
u € V and Z € X which may be infinite or high dimensional!
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Practical Implementation: Discretisation / Approximation

Model(¢) Output

Zy(w) € Xp """ u(w) € V, Qe(w) € R(or RY) Qe 3, J
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Practical Implementation: Discretisation / Approximation

Model(¢) Output

Zy(w) € Xp """ u(w) € V, Qe(w) € R(or RY) Qe 3, J

SDE: Discretisation with step size hy
Zr=(A WZ_J-)J'-V’:‘1 vector of Brownian increments;

uy = (ULJ-)J’-V’;1 vector of states at time t; = jhy.
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Practical Implementation: Discretisation / Approximation

Model(¢) Output

Zy(w)e Xy — w(w) eV Qu(w) € R(or RY) 2=

SDE: Discretisation with step size hy
Zr=(A WZ_J-)J'-V’:‘1 vector of Brownian increments;
uy = (ULJ-)J’-V’;1 vector of states at time t; = jhy.
UQ: Discretisation with mesh size hy
Zy = (Zu);2, coeffs in KL or discrete Fourier expansion of RF Z;
Uy = (Ug,j)JM;l FE coefficient vector associated with FE mesh 7y.
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Practical Implementation: Discretisation / Approximatio

n

Model(#) Output

Zy(w)e Xy — w(w) eV Qu(w) € R(or RY) 2=

SDE: Discretisation with step size hy
Zr=(A Wg_’j)JM:él vector of Brownian increments;
uy = (Uzﬁj)j’-\/’:f1 vector of states at time t; = jhy.
UQ: Discretisation with mesh size hy
Zy = (Zu);2, coeffs in KL or discrete Fourier expansion of RF Z;
Uy = (Ug,j)}\”:“‘l FE coefficient vector associated with FE mesh 7y.

Other approximations: p-refinement, model order reduction, change
of physical model, coarse graining in particle systems, ...

This provides us with a natural model hierarchy (parametrised by ¢).
Assume, there exist & > 0 and v > 0 such that

(Al) |E[Q_Q(]| = 0(27"[) and (AZ) E[Costﬁ] = (9(2”,«()

where Costy is the cost to compute one realisation of Q.
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Running Example (“Fruit fly" of UQ)

o Single-phase subsurface flow on unit square D: =,

-V (eZ(W)VU(w)> =0

=1 p=0
subject to Neumann BC Vu - v = 0 (top & bottom)
& Dirichlet BC u =1 (left) and u = 0 (right) T o,
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Running Example (“Fruit fly" of UQ)

@ Single-phase subsurface flow on unit square D: =
-V (eZ(W)VU(w)> =0

subject to Neumann BC Vu - v = 0 (top & bottom)
& Dirichlet BC u =1 (left) and u = 0 (right) T o,

on

=1 p=0

o uecV:=H:D)& Z € X := L>®(D) (co-dim’l function spaces)

e Gaussian Z(w) w. exponential covariance e?()

e Parametrised by Z(w) € X, := R* with Z;; ~ N(0,1) i.i.d.

(e.g. via truncated KL-expansion of Z or via circulant embedding & FFT)
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Running Example (“Fruit fly" of UQ)

@ Single-phase subsurface flow on unit square D: =

-V (eZ(W)VU(w)> =0

=1 p=0
subject to Neumann BC Vu - v = 0 (top & bottom)
& Dirichlet BC u =1 (left) and u = 0 (right) T o, @
o _
o uecV:=H:D)& Z € X := L>®(D) (co-dim’l function spaces)
e Gaussian Z(w) w. exponential covariance e?()

e Parametrised by Z(w) € X, := R* with Z;; ~ N(0,1) i.i.d.

(e.g. via truncated KL-expansion of Z or via circulant embedding & FFT)

° FE discretisation: uy € V, C V
(e.g. continuous p.w. linears w.r.t. T; with mesh size h, = 27¢+1/2):
/ VW )VUp( )) =0VveV, < Ag(w)Ug(w) =b
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Running Example — Model Hierarchy

Vi Xi

0

Here v = 1 (smooth functionals) and ~ & 2 (with AMG)
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Monte Carlo

@ The standard Monte Carlo estimator for E[Q] is

N
QMC .= %Z Qi’), Q{') i.i.d. samples with Model(L)
i—1
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Monte Carlo

@ The standard Monte Carlo estimator for E[Q] is
N
o 1 i M. )
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e Convergence of plain vanilla MC (mean square error):

AT A% 2
sl@r -y = g+ (Ele-q))
=: MSE sampling error model error (“bias”)
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Monte Carlo

@ The standard Monte Carlo estimator for E[Q] is
N
o 1 i M. )
QQMC = m 21 Qi), QE) i.i.d. samples with Model(L)

e Convergence of plain vanilla MC (mean square error):

AT A% 2
sl@r -y = g+ (Ele-q))
=: MSE sampling error model error (“bias”)

o Recall [E[Q; — Q]| = O(27*") and E|[Cost/] = O(27").
e To get MSE = O(£?), we need L ~ logy(e 1ot & N ~ 72

Complexity Theorem for (plain vanilla) Monte Carlo

Cost(QMC) = O(NM) = O(e7277/*) to obtain MSE = O(e?).

For fruit fly: Cost(QMC) ~ O(¢=*) Prohibitively expensive!
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Multilevel Monte Carlo  [Heinrich, '98], [Giles, '07]

Basic Idea: Note that trivially

L
Q= Q +Y, Q—Q

(=1

Rob Scheichl (Maths, Bath) SAMBa ITT6, 05/06/17 8 /18



Multilevel Monte Carlo  [Heinrich, '98], [Giles, '07]

Basic Idea: Note that trivially (due to linearity of E)

L
E[Q =E[Q] + Y E[Q — Q1]

(=1

Rob Scheichl (Maths, Bath) SAMBa ITT6, 05/06/17



Multilevel Monte Carlo  [Heinrich, '98], [Giles, '07]

Basic Idea: Note that trivially (due to linearity of E)

L
E[Q =E[Q] + Y E[Q — Q1]

=1
Define the following multilevel MC estimator for E[Q]:

L
Q[\ALMC — Q(')Vlc + Z %MC where Yy = Qp — Q1
(=1

Rob Scheichl (Maths, Bath) SAMBa ITT6, 05/06/17



Multilevel Monte Carlo  [Heinrich, '98], [Giles, '07]

Basic Idea: Note that trivially (due to linearity of E)

L
E[Q =E[Q] + Y E[Q — Q1]

=1
Define the following multilevel MC estimator for E[Q]:

L
Q[VILMC — Q(')Vlc + Z %MC where Yy = Qp — Q1
(=1

Key Observation: (Variance Reduction! Corrections cheaper!)

Level L: V[Q, — Q—1] 2 0asL— 00 = N, =0(1)

Rob Scheichl (Maths, Bath) SAMBa ITT6, 05/06/17 8 /18



Multilevel Monte Carlo  [Heinrich, '98], [Giles, '07]

Basic Idea: Note that trivially (due to linearity of E)

L
E[Q =E[Q] + Y E[Q — Q1]

=1
Define the following multilevel MC estimator for E[Q]:

L
Q[VILMC — Q(')Vlc + Z %MC where Yy = Qp — Q1
(=1

Key Observation: (Variance Reduction! Corrections cheaper!)

Level L: V[Q, — Q—1] 2 0asL— 00 = N, =0(1)

Level 0: Ny ~ N but Costyg = O(My) = O(1)

Rob Scheichl (Maths, Bath) SAMBa ITT6, 05/06/17 8 /18



Multilevel Monte Carlo  [Heinrich, '98], [Giles, '07]

Basic Idea: Note that trivially (due to linearity of E)

L
E[Q =E[Q] + Y E[Q — Q1]

=1
Define the following multilevel MC estimator for E[Q]:

L
Q[VILMC — Q(')Vlc + Z %MC where Yy = Qp — Q1
(=1

Key Observation: (Variance Reduction! Corrections cheaper!)

Level L: V[Q, — Q—1] 2 0asL— 00 = N, =0(1)

Level 0: Ny ~ N but Costyg = O(My) = O(1)

Rob Scheichl (Maths, Bath) SAMBa ITT6, 05/06/17 8 /18



Complexity Theorem [Giles, '07], [Cliffe, Giles, RS, Teckentrup, '11]

Assume approximation error O(2-%"), Cost/sample O(27*) and
V[Q — Q1] = 0(277)

Then there exist L, {N;}>_, to obtain MSE = O(£2) with

Cost(Q"™) = 0O <5—2—max (o:xﬁ))

. . . A o mey L
using dependent or independent estimators @), and (Ych)ezl-
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Complexity Theorem [Giles, '07], [Cliffe, Giles, RS, Teckentrup, '11]

Assume approximation error O(2-%"), Cost/sample O(27*) and
V[Q — Q1] = 0(277)

Then there exist L, {N;}>_, to obtain MSE = O(£2) with

Cost(QM'MC) = 0 <5—2—max (o.,x-’f))

L
Z:l'l

using dependent or independent estimators Q}'®, and (YM)

Fruit fly caxl, B2, yx2

Cost(QMMC) = O (s— max(?v%)) = O (max(Ng, M;)) =~ O(c7?)
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Complexity Theorem [Giles, '07], [Cliffe, Giles, RS, Teckentrup, '11]

Assume approximation error O(2-%"), Cost/sample O(27*) and
V[Q — Q1] = 0(277)

Then there exist L, {N;}>_, to obtain MSE = O(£2) with

Cost(QM'MC) = 0 <5—2—max (o.,x-’f))

L
Z:l'l

using dependent or independent estimators Q}'®, and (YM)

Fruit fly caxl, B2, yx2

Cost(QMMC) = O (s— max(?v%)) = O (max(Ng, M;)) =~ O(c7?)

Optimality: Asymptotic cost of one deterministic solve (to tol= ¢) !J
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Numerical Example (Multilevel MC)

Fruit fly with Q = ||u||,(p) & circulant embedding with s, = O(M,)
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Observations, Extensions and Applications

e Gains even for small number of levels (see below).
e Substantial practical gains (not only asymptotic as ¢ — 0)

@ Models do not have to be nested
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e Substantial practical gains (not only asymptotic as ¢ — 0)

@ Models do not have to be nested

Other approximations: multiscale methods, model order
reduction, smoothing, homogenisation, coarse graining, ...

Different quadrature: ML Quasi-MC, ML Stoch. Collocation,. ..
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e Substantial practical gains (not only asymptotic as ¢ — 0)

@ Models do not have to be nested

Other approximations: multiscale methods, model order
reduction, smoothing, homogenisation, coarse graining, ...

Different quadrature: ML Quasi-MC, ML Stoch. Collocation,. ..
Not restricted to differential equations:

e continuous time Markov chains, biological/chemical reaction
networks, kinetic MC, ...

e interacting particle syst. (coarse graining), nested simulation
e Boltzmann/neutron transport (integrodifferential equation)
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Observations, Extensions and Applications

e Gains even for small number of levels (see below).
e Substantial practical gains (not only asymptotic as ¢ — 0)

@ Models do not have to be nested

Other approximations: multiscale methods, model order
reduction, smoothing, homogenisation, coarse graining, ...

Different quadrature: ML Quasi-MC, ML Stoch. Collocation,. ..
Not restricted to differential equations:

e continuous time Markov chains, biological/chemical reaction
networks, kinetic MC, ...

e interacting particle syst. (coarse graining), nested simulation
e Boltzmann/neutron transport (integrodifferential equation)

Strong (sample-wise) coupling is key: V[Q, — Q/—1] < V[Q/]

Not always easy!!

Refs.: https://people.maths.ox.ac.uk/gilesm/mlmc_community.html
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Not just theory & Not just for the Fruit Fly

(for simplicity consider only two levels)

v v

Q{i) stronwpling Q(()i)
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Not just theory & Not just for the Fruit Fly

(for simplicity consider only two levels)

v v

Q{i) stronwpling Q(()i)
Assume:
@ E[Costg] = X E[Costy], for some X < 1
Q V[Qo] ~ V[@Q1] & V[Q1 — Q] = Y2 V[Qo], for some Y < 1
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Not just theory & Not just for the Fruit Fly

(for simplicity consider only two levels)

v v

Q{i) stronwpling Q(()i)
Assume:
@ E[Costg] = X E[Costy], for some X < 1
Q V[Qo] ~ V[@Q1] & V[Q1 — Q] = Y2 V[Qo], for some Y < 1

. Cost((AQ:'LV'C) 1
Gain = A — N
Cost( QMLMC) X+ Y3(1+4X)
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Not just theory & Not just for the Fruit Fly

(for simplicity consider only two levels)

{ 4
i strong coupling i
Q) A Qy”
Assume:

Q E[Costg] = X E[Costy], for some X < 1
@ V[Qo] = V[@1] & V[Q1 — Qo] = Y? V[Qq], for some Y < 1

Examples / Gains ‘ X ‘ Y=05 Y=01 Y=0.05
2D elliptic (hg = 2h1) | 1/4 1.8 3.8 4.0
3D elliptic (hg =2hy) | 1/8 2.4 7.1 8.0
3D parab. (ho = 2h1) | 1/16 3.0 13.7 15.9
3D elliptic (ho = 4hy) | 1/64 | 3.7 38.8 62.4

Even higher gains with multiple levels!
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Numerical Evidence

v=2502=025 \=1

10t - MC
--MLMC
IS a - QMC
o . . —-MLOMC

10 103 10°
€

Fruit fly (with Matern covariance)
[Kuo, RS, Schwab, Sloan, Ullmann, '17]

10*
—%-QMC
102 3 - & =-MLMC
) MLQMC

=
o 0
§ 10

1072

10

1078 10 1072

Bias

Neutron transport (Boltzmann)
[Graham, Parkinson, RS, "17(pre)]
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Extension to Bayesian inference / Data assimilation

Z(w) e X "% yw)e v B Qw) € Ror RY) “2=e R [Q]
conditioned on data y°* posterior expectation
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Extension to Bayesian inference / Data assimilation

Z(w) e X "% yw)e v B Qw) € Ror RY) “2=e R [Q]
conditioned on data y°* posterior expectation

@ Multilevel Markov Chain Monte Carlo
[Hoang, Schwab, Stuart 13], [Dodwell, Ketelsen, RS, Teckentrup, 15]
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Extension to Bayesian inference / Data assimilation

Z(w) e X "% yw)e v B Qw) € Ror RY) “2=e R [Q]
conditioned on data y°* posterior expectation

@ Multilevel Markov Chain Monte Carlo
[Hoang, Schwab, Stuart 13], [Dodwell, Ketelsen, RS, Teckentrup, 15]

@ Multilevel Sequential Monte Carlo
[Beskos, Jasra, Law, Tempone, Zhou, 17], [Del Moral, Jasra, Law, 17]

@ Muiltilevel Filtering
[Jasra, Kamatani, Law, Zhou, 15(pre)], [Gregory, Cotter, Reich, 16],
[Gregory, Cotter 16(pre)]

@ Multilevel Ensemble Kalman Filter
[Hoel, Law, Tempone, 15], [Chernov, Hoel, Law, Nobile, Temp., 16(pre)]
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Extension to Bayesian inference / Data assimilation

Z(w) e X "% yw)e v B Qw) € Ror RY) “2=e R [Q]
conditioned on data y°* posterior expectation

@ Multilevel Markov Chain Monte Carlo
[Hoang, Schwab, Stuart 13], [Dodwell, Ketelsen, RS, Teckentrup, 15]

@ Multilevel Sequential Monte Carlo
[Beskos, Jasra, Law, Tempone, Zhou, 17], [Del Moral, Jasra, Law, 17]

@ Muiltilevel Filtering
[Jasra, Kamatani, Law, Zhou, 15(pre)], [Gregory, Cotter, Reich, 16],
[Gregory, Cotter 16(pre)]

@ Multilevel Ensemble Kalman Filter
[Hoel, Law, Tempone, 15], [Chernov, Hoel, Law, Nobile, Temp., 16(pre)]

Similar gains possiblel  More difficult to achieve both
consistency (collapsing sum) + variance reduction (strong coupling).
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Multilevel Markov Chain Monte Carlo — Idea

Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015

Posterior distribution (Bayes):
T(Zely™) = exp(=lly*™* = Fu(Ze) [ Fobe) Tprion(Z2)

What were the key ingredients of “standard” multilevel Monte Carlo?
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Posterior distribution (Bayes):
T(Zely™) = exp(=lly*™* = Fu(Ze) [ Fobe) Tprion(Z2)

What were the key ingredients of “standard” multilevel Monte Carlo?

o Telescoping sum: E[Q;] =E[Qo] + Y7, E[Qr — Qs 4]
@ Models on coarser levels much cheaper to solve (My < M,).

¢ .
® V[Qs— Qs 1] =3 0as = much fewer samples on finer levels.
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@ Models on coarser levels much cheaper to solve (My < M,).

¢ .
® V[Qs— Qs 1] =3 0as = much fewer samples on finer levels.

But Important! In MCMC the target distribution 7¢ depends on ¢:
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Multilevel Markov Chain Monte Carlo — Idea

Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015

Posterior distribution (Bayes):
T(Zely™) = exp(=lly*™* = Fu(Ze) [ Fobe) Tprion(Z2)

What were the key ingredients of “standard” multilevel Monte Carlo?

o Telescoping sum: E[Q;] =E[Qo] + Y7, E[Qr — Qs 4]
@ Models on coarser levels much cheaper to solve (My < M,).

¢ .
® V[Qs— Qs 1] =3 0as = much fewer samples on finer levels.

But Important! In MCMC the target distribution 7¢ depends on ¢:

En[Q)= Ep[Q] +) Er[Qf]—Epia[Qri]

standard MCMC multilevel MCMC (NEW)
R 1 No L 1 N,
Qe i SN Qu(Zh0) + Y 3 (@2 - Qa2 )
n=1 (=1 n=1

chains strongly coupled!
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MLMCMC — Numerical Example

Fruit fly (i.e. 2D lognormal diffusion on D = (0, 1)? with linear FEs)

@ Prior: Separable exponential covariance with 02 =1, A = 0.5.
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MLMCMC — Numerical Example

Fruit fly (i.e. 2D lognormal diffusion on D = (0,1)? with linear FEs)

@ Prior: Separable exponential covariance with 02 = 1, A = 0.5.

© “Data” y°**: Pressure at 16 points x* € D and ¥°% = 10*/.
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MLMCMC — Numerical Example

Fruit fly (i.e. 2D lognormal diffusion on D = (0, 1)? with linear FEs)

@ 5-level method w. #KL modes increasing from sy = 50 to s, = 150
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MLMCMC — Numerical Example

Fruit fly (i.e. 2D lognormal diffusion on D = (0, 1)? with linear FEs)

@ 5-level method w. #KL modes increasing from sy = 50 to s, = 150
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Overall Summary

e Huge potential for multilevel Monte Carlo & model
hierarchies (in general) in stochastic simulation and in UQ

A vibrant research area with many open questions
@ A “no-brainer” in practice (if you have a model hierarchy)
e Many new application areas await exploration

| believe, we have only scratched the surface, especially in
context of Bayesian inference & data assimilation

Significant further improvements are possible with using
adaptive, sample-dependent hierarchies (current work!)
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Overall Summary

e Huge potential for multilevel Monte Carlo & model
hierarchies (in general) in stochastic simulation and in UQ

A vibrant research area with many open questions
@ A “no-brainer” in practice (if you have a model hierarchy)
e Many new application areas await exploration

| believe, we have only scratched the surface, especially in
context of Bayesian inference & data assimilation

Significant further improvements are possible with using
adaptive, sample-dependent hierarchies (current work!)

Thank You !
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