Yet another Talk on Multilevel Monte Carlo Different I Promise!

Robert Scheichl

Department of Mathematical Sciences

UNIVERSITY OF

BATH

Joint work over 8 years with a large number of collaborators, including
G Detommaso, I Graham, E Müller, M Parkinson \& T Shardlow (all Bath); J Charrier (Marseille); A Cliffe \dagger; T Dodwell (Exeter); M Giles (Oxford);

A Teckentrup (Edinburgh); E Ullmann (TUM)

SAMBa Integrative Think Tank 6

BRLSI, Bath, June 5th 2017

Motivation

INPUT
 \longrightarrow MODEL
 OUTPUT

Motivation

INPUT

\longrightarrow MODEL \longrightarrow

OUTPUT

Rock permeability

Motivation

INPUT

 \longrightarrow MODEL \longrightarrow
OUTPUT

Rock permeability

FE analysis of leaking
waste

Motivation

INPUT \longrightarrow MODEL \longrightarrow

Rock permeability

FE analysis of leaking waste

OUTPUT

Radionuclides reaching drinkwater?

Motivation

INPUT
$\longrightarrow \quad$ MODEL

Rock permeability

FE analysis of leaking waste

OUTPUT

Radionuclides reaching drinkwater?

Composite material

INPUT

\longrightarrow MODEL

Rock permeability

Composite material
FE analysis of aircraft wing

OUTPUT

Radionuclides reaching drinkwater?

Motivation

INPUT

\longrightarrow MODEL

\longrightarrow

Rock permeability

Composite material

OUTPUT

Radionuclides reaching drinkwater?

Wing failing?

Uncertainty Quantification / Stochastic Simulation

$$
\begin{array}{cl}
Z(\omega) \in X \xrightarrow{\text { Model }} u(\omega) \in V \xrightarrow{\text { Output }} Q(\omega) \in \mathbb{R}\left(\text { or } \mathbb{R}^{J}\right) & \xrightarrow{\text { Statistics }} \mathbb{E}[Q] \\
\text { noise process } & \text { state of process }
\end{array} \text { quantity of interest }
$$

Uncertainty Quantification / Stochastic Simulation

$$
\begin{array}{lll}
Z(\omega) \in X \xrightarrow{\text { Model }} u(\omega) \in V \xrightarrow{\text { Output }} Q(\omega) \in \mathbb{R}\left(\text { or } \mathbb{R}^{J}\right) \xrightarrow{\text { Statistics }} \mathbb{E}[Q] \\
\text { noise process } \quad \text { state of process } & \text { quantity of interest } \\
\text { uncertain input } \quad \text { "latent" field } & \text { quantity of interest }
\end{array}
$$

Uncertainty Quantification / Stochastic Simulation

$$
\begin{array}{lll}
Z(\omega) \in X \xrightarrow{\text { Model }} u(\omega) \in V \xrightarrow{\text { Output }} Q(\omega) \in \mathbb{R}\left(\text { or } \mathbb{R}^{J}\right) \xrightarrow{\text { Statistics }} \mathbb{E}[Q] \\
\text { noise process } & \text { state of process } & \text { quantity of interest } \\
\text { uncertain input } & \text { "latent" field } & \text { quantity of interest }
\end{array}
$$

SDE: $Z=Z_{t}$, e.g. the driving Brownian (or Levy) process W_{t}; $u=u_{t}$, unknown process (e.g. option price at time t); Q (non)linear functional of u_{t} (at end time T or along whole path)

Uncertainty Quantification / Stochastic Simulation

$$
\begin{array}{lll}
Z(\omega) \in X \xrightarrow{\text { Model }} u(\omega) \in V \xrightarrow{\text { Output }} Q(\omega) \in \mathbb{R}\left(\text { or } \mathbb{R}^{J}\right) \xrightarrow{\text { Statistics }} \mathbb{E}[Q] \\
\text { noise process } & \text { state of process } & \text { quantity of interest } \\
\text { uncertain input } & \text { "latent" field } & \text { quantity of interest }
\end{array}
$$

SDE: $Z=Z_{t}$, e.g. the driving Brownian (or Levy) process W_{t}; $u=u_{t}$, unknown process (e.g. option price at time t); Q (non)linear functional of u_{t} (at end time T or along whole path)
UQ: $Z=Z(x)$ (or $Z(x, t)$), spatial (or spatiotemporal) random field; $u=u(x)$ (or $u(x, t))$, model state (e.g. PDE solution);
Q (non)linear functional of u (incl. moments or failure probabilities)

Uncertainty Quantification / Stochastic Simulation

$$
\begin{array}{lll}
Z(\omega) \in X \xrightarrow{\text { Model }} u(\omega) \in V \xrightarrow{\text { Output }} Q(\omega) \in \mathbb{R}\left(\text { or } \mathbb{R}^{J}\right) \xrightarrow{\text { Statistics }} \mathbb{E}[Q] \\
\text { noise process } \quad \text { state of process } & \text { quantity of interest } \\
\text { uncertain input } \quad \text { "latent" field } & \text { quantity of interest }
\end{array}
$$

SDE: $Z=Z_{t}$, e.g. the driving Brownian (or Levy) process W_{t}; $u=u_{t}$, unknown process (e.g. option price at time t); Q (non)linear functional of u_{t} (at end time T or along whole path)

UQ: $Z=Z(x)$ (or $Z(x, t)$), spatial (or spatiotemporal) random field; $u=u(x)$ (or $u(x, t)$), model state (e.g. PDE solution); Q (non)linear functional of u (incl. moments or failure probabilities)

Other applications: imaging, biological/chemical reaction networks, interacting particle systems, ...

Uncertainty Quantification / Stochastic Simulation

$$
\begin{array}{lll}
Z(\omega) \in X \xrightarrow{\text { Model }} u(\omega) \in V \xrightarrow{\text { Output }} Q(\omega) \in \mathbb{R}\left(\text { or } \mathbb{R}^{J}\right) \xrightarrow{\text { Statistics }} \mathbb{E}[Q] \\
\text { noise process } \quad \text { state of process } & \text { quantity of interest } \\
\text { uncertain input } & \text { "latent" field } & \text { quantity of interest }
\end{array}
$$

SDE: $Z=Z_{t}$, e.g. the driving Brownian (or Levy) process W_{t}; $u=u_{t}$, unknown process (e.g. option price at time t); Q (non)linear functional of u_{t} (at end time T or along whole path)
UQ: $Z=Z(x)$ (or $Z(x, t)$), spatial (or spatiotemporal) random field; $u=u(x)$ (or $u(x, t)$), model state (e.g. PDE solution); Q (non)linear functional of u (incl. moments or failure probabilities)

Other applications: imaging, biological/chemical reaction networks, interacting particle systems, ...

Even though $Q(\omega)$ may only be a single random variable. Its distribution is often defined only implicitly via the distributions of the latent fields $u \in V$ and $Z \in X$ which may be infinite or high dimensional!

Practical Implementation: Discretisation / Approximation

$$
\left.z_{\ell}(\omega) \in X_{\ell} \xrightarrow{\text { Model(e) }} u_{\ell}(\omega) \in V_{\ell} \xrightarrow{\text { Output }} Q_{\ell}(\omega) \in \mathbb{R} \text { (or } \mathbb{R}^{J}\right) \xrightarrow{\text { Quadrature }} \widehat{Q}_{\ell}
$$

$$
Z_{\ell}(\omega) \in X_{\ell} \xrightarrow{\text { Model }(\ell)} u_{\ell}(\omega) \in V_{\ell} \xrightarrow{\text { Output }} Q_{\ell}(\omega) \in \mathbb{R}\left(\text { or } \mathbb{R}^{J}\right) \xrightarrow{\text { Quadrature }} \widehat{Q}_{\ell}
$$

SDE: Discretisation with step size h_{ℓ}
$Z_{\ell}=\left(\Delta W_{\ell, j}\right)_{j=1}^{M_{\ell}}$ vector of Brownian increments;
$u_{\ell}=\left(U_{\ell, j}\right)_{j=1}^{M_{\ell}}$ vector of states at time $t_{j}=j h_{\ell}$.

$$
Z_{\ell}(\omega) \in X_{\ell} \xrightarrow{\text { Model }(\ell)} u_{\ell}(\omega) \in V_{\ell} \xrightarrow{\text { Output }} Q_{\ell}(\omega) \in \mathbb{R}\left(\text { or } \mathbb{R}^{J}\right) \xrightarrow{\text { Quadrature }} \widehat{Q}_{\ell}
$$

SDE: Discretisation with step size h_{ℓ}
$Z_{\ell}=\left(\Delta W_{\ell, j}\right)_{j=1}^{M_{\ell}}$ vector of Brownian increments;
$u_{\ell}=\left(U_{\ell, j}\right)_{j=1}^{M_{\ell}}$ vector of states at time $t_{j}=j h_{\ell}$.
UQ: Discretisation with mesh size h_{ℓ} (here only spatial) $Z_{\ell}=\left(Z_{\ell, j}\right)_{j=1}^{s_{\ell}}$ coeffs in KL or discrete Fourier expansion of RF Z; $u_{\ell}=\left(U_{\ell, j}\right)_{j=1}^{M_{\ell}}$ FE coefficient vector associated with FE mesh \mathcal{T}_{ℓ}.

$$
Z_{\ell}(\omega) \in X_{\ell} \xrightarrow{\text { Model }(\ell)} u_{\ell}(\omega) \in V_{\ell} \xrightarrow{\text { Output }} Q_{\ell}(\omega) \in \mathbb{R}\left(\text { or } \mathbb{R}^{J}\right) \xrightarrow{\text { Quadrature }} \widehat{Q}_{\ell}
$$

SDE: Discretisation with step size h_{ℓ}
$Z_{\ell}=\left(\Delta W_{\ell, j}\right)_{j=1}^{M_{\ell}}$ vector of Brownian increments;
$u_{\ell}=\left(U_{\ell, j}\right)_{j=1}^{M_{\ell}}$ vector of states at time $t_{j}=j h_{\ell}$.
UQ: Discretisation with mesh size h_{ℓ} (here only spatial) $Z_{\ell}=\left(Z_{\ell, j}\right)_{j=1}^{s_{\ell}}$ coeffs in KL or discrete Fourier expansion of RF Z; $u_{\ell}=\left(U_{\ell, j}\right)_{j=1}^{M_{\ell}}$ FE coefficient vector associated with FE mesh \mathcal{T}_{ℓ}.

Other approximations: p-refinement, model order reduction, change of physical model, coarse graining in particle systems, ...

$$
Z_{\ell}(\omega) \in X_{\ell} \xrightarrow{\text { Model }(\ell)} u_{\ell}(\omega) \in V_{\ell} \xrightarrow{\text { Output }} Q_{\ell}(\omega) \in \mathbb{R}\left(\text { or } \mathbb{R}^{J}\right) \xrightarrow{\text { Quadrature }} \widehat{Q}_{\ell}
$$

SDE: Discretisation with step size h_{ℓ}
$Z_{\ell}=\left(\Delta W_{\ell, j}\right)_{j=1}^{M_{\ell}}$ vector of Brownian increments;
$u_{\ell}=\left(U_{\ell, j}\right)_{j=1}^{M_{\ell}}$ vector of states at time $t_{j}=j h_{\ell}$.
UQ: Discretisation with mesh size h_{ℓ} (here only spatial)
$Z_{\ell}=\left(Z_{\ell, j}\right)_{j=1}^{s_{\ell}}$ coeffs in KL or discrete Fourier expansion of RF Z;
$u_{\ell}=\left(U_{\ell, j}\right)_{j=1}^{M_{\ell}}$ FE coefficient vector associated with FE mesh \mathcal{T}_{ℓ}.
Other approximations: p-refinement, model order reduction, change of physical model, coarse graining in particle systems, ...

This provides us with a natural model hierarchy (parametrised by ℓ). Assume, there exist $\alpha>0$ and $\gamma>0$ such that
(A1) $\left|\mathbb{E}\left[Q-Q_{\ell}\right]\right|=\mathcal{O}\left(2^{-\alpha \ell}\right)$ and
(A2) $\mathbb{E}\left[\right.$ Cost $\left._{\ell}\right]=\mathcal{O}\left(2^{\gamma \ell}\right)$
where $\operatorname{Cost}_{\ell}$ is the cost to compute one realisation of Q_{ℓ}.

- Single-phase subsurface flow on unit square D :

$$
-\nabla \cdot\left(e^{Z(\omega)} \nabla u(\omega)\right)=0
$$

subject to Neumann BC $\nabla u \cdot \nu=0$ (top \& bottom) \& Dirichlet $\mathrm{BC} u=1$ (left) and $u=0$ (right)

- Single-phase subsurface flow on unit square D :

$$
-\nabla \cdot\left(e^{Z(\omega)} \nabla u(\omega)\right)=0
$$

subject to Neumann BC $\nabla u \cdot \nu=0$ (top \& bottom)
\& Dirichlet $\mathrm{BC} u=1$ (left) and $u=0$ (right)

- $u \in V:=H_{\Gamma}^{1}(D) \& Z \in X:=L^{\infty}(D)$ (∞-dim'l function spaces)
- Single-phase subsurface flow on unit square D :

$$
-\nabla \cdot\left(e^{Z(\omega)} \nabla u(\omega)\right)=0
$$

subject to Neumann BC $\nabla u \cdot \nu=0$ (top \& bottom)
\& Dirichlet $\mathrm{BC} u=1$ (left) and $u=0$ (right)

- $u \in V:=H_{\Gamma}^{1}(D) \& Z \in X:=L^{\infty}(D)$ (∞-dim'l function spaces)
- Gaussian $Z(\omega) w$. exponential covariance (i.e. $e^{Z(\omega)} \operatorname{lognormal)}$
- Parametrised by $Z_{\ell}(\omega) \in X_{\ell}:=\mathbb{R}^{s_{\ell}}$ with $Z_{\ell, j} \sim \mathcal{N}(0,1)$ i.i.d. (e.g. via truncated KL -expansion of Z or via circulant embedding \& FFT)
- Single-phase subsurface flow on unit square D :

$$
-\nabla \cdot\left(e^{Z(\omega)} \nabla u(\omega)\right)=0
$$

subject to Neumann BC $\nabla u \cdot \nu=0$ (top \& bottom)
\& Dirichlet BC $u=1$ (left) and $u=0$ (right)

- $u \in V:=H_{\Gamma}^{1}(D) \& Z \in X:=L^{\infty}(D)$ (∞-dim'l function spaces)
- Gaussian $Z(\omega)$ w. exponential covariance (i.e. $e^{Z(\omega)} \operatorname{lognormal)}$
- Parametrised by $Z_{\ell}(\omega) \in X_{\ell}:=\mathbb{R}^{s_{\ell}}$ with $Z_{\ell, j} \sim \mathcal{N}(0,1)$ i.i.d.
(e.g. via truncated KL -expansion of Z or via circulant embedding \& FFT)
- FE discretisation: $u_{\ell} \in V_{\ell} \subset V$
(e.g. continuous p.w. linears w.r.t. \mathcal{T}_{ℓ} with mesh size $h_{\ell}=2^{-\ell+1 / 2}$):

$$
\int_{D} \nabla v_{\ell} \cdot\left(e^{Z_{\ell}(\omega)} \nabla u_{\ell}(\omega)\right)=0 \quad \forall v_{\ell} \in V_{\ell} \quad \Leftrightarrow \quad A_{\ell}(\omega) U_{\ell}(\omega)=b
$$

Running Example - Model Hierarchy

$$
V_{\ell}
$$

L

Here $\alpha \approx 1$ (smooth functionals) and $\gamma \approx 2$ (with AMG)

$$
x_{\ell}
$$

Monte Carlo

- The standard Monte Carlo estimator for $\mathbb{E}[Q]$ is

$$
\hat{Q}_{L}^{\mathrm{MC}}:=\frac{1}{N} \sum_{i=1}^{N} Q_{L}^{(i)}, \quad Q_{L}^{(i)} \text { i.i.d. samples with } \operatorname{Model}(L)
$$

Monte Carlo

- The standard Monte Carlo estimator for $\mathbb{E}[Q]$ is

$$
\hat{Q}_{L}^{\mathrm{MC}}:=\frac{1}{N} \sum_{i=1}^{N} Q_{L}^{(i)}, \quad Q_{L}^{(i)} \text { i.i.d. samples with } \operatorname{Model}(L)
$$

- Convergence of plain vanilla MC (mean square error):

- The standard Monte Carlo estimator for $\mathbb{E}[Q]$ is

$$
\hat{Q}_{L}^{\mathrm{MC}}:=\frac{1}{N} \sum_{i=1}^{N} Q_{L}^{(i)}, \quad Q_{L}^{(i)} \text { i.i.d. samples with } \operatorname{Model}(L)
$$

- Convergence of plain vanilla MC (mean square error):

$$
\underbrace{\mathbb{E}\left[\left(\hat{Q}_{L}^{\mathrm{MC}}-\mathbb{E}[Q]\right)^{2}\right]}_{=: \mathrm{MSE}}=\underbrace{\frac{\mathbb{V}\left[Q_{L}\right]}{N}}_{\text {sampling error }}+\underbrace{\left(\mathbb{E}\left[Q_{L}-Q\right]\right)^{2}}_{\text {model error ("bias") }}
$$

- Recall $\left|\mathbb{E}\left[Q_{\ell}-Q\right]\right|=\mathcal{O}\left(2^{-\alpha \ell}\right)$ and $\mathbb{E}\left[\operatorname{Cost}_{\ell}\right]=\mathcal{O}\left(2^{\gamma \ell}\right)$.
- To get MSE $=\mathcal{O}\left(\varepsilon^{2}\right)$, we need $L \sim \log _{2}\left(\varepsilon^{-1}\right) \alpha^{-1} \& N \sim \varepsilon^{-2}$

Monte Carlo

- The standard Monte Carlo estimator for $\mathbb{E}[Q]$ is

$$
\hat{Q}_{L}^{\mathrm{MC}}:=\frac{1}{N} \sum_{i=1}^{N} Q_{L}^{(i)}, \quad Q_{L}^{(i)} \text { i.i.d. samples with } \operatorname{Model}(L)
$$

- Convergence of plain vanilla MC (mean square error):

$$
\underbrace{\mathbb{E}\left[\left(\hat{Q}_{L}^{\mathrm{MC}}-\mathbb{E}[Q]\right)^{2}\right]}_{=: \mathrm{MSE}}=\underbrace{\frac{\mathbb{V}\left[Q_{L}\right]}{N}}_{\text {sampling error }}+\underbrace{\left(\mathbb{E}\left[Q_{L}-Q\right]\right)^{2}}_{\text {model error ("bias") }}
$$

- Recall $\left|\mathbb{E}\left[Q_{\ell}-Q\right]\right|=\mathcal{O}\left(2^{-\alpha \ell}\right)$ and $\mathbb{E}\left[\operatorname{Cost}_{\ell}\right]=\mathcal{O}\left(2^{\gamma \ell}\right)$.
- To get MSE $=\mathcal{O}\left(\varepsilon^{2}\right)$, we need $L \sim \log _{2}\left(\varepsilon^{-1}\right) \alpha^{-1} \& N \sim \varepsilon^{-2}$

Complexity Theorem for (plain vanilla) Monte Carlo

$\operatorname{Cost}\left(\hat{Q}_{L}^{M C}\right)=\mathcal{O}\left(N M_{L}\right)=\mathcal{O}\left(\varepsilon^{-2-\gamma / \alpha}\right)$ to obtain $M S E=\mathcal{O}\left(\varepsilon^{2}\right)$.

Monte Carlo

- The standard Monte Carlo estimator for $\mathbb{E}[Q]$ is

$$
\hat{Q}_{L}^{\mathrm{MC}}:=\frac{1}{N} \sum_{i=1}^{N} Q_{L}^{(i)}, \quad Q_{L}^{(i)} \text { i.i.d. samples with } \operatorname{Model}(L)
$$

- Convergence of plain vanilla MC (mean square error):

$$
\underbrace{\mathbb{E}\left[\left(\hat{Q}_{L}^{\mathrm{MC}}-\mathbb{E}[Q]\right)^{2}\right]}_{=: \mathrm{MSE}}=\underbrace{\frac{\mathbb{V}\left[Q_{L}\right]}{N}}_{\text {sampling error }}+\underbrace{\left(\mathbb{E}\left[Q_{L}-Q\right]\right)^{2}}_{\text {model error ("bias") }}
$$

- Recall $\left|\mathbb{E}\left[Q_{\ell}-Q\right]\right|=\mathcal{O}\left(2^{-\alpha \ell}\right)$ and $\mathbb{E}\left[\operatorname{Cost}_{\ell}\right]=\mathcal{O}\left(2^{\gamma \ell}\right)$.
- To get MSE $=\mathcal{O}\left(\varepsilon^{2}\right)$, we need $L \sim \log _{2}\left(\varepsilon^{-1}\right) \alpha^{-1} \& N \sim \varepsilon^{-2}$

Complexity Theorem for (plain vanilla) Monte Carlo
$\operatorname{Cost}\left(\hat{Q}_{L}^{M C}\right)=\mathcal{O}\left(N M_{L}\right)=\mathcal{O}\left(\varepsilon^{-2-\gamma / \alpha}\right)$ to obtain $M S E=\mathcal{O}\left(\varepsilon^{2}\right)$.
For fruit fly: $\operatorname{Cost}\left(\hat{Q}_{L}^{\mathrm{MC}}\right) \approx \mathcal{O}\left(\varepsilon^{-4}\right) \quad$ Prohibitively expensive!

Basic Idea: Note that trivially

$$
Q_{L}=Q_{0}+\sum_{\ell=1}^{L} Q_{\ell}-Q_{\ell-1}
$$

Multilevel Monte Carlo [Heinrich, '98], [Giles, '07]

Basic Idea: Note that trivially (due to linearity of \mathbb{E})

$$
\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}-Q_{\ell-1}\right]
$$

Basic Idea: Note that trivially (due to linearity of \mathbb{E})

$$
\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}-Q_{\ell-1}\right]
$$

Define the following multilevel MC estimator for $\mathbb{E}[Q]$:

$$
\widehat{Q}_{L}^{M L M C}:=\hat{Q}_{0}^{M C}+\sum_{\ell=1}^{L} \hat{Y}_{\ell}^{M C} \text { where } Y_{\ell}:=Q_{\ell}-Q_{\ell-1}
$$

Basic Idea: Note that trivially (due to linearity of \mathbb{E})

$$
\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}-Q_{\ell-1}\right]
$$

Define the following multilevel MC estimator for $\mathbb{E}[Q]$:

$$
\widehat{Q}_{L}^{M L M C}:=\hat{Q}_{0}^{M C}+\sum_{\ell=1}^{L} \hat{Y}_{\ell}^{M C} \text { where } Y_{\ell}:=Q_{\ell}-Q_{\ell-1}
$$

Key Observation: (Variance Reduction! Corrections cheaper!)
Level $L: \mathbb{V}\left[Q_{L}-Q_{L-1}\right] \rightarrow 0$ as $L \rightarrow \infty \Rightarrow N_{L}=\mathcal{O}(1)$ (best case)

Basic Idea: Note that trivially (due to linearity of \mathbb{E})

$$
\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}-Q_{\ell-1}\right]
$$

Define the following multilevel MC estimator for $\mathbb{E}[Q]$:

$$
\widehat{Q}_{L}^{M L M C}:=\hat{Q}_{0}^{\mathrm{MC}}+\sum_{\ell=1}^{L} \hat{Y}_{\ell}^{\mathrm{MC}} \text { where } Y_{\ell}:=Q_{\ell}-Q_{\ell-1}
$$

Key Observation: (Variance Reduction! Corrections cheaper!)
Level $L: \mathbb{V}\left[Q_{L}-Q_{L-1}\right] \rightarrow 0$ as $L \rightarrow \infty \Rightarrow N_{L}=\mathcal{O}(1)$ (best case)

Level 0: $\quad N_{0} \sim N$ but Cost $_{0}=\mathcal{O}\left(M_{0}\right)=\mathcal{O}(1)$

Basic Idea: Note that trivially (due to linearity of \mathbb{E})

$$
\mathbb{E}\left[Q_{L}\right]=\mathbb{E}\left[Q_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[Q_{\ell}-Q_{\ell-1}\right]
$$

Define the following multilevel MC estimator for $\mathbb{E}[Q]$:

$$
\widehat{Q}_{L}^{M L M C}:=\hat{Q}_{0}^{M C}+\sum_{\ell=1}^{L} \hat{Y}_{\ell}^{M C} \text { where } Y_{\ell}:=Q_{\ell}-Q_{\ell-1}
$$

Key Observation: (Variance Reduction! Corrections cheaper!)
Level $L: \mathbb{V}\left[Q_{L}-Q_{L-1}\right] \rightarrow 0$ as $L \rightarrow \infty \Rightarrow N_{L}=\mathcal{O}(1)$ (best case)

Level $\ell: N_{\ell}$ optimised to "balance" cost with levels 0 and L

Level 0: $\quad N_{0} \sim N$ but Cost $_{0}=\mathcal{O}\left(M_{0}\right)=\mathcal{O}(1)$

Complexity Theorem [Giles, '07], [Cliffe, Giles, RS, Teckentrup, '11]
Assume approximation error $\mathcal{O}\left(2^{-\alpha \ell}\right)$, Cost/sample $\mathcal{O}\left(2^{\gamma \ell}\right)$ and

$$
\mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right]=\mathcal{O}\left(2^{-\beta \ell}\right) \quad \text { (strong error/variance reduction) }
$$

Then there exist $L,\left\{N_{\ell}\right\}_{\ell=0}^{L}$ to obtain MSE $=\mathcal{O}\left(\varepsilon^{2}\right)$ with

$$
\operatorname{Cost}\left(\widehat{Q}_{L}^{M L M C}\right)=\mathcal{O}\left(\varepsilon^{-2-\max \left(0, \frac{\gamma-\beta}{\alpha}\right)}\right)+\text { possible log-factor }
$$

using dependent or independent estimators $\hat{Q}_{0}^{\mathrm{MC}}$, and $\left(\hat{Y}_{\ell}^{\mathrm{MC}}\right)_{\ell=1}^{L}$.

Complexity Theorem [Giles, '07], [Cliffe, Giles, RS, Teckentrup, '11]
Assume approximation error $\mathcal{O}\left(2^{-\alpha \ell}\right)$, Cost/sample $\mathcal{O}\left(2^{\gamma \ell}\right)$ and

$$
\mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right]=\mathcal{O}\left(2^{-\beta \ell}\right) \quad \text { (strong error/variance reduction) }
$$

Then there exist $L,\left\{N_{\ell}\right\}_{\ell=0}^{L}$ to obtain MSE $=\mathcal{O}\left(\varepsilon^{2}\right)$ with

$$
\operatorname{Cost}\left(\widehat{Q}_{L}^{M L M C}\right)=\mathcal{O}\left(\varepsilon^{-2-\max \left(0, \frac{\gamma-\beta}{\alpha}\right)}\right)+\text { possible log-factor }
$$

using dependent or independent estimators $\hat{Q}_{0}^{\mathrm{MC}}$, and $\left(\hat{Y}_{\ell}^{\mathrm{MC}}\right)_{\ell=1}^{L}$.

Fruit fly (with smooth functionals \& AMG): $\alpha \approx 1, \beta \approx 2, \gamma \approx 2$
$\operatorname{Cost}\left(\widehat{Q}_{L}^{M L M C}\right)=\mathcal{O}\left(\varepsilon^{-\max \left(2, \frac{\gamma}{\alpha}\right)}\right)=\mathcal{O}\left(\max \left(N_{0}, M_{L}\right)\right) \approx \mathcal{O}\left(\varepsilon^{-2}\right)$

Complexity Theorem [Giles, '07], [Cliffe, Giles, RS, Teckentrup, '11]
Assume approximation error $\mathcal{O}\left(2^{-\alpha \ell}\right)$, Cost/sample $\mathcal{O}\left(2^{\gamma \ell}\right)$ and

$$
\mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right]=\mathcal{O}\left(2^{-\beta \ell}\right) \quad \text { (strong error/variance reduction) }
$$

Then there exist $L,\left\{N_{\ell}\right\}_{\ell=0}^{L}$ to obtain MSE $=\mathcal{O}\left(\varepsilon^{2}\right)$ with

$$
\operatorname{Cost}\left(\widehat{Q}_{L}^{M L M C}\right)=\mathcal{O}\left(\varepsilon^{-2-\max \left(0, \frac{\gamma-\beta}{\alpha}\right)}\right)+\text { possible log-factor }
$$

using dependent or independent estimators $\hat{Q}_{0}^{\mathrm{MC}}$, and $\left(\hat{Y}_{\ell}^{\mathrm{MC}}\right)_{\ell=1}^{L}$.
Fruit fly (with smooth functionals \& AMG): $\alpha \approx 1, \beta \approx 2, \gamma \approx 2$
$\operatorname{Cost}\left(\widehat{Q}_{L}^{M L M C}\right)=\mathcal{O}\left(\varepsilon^{-\max \left(2, \frac{\gamma}{\alpha}\right)}\right)=\mathcal{O}\left(\max \left(N_{0}, M_{L}\right)\right) \approx \mathcal{O}\left(\varepsilon^{-2}\right)$

Optimality: Asymptotic cost of one deterministic solve (to tol= $=\varepsilon$) !

Numerical Example (Multilevel MC)
Fruit fly with $Q=\|u\|_{L_{2}(D)} \&$ circulant embedding with $s_{\ell}=\mathcal{O}\left(M_{\ell}\right)$

Observations, Extensions and Applications

- Gains even for small number of levels (see below).
- Substantial practical gains (not only asymptotic as $\varepsilon \rightarrow 0$)
- Models do not have to be nested (could even couple FE \& MD)

Observations, Extensions and Applications

- Gains even for small number of levels (see below).
- Substantial practical gains (not only asymptotic as $\varepsilon \rightarrow 0$)
- Models do not have to be nested (could even couple FE \& MD)
- Other approximations: multiscale methods, model order reduction, smoothing, homogenisation, coarse graining, ...
- Different quadrature: ML Quasi-MC, ML Stoch. Collocation,...

Observations, Extensions and Applications

- Gains even for small number of levels (see below).
- Substantial practical gains (not only asymptotic as $\varepsilon \rightarrow 0$)
- Models do not have to be nested (could even couple FE \& MD)
- Other approximations: multiscale methods, model order reduction, smoothing, homogenisation, coarse graining, ...
- Different quadrature: ML Quasi-MC, ML Stoch. Collocation,...
- Not restricted to differential equations:
- continuous time Markov chains, biological/chemical reaction networks, kinetic MC, ...
- interacting particle syst. (coarse graining), nested simulation
- Boltzmann/neutron transport (integrodifferential equation)

Observations, Extensions and Applications

- Gains even for small number of levels (see below).
- Substantial practical gains (not only asymptotic as $\varepsilon \rightarrow 0$)
- Models do not have to be nested (could even couple FE \& MD)
- Other approximations: multiscale methods, model order reduction, smoothing, homogenisation, coarse graining, ...
- Different quadrature: ML Quasi-MC, ML Stoch. Collocation,...
- Not restricted to differential equations:
- continuous time Markov chains, biological/chemical reaction networks, kinetic MC, ...
- interacting particle syst. (coarse graining), nested simulation
- Boltzmann/neutron transport (integrodifferential equation)

Strong (sample-wise) coupling is key: $\mathbb{V}\left[Q_{\ell}-Q_{\ell-1}\right] \ll \mathbb{V}\left[Q_{\ell}\right]$
Not always easy!!

Refs.: https://people.maths.ox.ac.uk/gilesm/mlmc_community.html

Not just theory \& Not just for the Fruit Fly
 (for simplicity consider only two levels)

Model 1
 $Q_{1}^{(i)}$

strong coupling
Model 0
$Q_{0}^{(i)}$

Not just theory \& Not just for the Fruit Fly
(for simplicity consider only two levels)

Assume:
(1) $\mathbb{E}\left[\operatorname{Cost}_{0}\right]=X \mathbb{E}\left[\operatorname{Cost}_{1}\right]$, for some $X<1$
(2) $\mathbb{V}\left[Q_{0}\right] \approx \mathbb{V}\left[Q_{1}\right] \& \mathbb{V}\left[Q_{1}-Q_{0}\right]=Y^{2} \mathbb{V}\left[Q_{0}\right]$, for some $Y<1$

Not just theory \& Not just for the Fruit Fly
(for simplicity consider only two levels)

$Q_{1}^{(i)} \quad$ strong coupling

Model 0
\downarrow
$Q_{0}^{(i)}$

Assume:

(1) $\mathbb{E}\left[\operatorname{Cost}_{0}\right]=X \mathbb{E}\left[\operatorname{Cost}_{1}\right]$, for some $X<1$
(2) $\mathbb{V}\left[Q_{0}\right] \approx \mathbb{V}\left[Q_{1}\right] \& \mathbb{V}\left[Q_{1}-Q_{0}\right]=Y^{2} \mathbb{V}\left[Q_{0}\right]$, for some $Y<1$

$$
\text { Gain }=\frac{\operatorname{Cost}\left(\widehat{Q}_{1}^{\mathrm{MC}}\right)}{\operatorname{Cost}\left(\widehat{Q}_{1}^{M L M C}\right)}=\frac{1}{X+Y^{2}(1+X)}
$$

Not just theory \& Not just for the Fruit Fly (for simplicity consider only two levels)

Model 0

strong coupling

Assume:
(1) $\mathbb{E}\left[\operatorname{Cost}_{0}\right]=X \mathbb{E}\left[\operatorname{Cost}_{1}\right]$, for some $X<1$
(2) $\mathbb{V}\left[Q_{0}\right] \approx \mathbb{V}\left[Q_{1}\right] \& \mathbb{V}\left[Q_{1}-Q_{0}\right]=Y^{2} \mathbb{V}\left[Q_{0}\right]$, for some $Y<1$

Examples / Gains	X	$Y=0.5$	$Y=0.1$	$Y=0.05$
2D elliptic $\left(h_{0}=2 h_{1}\right)$	$1 / 4$	1.8	3.8	4.0
3D elliptic $\left(h_{0}=2 h_{1}\right)$	$1 / 8$	2.4	7.1	8.0
3D parab. $\left(h_{0}=2 h_{1}\right)$	$1 / 16$	3.0	13.7	15.9
3D elliptic $\left(h_{0}=4 h_{1}\right)$	$1 / 64$	3.7	38.8	62.4

Even higher gains with multiple levels!

Fruit fly (with Matern covariance)
[Kuo, RS, Schwab, Sloan, Ullmann, '17]

Neutron transport (Boltzmann) [Graham, Parkinson, RS, '17(pre)]

Extension to Bayesian inference / Data assimilation

$$
Z(\omega) \in X \xrightarrow{\text { Model }} u(\omega) \in V \xrightarrow{\text { Output }} Q(\omega) \in \mathbb{R}\left(\text { or } \mathbb{R}^{J}\right) \xrightarrow{\text { Statistics }} \mathbb{E}_{\pi}[Q]
$$

conditioned on data $\mathbf{y}^{\text {obs }}$

$$
\begin{aligned}
& Z(\omega) \in X \xrightarrow{\text { Model }} u(\omega) \in V \xrightarrow{\text { Output }} Q(\omega) \in \mathbb{R}\left(\text { or } \mathbb{R}^{J}\right) \xrightarrow{\text { Statistics }} \mathbb{E}_{\pi}[Q] \\
& \text { conditioned on data } \mathrm{y}^{\text {obs }}
\end{aligned}
$$

- Multilevel Markov Chain Monte Carlo [Hoang, Schwab, Stuart 13], [Dodwell, Ketelsen, RS, Teckentrup, 15]

$$
Z(\omega) \in X \xrightarrow{\text { Model }} u(\omega) \in V \xrightarrow{\text { Output }} Q(\omega) \in \mathbb{R}\left(\text { or } \mathbb{R}^{J}\right) \xrightarrow{\text { Statistics }} \mathbb{E}_{\pi}[Q]
$$

- Multilevel Markov Chain Monte Carlo [Hoang, Schwab, Stuart 13], [Dodwell, Ketelsen, RS, Teckentrup, 15]
- Multilevel Sequential Monte Carlo
[Beskos, Jasra, Law, Tempone, Zhou, 17], [Del Moral, Jasra, Law, 17]
- Multilevel Filtering
[Jasra, Kamatani, Law, Zhou, 15(pre)], [Gregory, Cotter, Reich, 16], [Gregory, Cotter 16(pre)]
- Multilevel Ensemble Kalman Filter
[Hoel, Law, Tempone, 15], [Chernov, Hoel, Law, Nobile, Temp., 16(pre)]

$$
Z(\omega) \in X \xrightarrow{\text { Model }} u(\omega) \in V \xrightarrow{\text { Output }} Q(\omega) \in \mathbb{R}\left(\text { or } \mathbb{R}^{J}\right) \xrightarrow{\text { Statistics }} \mathbb{E}_{\pi}[Q]
$$

- Multilevel Markov Chain Monte Carlo
[Hoang, Schwab, Stuart 13], [Dodwell, Ketelsen, RS, Teckentrup, 15]
- Multilevel Sequential Monte Carlo
[Beskos, Jasra, Law, Tempone, Zhou, 17], [Del Moral, Jasra, Law, 17]
- Multilevel Filtering
[Jasra, Kamatani, Law, Zhou, 15(pre)], [Gregory, Cotter, Reich, 16], [Gregory, Cotter 16(pre)]
- Multilevel Ensemble Kalman Filter [Hoel, Law, Tempone, 15], [Chernov, Hoel, Law, Nobile, Temp., 16(pre)]

Similar gains possible! More difficult to achieve both consistency (collapsing sum) + variance reduction (strong coupling).

Multilevel Markov Chain Monte Carlo - Idea

Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015
Posterior distribution (Bayes):

$$
\pi^{\ell}\left(\mathbf{Z}_{\ell} \mid \mathbf{y}^{\mathrm{obs}}\right) \approx \exp \left(-\left\|\mathbf{y}^{\mathrm{obs}}-F_{\ell}\left(\mathbf{Z}_{\ell}\right)\right\|_{\Sigma^{\text {obs }}}^{2}\right) \pi_{\text {prior }}\left(\mathbf{Z}_{\ell}\right)
$$

What were the key ingredients of "standard" multilevel Monte Carlo?

Multilevel Markov Chain Monte Carlo - Idea

Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015
Posterior distribution (Bayes):

$$
\pi^{\ell}\left(\mathbf{Z}_{\ell} \mid \mathbf{y}^{\mathrm{obs}}\right) \approx \exp \left(-\left\|\mathbf{y}^{\mathrm{obs}}-F_{\ell}\left(\mathbf{Z}_{\ell}\right)\right\|_{\Sigma^{\text {obs }}}^{2}\right) \pi_{\text {prior }}\left(\mathbf{Z}_{\ell}\right)
$$

What were the key ingredients of "standard" multilevel Monte Carlo?

- Telescoping sum: $\mathbb{E}\left[\mathcal{Q}_{L}\right]=\mathbb{E}\left[\mathcal{Q}_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[\mathcal{Q}_{\ell}-\mathcal{Q}_{\ell-1}\right]$
- Models on coarser levels much cheaper to solve $\left(M_{0} \ll M_{L}\right)$.
- $\mathbb{V}\left[\mathcal{Q}_{\ell}-\mathcal{Q}_{\ell-1}\right] \xrightarrow{\ell \rightarrow \infty} 0$ as \Longrightarrow much fewer samples on finer levels.

Multilevel Markov Chain Monte Carlo - Idea

Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015
Posterior distribution (Bayes):

$$
\pi^{\ell}\left(\mathbf{Z}_{\ell} \mid \mathbf{y}^{\mathrm{obs}}\right) \approx \exp \left(-\left\|\mathbf{y}^{\mathrm{obs}}-F_{\ell}\left(\mathbf{Z}_{\ell}\right)\right\|_{\Sigma^{\text {obs }}}^{2}\right) \pi_{\text {prior }}\left(\mathbf{Z}_{\ell}\right)
$$

What were the key ingredients of "standard" multilevel Monte Carlo?

- Telescoping sum: $\mathbb{E}\left[\mathcal{Q}_{L}\right]=\mathbb{E}\left[\mathcal{Q}_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[\mathcal{Q}_{\ell}-\mathcal{Q}_{\ell-1}\right]$
- Models on coarser levels much cheaper to solve $\left(M_{0} \ll M_{L}\right)$.
- $\mathbb{V}\left[\mathcal{Q}_{\ell}-\mathcal{Q}_{\ell-1}\right] \xrightarrow{\ell \rightarrow \infty} 0$ as \Longrightarrow much fewer samples on finer levels.

But Important! In MCMC the target distribution π^{ℓ} depends on ℓ :

$$
\mathbb{E}_{\pi^{\iota}}\left[\mathcal{Q}_{L}\right]=\mathbb{E}_{\pi^{0}}\left[\mathcal{Q}_{0}\right]+\sum_{\ell} \mathbb{E}_{\pi^{\ell}}\left[\mathcal{Q}_{\ell}\right]-\mathbb{E}_{\pi^{\ell-1}}\left[\mathcal{Q}_{\ell-1}\right]
$$

Multilevel Markov Chain Monte Carlo - Idea

Dodwell, Ketelsen, RS, Teckentrup, JUQ 2015
Posterior distribution (Bayes):

$$
\pi^{\ell}\left(\mathbf{Z}_{\ell} \mid \mathbf{y}^{\mathrm{obs}}\right) \approx \exp \left(-\left\|\mathbf{y}^{\mathrm{obs}}-F_{\ell}\left(\mathbf{Z}_{\ell}\right)\right\|_{\Sigma^{\text {obs }}}^{2}\right) \pi_{\text {prior }}\left(\mathbf{Z}_{\ell}\right)
$$

What were the key ingredients of "standard" multilevel Monte Carlo?

- Telescoping sum: $\mathbb{E}\left[\mathcal{Q}_{L}\right]=\mathbb{E}\left[\mathcal{Q}_{0}\right]+\sum_{\ell=1}^{L} \mathbb{E}\left[\mathcal{Q}_{\ell}-\mathcal{Q}_{\ell-1}\right]$
- Models on coarser levels much cheaper to solve $\left(M_{0} \ll M_{L}\right)$.
- $\mathbb{V}\left[\mathcal{Q}_{\ell}-\mathcal{Q}_{\ell-1}\right] \xrightarrow{\ell \rightarrow \infty} 0$ as \Longrightarrow much fewer samples on finer levels.

But Important! In MCMC the target distribution π^{ℓ} depends on ℓ :

$$
\begin{gathered}
\mathbb{E}_{\pi^{L}}\left[\mathcal{Q}_{L}\right]=\underbrace{\mathbb{E}_{\pi^{0}}\left[\mathcal{Q}_{0}\right]}_{\text {standard MCMC }}+\sum_{\ell} \underbrace{\mathbb{E}_{\pi^{\ell}}\left[\mathcal{Q}_{\ell}\right]-\mathbb{E}_{\pi^{\ell-1}}\left[\mathcal{Q}_{\ell-1}\right]}_{\text {multilevel MCMC (NEW) }} \\
\widehat{Q}_{h, s}^{\mathrm{MLMetH}}:=\frac{1}{N_{0}} \sum_{n=1}^{N_{0}} \mathcal{Q}_{0}\left(\mathrm{Z}_{0,0}^{n}\right)+\sum_{\ell=1}^{L} \frac{1}{N_{\ell}} \sum_{n=1}^{N_{\ell}}\left(\mathcal{Q}_{\ell}\left(\mathrm{Z}_{\ell, \ell}^{n}\right)-\mathcal{Q}_{\ell-1}\left(\mathrm{Z}_{\ell, \ell-1}^{n}\right)\right)
\end{gathered}
$$

MLMCMC - Numerical Example

Fruit fly (i.e. 2D lognormal diffusion on $D=(0,1)^{2}$ with linear FEs)

- Prior: Separable exponential covariance with $\sigma^{2}=1, \lambda=0.5$.
- Prior: Separable exponential covariance with $\sigma^{2}=1, \lambda=0.5$.
- "Data" $y^{\text {obs }}$: Pressure at 16 points $x_{j}^{*} \in D$ and $\Sigma^{\text {obs }}=10^{-4} /$.

Data

Posterior Sample

MLMCMC - Numerical Example

Fruit fly (i.e. 2D lognormal diffusion on $D=(0,1)^{2}$ with linear FEs)

- 5-level method w. \#KL modes increasing from $s_{0}=50$ to $s_{4}=150$

- 5-level method w. \#KL modes increasing from $s_{0}=50$ to $s_{4}=150$

- \#independent samples $=\frac{N_{\ell}}{t_{\ell}}\left(w, t_{l} \ldots\right.$ integrated autocorrelation time $)$

Level ℓ	0	1	2	3	4
a.c. time t_{ℓ}	136.23	3.66	2.93	1.46	1.23

Overall Summary

- Huge potential for multilevel Monte Carlo \& model hierarchies (in general) in stochastic simulation and in UQ
- A vibrant research area with many open questions
- A "no-brainer" in practice (if you have a model hierarchy)
- Many new application areas await exploration
- I believe, we have only scratched the surface, especially in context of Bayesian inference \& data assimilation
- Significant further improvements are possible with using adaptive, sample-dependent hierarchies (current work!)

Overall Summary

- Huge potential for multilevel Monte Carlo \& model hierarchies (in general) in stochastic simulation and in UQ
- A vibrant research area with many open questions
- A "no-brainer" in practice (if you have a model hierarchy)
- Many new application areas await exploration
- I believe, we have only scratched the surface, especially in context of Bayesian inference \& data assimilation
- Significant further improvements are possible with using adaptive, sample-dependent hierarchies (current work!)

Thank You!

