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Part 1. Nuclear Magnetic Resonance Iin Porous Media,
and what we do with It
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NMR can be done at many field strengths

0T 2T 03T 50 mT 50 pT

<— superconducting magnets —> < permanent magnets

no magnet !

400 MHz — a chemical 85 MHz —a 30cm 23-12 MHz —rock 2 MHz - “industry

spectroscopy system  bore imager core imager standard” for NMR in
petrophysics
spectroscopy VR Core-NMR <2 MHz -
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T,-T, Interpretation in shales

103 Solid 'H Liquid in pores
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actual examples from organic shales
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2D Diffusion — T, distributions

Well logging tools:
fixed field gradient (FFG)
FFG-2SE sequence.

Benchtop magnet:
pulsed field gradient (PFG)
PFG-2SE sequence.
Match gradient areas:

Oprc = 9FFG

IgPFG

90° 180° train of 180° pulses |
-6
‘ ‘ AAAAAI‘I’(.\HAIA&AAAJAAAAAA 10
B . “lefusmn edltlng”
dtgFFG ‘l‘ INNNnnnnnnnnm —
- se.i a IS ' g _’f‘_ time é.o
e
<—>~ “Benchtop PFGT

!
SE.i

US Patent Application 12/731,005
Mitchell and Fordham, J. Magn. Reson (2011) doi: 10.1016/}.jmr.2011.07.020

il
-

I
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Generic fluids interpretation of
"D -T, maps’
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More dimensions ...

Sections through an ingenious 4D lab experiment ...
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What's wrong with it all ?

= Poor resolution
= typically only integrals or moments are used
= Rock properties and fluid types the goal

= No error bars !lll —
= Or any other uncertainty estimates
= Point values on T, almost meaningless

= No easy way to include prior information e.g.
1. Bulk relaxation rates impose ceiling on T, , < Ty 55
2. T, >T,from physics

= Time/memory prohibitive in dimensions > 2 ... ?
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Part 2: The mathematical problem
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Problem archetype and approaches

The archetype problem is the solution, for an unknown distribution P(T, ,T,)>0, of a
First Kind Fredholm integral equation with exponential kernel :

M (Tii),rgj)) = JOO P(T,,T,) exp (— ng)/Tz) [1 — exp (— Tf)/Tl)] dT,dT; + e (’l'g),’[gj))
0

M (z{?,7{”) experimental magnetization values at discrete sampling times O for i=1,..N; j=1,..M

e (rf), ré")) experimental noise (Gaussian, white). Signal to Noise Ratio may be poor ( 0 dB in first experimental prototypes )

Different measurements involve different kernels — may or may not be separable K(z;,7,;T1,T,) =K1 (t1;T)Ko(%;T5)
Positivity condition P(T, T,)>0 may need to be relaxed (in some 2D contexts).

» Current routine practice: one of many (and evolving) ad hoc variants of Tikhonov regularisation [3,4,5,6,7]

o Attempts at uncertainty estimates:

()  confidence intervals on the overall data misfit (with explicit rejection of Bayesian priors) [8]

(i)  direct estimation of petrophysically important moments, via the use of Mellin transforms [9, 10]

(i) Markov Chain Monte-Carlo (MC?) exploration of posterior probability spaces, but without close attention to the priors [11]

* Not attempted (so far !): Systematic treatment as a problem in Bayesian inference.
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Solution by Tikhonov Regularization

Measured magnetization data M; & unknown distribution f(x) a7, = / h f@)ki(x)dz +n; i=1,2,..,N

v Tq

Kernel functions exponential decays (or similar variants) ki =exp (—1;/15)

Tp

ki(X) ... ky(X) are “almost linearly dependent” such that matrix G; = / ki(x)kj(x)dz 4,5 =1,2,..N

‘T’CL

... IS ill-conditioned.

Formal statement of (ill-conditioned) problem:  f = arj%géin K f—d|

Regularized problem: /() = T8I (| — d||* + o|f|]?)

Seek f(x) minimising mean square misfit with regularising term,
for some o selected by one of many ad hoc criteria
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Contents lists available at SciVerse ScienceDirect

Key papers and reV|eWS Progress in Nuclear Magnetic Resonance Spectroscopy

journal homepage: www.elsevier.com/locate/pnmrs

IEEE TRANSACTIONS ON SIGHAL PROCESSING, VOL. 50, NO. 5. MAY 2002 101

Numerical estimation of relaxation and diffusion distributions in two dimensions

Solving Fredholm Integrals of the First Kind With
. . . J. Mitchell *, T.C. Chandrasekera, L.F. Gladden
Tensor Pro dUCt Stmcmfe ]'n 2 and 2 - 5 DlmenS]-OnS Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA, United Kingdom

Lalitha Venkataramanan, Member, IEEE, Y1-Qiao Song, and Martin D. Hiirlimann

2D data acquisition |

The “Schlumberger algorithm” for separable kernels in 2D:

| Kernel matrix generation |

SVD
j\'[(T TQ) — / / ]{1 (:I"! T1 )kQ (y; TQ)‘F(:E? y) (1:1: (1?'} —‘— B(Tl ? 7-2) l TSVD (data compression) based on SNR |
I |

. : : . . NNLS Maximum entropy Tikhonov
or in discretised matrix form: \ | !
Additional TSVD E ‘ Fit parameters vector ‘ ! Starting guess of a

M = K\FK,+E ]

Optimise o

L-curve  BRD  GCV
Separability applies to most 2D relaxation TSV optimisation —
experiments but not all diffusion ones ] Fitpuameten vctr

A 4

-
Interpolate
Y
2D solution




Innocent questions that don’t go away

The story:

= The problem is very ill-conditioned.
= \We distort it to make it less so.

= The form of the regularising functional is a
matter of taste.

= We fiddle the value of the regularising
parameter o according to criteria which are
also a matter of taste.

= The results “look” reasonable.

= They agree well enough with known
distributions for synthetic data.

Innocent questions:

We all know the inversion is highly ill-conditioned.
What do these distributions really mean ?

How reliable / accurate are they ?
How do you choose the value of the “tuning knob” o ?

How do you choose the regularising functional ?
(square norm, curvature, entropy, UPEN ...)

How much information do they contain ?

How many measurements can you extract ?
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likelihood  prior
|

Bayesian interpretation of Regularisation nference | C

Regularization problem: P(H|DI) = PDID)
-~ ] \_'_'
o) _ argmin .
flor =20 (1K f = dll? + o [ £11?) evidence
nwhich: ||[Kf —d|]> =) (K f; —di)” = 0*x° Then by Bayes' Theorem:
§ P(fld, I) oc exp (—(L(f;d) — aS(f)))

Noise known to be white Gaussian, so Likelihood is:

P(dlf, I) = exp (—=x*/2) /Z1,

So minimising the argument —() = L — oS

ormaximising () = «aS — L

Hence identify: || K f — d||* = —20°L(f:d,0) maximises posterior “inference” P (f|d, I) o exp (Q)
Igg-lik('elihood “Best” distribution maximises Q for £ = f = f(®)
Similarly identify: 10Q-DriOr
{ﬁxp_\ l.e. prior on distribution f Regularised distribution is “most probable” (maximum
Oé‘ |f| |2 _ O{S(f) P(f|f) ~ exp (aS(f)) a posteriori probability or MAPP) — @ssigning a.S as log-prior
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The importance of the Evidence

P(Model X|D,I)  P(D|Model X, I) P(Model X|I)
P(Model Y|D,I)  P(D|Model Y. I)P(Model Y|I)
' ——  P(D|Model X, T) ' .
model selection P(D[Model Y, 1) - 1 if “even-handed”

evidence ratio between models

= “Evidence” statistics in principle should be computed (though rarely done)

— from data analysis using competing models
— BayeSys and Mass InT generate Evidence values

= Competing models then rationally ranked by a probability ratio

= No experience anywhere ! — but model adequacy questions include:
1. Discrete vs continuous T, distributions in “conventional” reservoir rocks
2. Exponential vs Gaussian decay models in “unconventional” rocks (organic shales)
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Apparatus for exploration of the problem:

 Potential apparatus:

Constraints on priors from independence of discretization [12]:

Random samples from a wide class of uncorrelated measures, appropriate as priors, are known to be “atomic”
(l.e. encodable as a finite set of discrete masses) [12,13,14].

“Atomic” property Is arguably reasonable in the context:

T, Is a routine proxy for pore “size” — but derives from “isolated” pore assumptions — clearly non-physical !
Dominant diffusion eigenmodes of fully inter-connected pore network a better model — and a finite discrete set may describe them

Practical implementations [15] use various “engines” for MC? exploration of posterior probability spaces.
Concomitant estimates of the Bayesian “evidence” (“prior predictive”) are also available.

LGPL codes “BayeSys” and “Mass Inf” available with documentation
(John Skilling, 2004, Maximum Entropy Data Consultants Ltd)
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So how should we assign the prior ?

Entropic Prior Problems emerge:
o \ M/2
P(fla, m) = (ﬁ) exp (S(f, m)) = Not independent of pixelation / discretisation of domain
M .
where  S(f.m) =~ filog ( Ji ) = Consistency requires independence of pixelation ...
i e For any disjoint sub-domains AN B =
= Highly structured f highly informative (low 2 without data) ~ Additivity: Positivity:
= Featureless f uninformative (high 2 without data) Prap=Ps+Pp and 0< P <0 VO

Shannon entropy should be a candidate ais

Entropy the only form without spurious correlations
Over-riding consideration should be consistency ’_H_H

Hence: “Quantified Maximum Entropy” or QME Surprising consequences !
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“Atomic” priors

J. R. Starist. Soc. B (1997) \((‘@ B8 TR B = i
M, Neo. 1, pp. 217135 * - = = 5

Prior Distributions on Measure Space é@f‘ E gt

By SIBUSISO SIBISIT and JOHN SKILLING

University of Cambridge, UK

=7 samples from an
[Received March 1994. Final revision March 1996] == = “atomic” prior

qr " 1 e - =
= o TRt - i TILE EH e —
= = T i e Lk I -

Fig. 1. Evolution of a sample from the Dirichlet prior

SUMMARY f | - ' ' T - ' '
A measure 1s the formal representation of the non-negative additive functions that abound
in science. We review and develop the art of assigning Bayesian priors to measures. Where
necessary, spatial correlation 1s delegated to correlating kernels imposed on otherwise
uncorrelated priors. The latter must be infinitely divisible (ID) and hence described by the
Lévy—Khinchin representation. Thus the fundamental object 1s the Léevy measure, the
choice of which corresponds to different ID process priors. The general case of a Levy
measure comprising a mixture of assigned base measures leads to a prior process
comprising a convolution of corresponding processes. Examples involving a single base
measure are the gamma process, the Dirichlet process (for the normalized case) and the
Poisson process. We also discuss processes that we call the supergamma and super-
Dirichlet processes, which are double base measure generalizations of the gamma and
Dirichlet processes. Examples of multiple and continuum base measures are also discussed.
We conclude with numencal examples of density estimation.

probability density
+0.5

S R L R A A D L e e B
lI|_I||||||||I.|

0.0

. m‘l‘lll I i ‘ IlmlHL!I !II!III:II‘II‘ILIHIII . .
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+4 +6
minutes duration

data

Old Faithful data and density estimate with error bars



More on atomic priors Proc. 15% Workshop on Maximum Entropy ahd

Bayesian Methods (1996) pp 261-270 Kiuwer-

JOHN SKILLING AND SIBUSISO SIBISI

University of Cambridge, Cavendish Laboratory
Madingley Road, England CB3 OHE

Abstract. A “measure” is the mathematical concept underlying distributed quan-

tities such as images, spectra, and probability distributions. Inference about a
measure requires a suitable Bayesian prior. If the prior is to remain valid on in-

definitely small cells, it must be “infinitely divisible”, and in consequence samples — \
from it will be “atomic” (being essentially a limited sum of delta functions). In- /
finitely divisible priors are described in terms of the distribution of delta function
strengths via the Lévy-Khinchin representation. Such priors include the Poisson
process, but not the Quantified Maximum Entropy prior that has been used as its pa— ——
continuous reformulation. / —
Figure 4. Subdivision of an id-process into atoms. A sample from a Gamma process with ‘
measure & = 5 per cell is shown (top) with successive five-fold expansions of the central fraction. I — ——
T~
— T
Small probabilities of o(1) “flux” in a small cell
Not ©(1) probability of small flux
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The “Massive Inference” method

The “Massive Inference” prior for measure F:

F
P(Fla,q) =e  |§(F) +e '/ i[-l (2 a_)

Properties:
= Satisfies requirement of “infinite divisibility”
= Delta-function at F = 0 forces posterior mode to be null! Counter-example to MAPP: mode is not useful

= Mean values instead used for display / “best” distribution

= Two hyper-parameters:

= @ Is Poisson Expectation number of “atoms” over domain range on which F is estimated
= ¢ is a dimensional flux unit (expected scale)
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The “Massive Inference” method: sketch derivation

celll pixel size - discretization How is total flux C distributed ? (given r atoms)
Hint: pd of sum is

, 0(C) r =20 (Laplace) convolution
‘ ‘ > P(Clr) = —Cpr—1 | of pd's:
‘ ‘ domain x e " /(r=1! r>0 Use product of Laplace
OX Transforms
How many atoms r in cell 5x ? How is total flux C distributed ? ( any r atoms in cell 6x )

PO) = ZP(<|T)P(T) _ incellsummed
=0 - away analytically_—

— e M {5(() —!—e_C\/T/Cfl (2 ILC)]

Choose Poisson prior of expectation / mean = o dx
P(r)=e "u"/r! r=20,1,2,...
How large (C; = F;/q) are each of the r atoms ?

P(C) = exp(—¢; 1 =1,2,...,r
(G) p(=G) , | Hence previous page ( F = dimensionless flux x flux quantum )
Total flux in cell width 8x is ¢ =3¢, P(Flacg) = e | 8(F) + e F/1 |2, (2 wF)
1=1
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Lett | H.ight
.. . - n+1
CompUta‘tlonal englnes L eft . Right s { i Birth — } yoor
n —- - - - - B —- - - T

" —e
or 4 o Death — v
n—1 — .~

Markov Chain Monte Carlo algorithms

exploring Hilbert (space-filling) curves

Implemented in Public Domain (LGPL) codes BayeSys and Ma
© John Skilling 2004

May be more advanced codes available commercially

2

Further development since 2004 — bibliography incomplete ! ]%
]
]

(Maximum Entropy Data Consultants Ltd) %
]

How Far Can We Go?
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“Massive Inference” on exponential decays

Massive Inference and Maximum Entropy

-Dt — 1000—0.03t + 500—0.0515 + e

log[10] Data( t )

John Skilling

Department of Applied Mathematics and Theoretical Physics

University of Cambridge
England CB3 9EW

January 1998

| | | ' | . T . I

20 7 N Test problem: -
. €t is normally distributed noise

] .. Zero mean unit variance |

1.5 - \,\/\ L

1.0 i \V\W L

1 S \\J \

v
i
0 2|0 4|0 6|O 8|O 1[|)O
time t

T,=33.3slog

R, =1/T, note linear axis !!

MassInf

MaxEnt

T,=20s log T,=1.301

Simulation
\ ' | ' | ' | ' | ' | ' |
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Decay rate
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L |
| 1
1] I
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L I
| 1
I [
|
I
.
| 1
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Decay rate
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Part 3: Updates !!
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. recent visit to Steve Gull

= Long-term collaborator with John Skilling on
“Maximum Entropy and Bayesian Methods ...”

= Co-founder (with Skilling) of University Professor of Physics

“Maximum Entropy Data Consultants Ltd” (MEDC Ltd) College Lecturer and ;
(not seeking new clients) Director of Studies in Physics and Astrophysms

St. John's College
= MEDC released BayeSys and MassInft
under LGPL (but © MEDC)

= Still active in Cambridge (Astrophysics)- offered to run (compare ?) proprietary MemSys code (QME) on
same data

= Skilling retired but still active —
has novel MC? approach

“Nested Sampllng” Bayesian Analysis (2006) 1, Number 4, pp. 833-860 NeSted Sampllng
directly addressing Nested Sampling for General Bayesian John Skilling AIP conf 2004
the Evidence statistic: Computation

Killaha East, Kenmare, Kerrv, Ireland

Abstract. “The evidence Z is often the single most important number in the [Bayesian] problem

and I think every effort should be devoted to calculating it” (MacKay 2003)[1]. Nested sampling
does this by giving a direct estimate of the density of states. Posterior samples are an optional by-
product.




and after last time ... Evren Yarman's discrete decay model

= Based on svd of Hankel matrix representation of signal to A new inversion methOd for
determine set of discrete decays NMR signal processing
N
h,k — Z 'Uf‘n.-ﬂfi + O-dgf’) forall £ 0O § k S IN C. E. Yurmanl_.‘L. Monzén?4, M. Reynoldsgrd, N. Heaton®
n=1
. . . J TwW.n kTE
signal  approximation error - _ T /T M, (k) = Z 0, (1 —e_T) e T 4+, (k)
= or in matrix form ... 7=t
H=H, + ocHy (o is an L'th root of unity )
L— . . (1
= @error term dELJ = % Z dea'™  where d;, = ﬂlim;,. Pu(ﬂ(_l))

£=0

= U is con-eigenvector of H and o the con-eigenvalue:
Hu = ou
= P are the polynomials of con-eigenvectors: Pu(z) =Y w2

= v, found as the roots of the eigenpolynomial P (z)

1 1 1 1 1 1
0 SO0 1000 1500 @00 2500 3000 350
t{ms)

On approximation of functions by exponential sums *
_ _ Fig. 2. [Top] Noisy measurement (blue) and denoised approximation (red).
Gregory Beylkin *, Lucas Monzén Appl. Comput. Harmon. Anal. 19 (2005) 1748  |Bottom] The logarithm of the absolute value of the difference between them.



Brine calibration (data thanks to Dr Jon Mitchell)

 Raw data 4000
— Tikhonov inversion
5 — Hankel matrix % 2000
% 10 =!
T —— ] - 10 T T | T
" 2§ 2000/ 81 ]
E
- 4 4000 ST = oL 1
H 1074 1073 1072 107! 10° 107 =)
o time / s =
. i =1
E 10%% = 4r -
%) i "
=
2 | |
. T L e bbbt | ESEVESUTPSUUUUTE || W
w0* w0 w? et 1w e ) - TURSS TV (U N (A (1)
time / s XX % x ox ox ¥ T, /s
1072 '

1 2 3 4 5 G T ] 8 10
number of singular values
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Data fitting example - Bentheimer

6000
» Raw data
— Tikhonov inversion | . , |
55 <10 ——r— — Hankel matrix = ' ! L U
- " 2000} s ﬂ -
.2 P of-- c
: _ 15} .
e -2000 i B
g 1.5 10% 102 102 107 10° 10 3
e time / s &l L Q@ |
_.E 1 100% J
2)
= p 0.5+ -
0.5 10
— X
'_’_:?-__'102 0 b
0 ’ ® - -3 1
e B A T o e A 10 10 10
10 10°3
X b b ® ® ® 4
1074

1 2 3 4 5 6 i a8 9 10
number of singular values
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Telling the algorithm — try one more decay

* Raw data 2000
: — Tikhonov inversion
A0 | — Hankel matrix £ 1000 ' e
= el ﬂ -
= 0F - -
8 5 1000 |
= — L5 r ¢ n
s = C,#
H 22000 Lo -
. 104 10 10?2 107 10° 10"
=3 time / s =l r -
= =8
A 10°%
2
= 0.5 -
107"
—— ®
=
__E-‘]D'z' _E [‘] T ETIT Pn  EET Lol
' ] : 3 2 :
o ot 1w 1wt 1wt w1
: . 1073 : T, /s
time [/ s XX ox ox ox % }
107

1 2 3 4 5 Li] T 8 9 10
nmnber of singular values
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Sandstones

BX500

di BN di | L CW ] i i

M#)/AM(0)
P llogy, (T2)]
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P [log,, (T3]
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br BX60 7
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Porosity and its errors — (complete) integral of the distribution 3
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Log-mean T, — (irst-ordery Moment of the distribution

Discrete model bias wrt regularization Used in permeability estimators ...
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